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Abstract
The multilingualization of terminology is an essential step in the translation pipeline, to ensure the correct transfer of domain-specific
concepts. Many institutions and language service providers construct and maintain multilingual terminologies, which constitute
important assets. However, the curation of such multilingual resources requires significant human effort; though automatic mul-
tilingual term extraction methods have been proposed so far, they are of limited success as term translation cannot be satisfied
by simply conveying meaning, but requires the terminologists and domain experts’ knowledge to fit the term within the existing
terminology. Here we propose a method to encode the structural properties of terms by aligning their embeddings using graph convo-
lutional networks trained from separate languages. The results show that the structural information can augment the standard bilingual
lexicon induction methods, and that taking into account the structural nature of terminologies allows our method to produce better results.
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1. Introduction

Terminology occurs along the line between vocabularies
and knowledge systems. While many regard terminolo-
gies as specialized dictionaries that contain domain-specific
terms, terminology exhibits characteristics one does not
typically expect from a list of words. Specifically, we con-
sider the prescriptive aspects of terminologies one cannot
easily observe in the descriptive process of dictionary cre-
ation (Felber, 1984; Kockaert and Steurs, 2015). As termi-
nologies in any language are the depiction of the underlying
knowledge system, the designation of a term must reflect
the concept it represents in a consistent and accepted man-
ner to facilitate expert communications (Sager, 1990).
While many terminology processing techniques conflate
text processing with terminology processing (Pazienza et
al., 2005; Chung, 2003; Peñas et al., 2001), we recognize
that the unique nature of terminologies provides essential
information that can contribute to more effective model-
ing. We draw inspiration from the work of human termi-
nologists, as they consult both the text and the terminol-
ogy when conducting actions such as term identification or
multilingualization. Domain experts and terminologists do
not simply create terms based on their occurrence in the
text, but understand that its designation must reflect its posi-
tion within the domain- and language-specific terminology.
This is related to the theoretical understanding that, linguis-
tically, the formation of term candidates is not syntactic but
lexical, and that term candidates turn into terms with their
incorporation into the terminological system through a con-
scious, social process (Kockaert and Steurs, 2015).
We therefore hypothesize that domain-specific terminolog-
ical information can improve the term multilingualization
process. Specifically, terminologies exhibit a structural na-
ture not typically expected in general vocabulary (Sager,
1990). We propose a method towards multilingualizing ter-
minologies by taking into account the specialized concep-
tual structure reflected in existing terminologies. This also
amounts to taking into account information on the concep-

tual system of the domain as opposed to information on
domain-specific discourse which has been explored in most
term processing (Aker et al., 2007; Morin et al., 2007).
Here we outline the major sections of this paper, which also
corresponds to the major contributions.

• Make the case for the need for terminology multilin-
gualization in the industry (§2) and outlines the con-
struction of terminology language resources by using
structural information that is part of the terminology
(§2.2).

• Measure the limits of semantic-based methods when
applied to terminologies (§4).

• Propose a compositional approach to the structural en-
coding of terminologies, and showcase how multilin-
gualization can assist the inclusion of new terms (§5).

• Harness the full power of our proposed approaches by
combining the semantic and structural information for
the task of multilingualization (§7).

2. Multilingualization of Terminologies
Human-curated, high-fidelity terminology resources are
one of the key assets of any translation agency, as they are
necessary to ensure the correct translation of specific do-
main terms among a group of translators. Terminology dif-
fers from the general vocabulary in that a translation that
conveys equivalent meaning is not necessarily enough, and
a set of standardized, high-quality terms is essential for best
practices (Gornostay, 2010).
Due to the human curation nature of terminologies, con-
stantly updating them across language barriers requires sig-
nificant effort (Wright and Budin, 2001). Our work to au-
tomate the process can save human resources, as when new
terms are extracted from separate languages, translations
only need to be verified and not individually translated.
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2.1. Task Definition
We define the task of terminology multilingualization as
the matching between terms in separate languages, which
in conjunction produces a multilingual term bank resource
for translators and other actors. As terms in a language
are created within the existing structure of terminologies
of that particular language, making structural correspon-
dences across terminologies in different languages can en-
sure that proper term candidates are created with little hu-
man input.
Publicly, efforts to create, organize, and standardize large-
scale terminologies include works of the World Intellec-
tual Property Organization (Valentini et al., 2016), the
EU’s Inter-Agency Terminology Exchange (Johnson and
Macphail, 2000), and more recently the Terminology
Working Group of the Japan Translators Federation. We
see that our work is not simply translation for translation’s
stake, but rather an effort to solve a problem faced by trans-
lation agencies every day.

2.2. The Structural Nature of Terminologies
To further outline the specific nature of terminologies, we
compare terminology with other, related, data resources.

• Terminology and multi-word expressions (MWEs).
A common misconception by many outside (or even
inside) the terminology community is the conflation
of the two by treating processing of terminologies
(of which approximately 80% is complex (Kageura,
2012)) as simply processing of multi-word expres-
sions. But whereas MWEs are characterized by the
fact that their meaning cannot be constructed from the
meaning of their parts compositionaly, for terminol-
ogy the constituent elements come together to produce
the advanced concept that is highly related to the con-
stituents.

• Terminology and knowledge graphs: An often ig-
nored fact is that each term is motivated by an under-
lying concept of the knowledge domain. This reflects a
shared constructive nature between terminologies and
knowledge graphs. We can further draw inspiration
from the knowledge graph technique stemming from
its graph nature, based on the understanding that ter-
minologies in different languages are driven by the
same underlying concepts.

• Multilingual terminology and dictionaries: While
in the creation of dictionaries, the lexicographer’s job
is to descriptively note the corresponding words or ex-
pressions in the respective languages, in creating mul-
tilingual terminologies the terminologist must con-
sider both the meaning and the existing domain ter-
minology to ensure the prescribed term fits with the
domain knowledge.

2.3. Semantic and Structural Information in
Terminology Multilingualization

As pointed out in §1, we aim to draw inspiration from the
work of human terminologists in the incorporation of ter-
minology structure in the task of multilingualization. We

therefore conducted multilingualization experiments using
our proposed method of compositional structural embed-
dings (§5), and compared with bilingual lexicon induction
methods where only semantic and no structural information
is applied in prediction (§4). In the following section, we
describe the overall experiment setup common to the three
approaches.

3. Experiment Setup
To explore the validity of various approaches in the term
multilingualization task as detailed in §2, we describe the
data source and the shared experimental setup with details
in the following.

3.1. Data Source: Medical Subject Headings
(MeSH)

Language Pair Term Pairs
English (en) French (fr) 23461
English (en) Spanish (es) 24182
English (en) German (de) 24102
English (en) Russian (ru) 25847
English (en) Finnish(fi) 16425
English (en) Czech (cs) 12086

Table 1: Language pairs extracted from the metathesaurus
provided as part of the UMLS Terminology Services. We
selected the language pairs to be used in the experiments by
taking into account diverging language ancestry and data
sizes.

Medical Subject Headings (MeSH) (Lipscomb, 2000) is
a medical terminology resource published by the United
States National Library of Medicine (NLM). The controlled
vocabulary is created mainly to assist in the classification
of medical research into a systematic format that allows
the retrieval of information accordingly. Translation of the
MeSH terminology is available in 10 languages as part of
the Unified Medical Language System (UMLS) (Bodenrei-
der, 2004); we selected 6 language pairs, with diverging
nature and data sizes as shown in Table ??, each with term
pairs of corresponding translation.
Due to its purpose, MeSH terms are organized in a tree
structure that shows the broader to more specific concept
relations of medical terms (See Figure 1 for a tiny part of
the tree). This structural nature is something we aim to take
advantage of in our task of multilingualization.

Anatomy Category
Cardiovascular System

Blood Vessels
Arteries

Hepatic Artery

Figure 1: A clip of the tree structure across the terminolo-
gies in Medical Subject Headings (MeSH), with Hepatic
Artery as the example term.
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3.2. Evaluation: Precision @ k
The results are evaluated with precision @ k; specifically,
for a source term, a match is found when one of the top-
k target term nearest neighbor candidates with the smallest
distance to the source term is the ground truth. The evalu-
ation scheme is created by keeping in mind the real-world
use case where a list of k candidates is provided to the ter-
minologist to assist in the standardization of correct trans-
lation. For all language pairs, 10% of term pairs are held
out as the test set, and we report all results in the following
sections on this test set.

4. Semantic Embedding Model:
Bilingual Lexicon Induction (BLI)

In the following experiments based on the state-of-the-art
model for general domain word translation, we take into ac-
count only the semantic information contained in the terms,
and apply a bilingual lexicon induction method in a super-
vised manner to see how well it performs without taking
advantage of the structural nature as we proposed in §2.2.

4.1. Related Work: Bilingual Lexicon Induction
Bilingual lexicon induction (BLI) approaches can be di-
vided based on the task into supervised (Mikolov et al.,
2013; Faruqui and Dyer, 2014; Mikolov et al., 2013) and
unsupervised (Barone, 2016), and method-wise to statistics
(Artetxe et al., 2018; Artetxe et al., 2017) and adversar-
ial training approaches (Conneau et al., 2017; Patra et al.,
2019).

4.2. Method: MUSE (Multilingual Unsupervised
or Supervised word Embeddings)

Multilingual Unsupervised or Supervised word Embed-
dings (MUSE) (Conneau et al., 2017) is one of the state-
of-the-art methods for bilingual lexicon induction. We se-
lected the method as it has a high degree of support with an
open-source library. Despite a few recent works with minor
improvements to the model (Patra et al., 2019; Jawanpuria
et al., 2019), we decide to apply MUSE due to the fact that
it is widely accepted and its performance is ranked at or
close to the top in benchmark studies.
The MUSE model takes as input two sets of embeddings,
one in each language. The model aims to produce a lin-
ear mapping W that can transform a set of embeddings in
one language to the other language, such that corresponding
translation of words have their embeddings close together
in the vector space.
*** Here you need to articulate the sentences again ***
While we refer the reader to the full paper (Conneau et
al., 2017) for a detailed description and its performances
on general vocabulary translation, the key understanding is
that we train two neural networks simultaneously, one dis-
criminator that attempts to determine whether an embed-
ding comes from one language (yi) or is transformed from
the other (Wxi); and another mapping objective trains a
network such that the transformed embeddings can fool the
discriminator as the transformed embeddings Wxi of one
language is close in space to the yi of the other language’s.
The discriminator is defined as:

LD (θD|W ) = − 1

n

n∑
i=1

logPθD ( source = 1|Wxi)

− 1

m

m∑
i=1

logPθD ( source = 0|yi)

(1)
where θD is the discriminator parameters. The mapping
obdjective is:

LW (W |θD) = −
1

n

n∑
i=1

logPθD ( source = 0|Wxi)

− 1

m

m∑
i=1

logPθD ( source = 1|yi)

(2)

4.2.1. Pre-trained Embeddings from Crosslingual
Language Models

While the original task of unsupervised bilingual lexicon
induction refrains from techniques that are built on par-
allel corporal resources, in our terminology applications
we aim to exploit the power of cross-lingual pre-trained
language models. To do so we extracted pre-trained fea-
ture embeddings for the terms from the following 3 mul-
tilingual models, multilingual BERT (Devlin et al., 2018),
XLM-RoBERTa (XLM-R), and FastText (Bojanowski et
al., 2017; Joulin et al., 2016).

• Multilingual BERT (Bidirectional Encoder Repre-
sentations from Transformers) (Devlin et al., 2018)
is simultaneously pre-trained on multilingual corpora
with a shared vocabulary across languages. The model
is pre-trained on a transformer model with objectives
on masked language model (MLM) tasks based on a
very large-scale general corpus.

• XLM-RoBERTa (XLM-R), or Cross-lingual Lan-
guage Model pretraining–Robustly Optimized BERT
pretraining Approach (Liu et al., 2019), extends the
RoBERTa model, which itself is a more advanced evo-
lution of the BERT model, to multilingual training ob-
jectives 1.

• FastText (Bojanowski et al., 2017; Joulin et al., 2016)
pre-trained word vectors are the top of the crop of
the previously dominant word-based vectors. Unlike
the previous two, these embeddings are not context-
sensitive, and also do not consist of tokens and there-
fore are based on words.

Terms are produced from n-gram tokens for both the
Multilingual-BERT and XLM-RoBERTa (XLM-R) mod-
els, where the embedding for a term is extracted from the
second-to-last layer of the model and mean-pooled across

1At the time of writing, the full cross-lingual pre-trained model
had not been released publicly. We still aimed to compare the
improved crosslingual model features with the multilingual BERT
but acknowledge that the results here are not based on the full
model and are subject to changes in the near future.
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individual tokens (since the tokens are character n-grams
for both models, single- and multi-worded terms are not
distinguished here). For FastText, we similarly mean-pool
the individual word embeddings for terms.

4.3. Results and Discussion
We set up the experiments as outlined in §3. We applied
the state-of-the-art MUSE method on top of three different
types of term embeddings created on pre-trained models
detailed in §4.2.1. The results are shown in Table 2 (a).
We found that the performance is better across all embed-
ding sources for language pairs with a traditionally larger
amount of parallel language resources. Despite the more
limited scope of the n-grams vocabulary for both BERT
and XLM-R, they generally outperformed the word-based
fastText embeddings, suggesting the validity of the n-gram
approach to token embedding generation.
Finally, we see that FastText embeddings, despite the far
larger pre-trained vocabulary, do not generally produce bet-
ter results due to the limited coverage among medical terms
(which are often rare words); this is in comparison with the
n-gram based language models where all terms can be cov-
ered with a pooled embedding. For more discussion, we
refer the reader to §5.4, where we compare language pairs
across both semantic and structural embedding methods.

5. Structural Embedding Model: Graph
Convolutional Networks

5.1. Related Work
Bilingual term extraction from parallel and comparable cor-
pora has been studied since the early 1990s (Dagan and
Church, 1994; Daille et al., 1994; Morin et al., 2007).
Some use compositional translation to match bilingual
terms (Tonoike et al., 2005; Delpech et al., 2012). More
recently, word embeddings are used for bilingual terminol-
ogy extraction (Hazem and Morin, 2017).
The terminological network is defined as a network where
each node is a term (single- and multi-worded) and two
nodes share an edge when they have one or more con-
stituent elements in common (Iwai et al., 2016b). Such net-
works have been proven useful in subdomain delineation,
and the generation of multi-word terminologies (Iwai et al.,
2016a).
Graph convolutional networks (GCNs) (Kipf and Welling,
2016) process a graph by generating a feature representa-
tion of each node. They enable the numerical encoding
of terminological graph structure into a high-dimensional
space. They have been applied to many real-world data that
is naturally represented as graphs, and have found use in
text classification (Schlichtkrull et al., 2018), protein inter-
face prediction (Fout et al., 2017), and semantic role label-
ing (Marcheggiani and Titov, 2017).
For knowledge graphs, alignments between graphs have
been an active topic for research. The advent of embed-
dings methods (Wang et al., 2014) brought new life to the
community, with entity embeddings created from attributes
and graph structures such as MTransE (Chen and Zaniolo,
2017), TransR (Huang et al., 2017), and TransD (Ji et al.,
2015). More recently, graph convolutional networks have

been applied to knowledge graphs and extended to cross-
lingual settings (Chen et al., 2016; Shang et al., 2019; Xu
et al., 2019).

5.2. Method: Cross-lingual Graph Alignment
via Graph Convolutional Networks

We begin by generating the initial structural embedding
of terms by tokenizing and pooling the token embeddings,
which are trained from scratch. We then train two graph
convolutional networks on top of the term embeddings sep-
arately for each language according to the terminology tree,
optimizing to minimize the output feature distances and
thus aligning the graphs. Finally, we test out the task of
multilingualization by predicting the translation of terms
unseen during training.

5.3. Tokenization of Terminologies to Generate
Structural Embeddings

The key advancement we make is the creation of n-gram-
based token-individual embedding in each language that,
when combined to form a term embedding, is trained to
reflect the term’s place in the terminology tree structure
(§3.1). This follows the framework:

1. Tokenize the single- and multi-word terms into char-
acter n-gram tokens.

2. For each token, assign a randomly initialized embed-
ding.

3. The pooling of token embeddings produces the em-
bedding of the term, which is trained to reflect its po-
sition in the terminology tree structure.

4. For a new term in one language, the sum of the token
embedding represents its position in the terminologi-
cal structure, and can be used to find the corresponding
term in the other language’s aligned graph.

We applied the same tokenizer from the BERT model to
make the results comparable. For each token, we used
the defined adjacency matrix along with the graph convolu-
tional network to align the token embeddings with the over-
all graph.

5.3.1. Graph Convolutional Network (GCNs)
Building Blocks

The basic building block of the graph convolution operation
is:

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l)W (l)

)
where H is the node features from the previous layer, A is
the adjacency matrix, W (l) is the trainable weight for the
current convolutional layer (l), and σ is an nonlinear acti-
vation function, in this case ReLU. D̃−

1
2 ÃD̃−

1
2 is the sym-

metrically normalized adjacency matrix, where D̃ is the di-
agonal node degree matrix.
Typically for each layer, the weights convolve the node
features to a smaller dimension, allowing for an effective
convolutional operation that produces higher-level features.
This allows the eventual node features to encode the neigh-
borhood and graph topology information.
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GCN

GCN

He	##pati	##c	Arte	##ry

prediction

Art	##ère		h		##ép	##atique

Figure 2: The model architecture (§5) where token embeddings are trained with a two-layer graph convolutional network
(GCN) such that when combined, they reflect the underlying graph structure of the terminology. As the two GCN individual
to the languages are aligned, the approach allows prediction of previously unseen terms to fit within the terminology tree
structure, and thus multilingualization based on their position.

5.3.2. GCNs for Terminology Tree
For our task of multilingualization, we trained two 2-layer
GCNs, one for each language, such that the embeddings
for the terms reflect the tree structure. Figure 2 shows a
schematic of our approach. The two GCNs are aligned with
one another in a way that corresponding term pairs come
close in space, so when a new term is generated (also from
the pooling of trained embeddings) it can find correspond-
ing terms in the other language.
To simplify the model training, the tree of the terminol-
ogy base is converted into graph adjacencies such that each
term is connected to both its immediate parent and children
in the tree, thus the token embedding reflects basically the
position and ancestral information of the term concept in
the tree structure.

5.3.3. Loss Function and Prediction
The loss function is the distance function calculated be-
tween corresponding terms in both languages (the positive
samples), subtracted by the distances between the negative
samples, which are randomly selected terms from both lan-
guages that are not translations of each other.

L =
∑

(s,t)∈S,(s′,t′)∈S′

[ ‖e (s)− e (t)‖1

− ‖e (s′)− e (t′)‖1]
where S is the set of positive samples, S′ the negative set,
and e (i) is the embedding vector of the term i. Predic-
tion is similarly carried out across all terms of respective
languages with the distance function

D(s, t) = ‖e (s)− e (t)‖1
and we report k = n results with the smallest distance and
thus the highest similarities.

The model is optimized with an Adam optimizer (Kingma
and Ba, 2014) with learning rate = 1. The token em-
beddings are randomly initialized with dimension 300 and
passed through two graph convolutional layers with hidden
dimension 200, and towards an output layer with dimension
set to 100.

5.4. Results and Discussion

We compared results for each language pair in both direc-
tions across all the embeddings for the semantic methods
and our proposed structural embedding method (Table 2
(b)). The best results for each language pair are indicated
in bold.

We found that the performance is better across all embed-
ding sources for language pairs with a traditionally larger
amount of parallel language resources. Despite the more
limited scope of the n-grams vocabulary for both BERT
and XLM-R, they generally outperformed the word-based
FastText embeddings, suggesting the validity of the n-gram
approach to token embedding generation.

We can see that our structural embedding-based model al-
most always outperforms the semantic method for k = 10
cases. This is a set up that mirrors the working reality of ter-
minologists, as a list of target term candidates can be pre-
sented for human decision-making in multilingual termi-
nology curation. The model suggestions could potentially
save many hours of labor in the pinpointing of the correct
translation of a term. The semantic methods generally per-
form better when we limit to k = 1 cases, corresponding to
fully automated target term candidate generation.
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(a) Semantic (b) Structural
Embeddings BERT XLM-R fastText Structural

Precision @ k k = 1 k = 10 k = 1 k = 10 k = 1 k = 10 k = 1 k = 10
en-fr 42.14 56.46 35.19 47.72 31.27 48.06 19.55 64.25
fr-en 41.97 56.50 35.32 46.14 31.83 49.08 19.27 64.25
en-es 43.49 58.78 37.29 49.94 35.43 53.58 20.03 59.07
es-en 43.53 57.88 34.44 47.04 37.33 53.78 19.84 59.07
en-de 49.19 62.71 40.52 51.51 23.06 38.53 17.42 55.12
de-en 49.27 62.59 41.85 52.68 25.88 39.44 17.65 55.12
en-ru 16.40 26.15 14.00 21.90 7.35 13.42 15.56 51.53
ru-en 16.56 26.73 12.92 20.15 6.03 11.33 16.50 51.53
en-fi 34.63 47.29 28.30 39.93 9.74 20.75 19.61 58.08
fi-en 33.29 45.59 29.03 38.59 9.07 19.84 19.47 58.08
en-cs 50.21 62.45 41.27 52.11 20.26 36.97 21.60 64.52
cs-en 48.30 61.70 41.11 50.37 23.49 42.27 21.88 64.52

Table 2: Results based on (a) the bilinglingual lexicon induction (BLI) method, specifically MUSE, as outlined in §4, and
(b) structural methods based on graph convolutional networks with compositional encoding of the terminologies (§5). We
report the top-k results where the k target terms with highest similarities to the source term are considered. The best results
among all methods are indicated in bold.

Top-k Match en-fr fr-en en-es es-en en-de de-en en-ru ru-en en-fi fi-en en-cs cs-en
k = 1 20.93 20.12 21.04 20.30 19.58 18.98 6.40 5.46 19.68 20.01 24.72 26.19

k = 10 67.90 67.80 62.89 62.33 61.15 60.97 27.11 25.35 57.47 58.62 69.85 69.21

k = 50 92.85 93.09 90.49 90.40 90.05 90.60 59.00 55.35 91.14 90.81 85.01 84.74

Table 3: Results from the fusion method combining the semantic and structural embeddings. Compared with results from
individual embeddings in Table 2 we see a general trend of improvement.

6. Analysis
6.1. Selection of k
To further delineate cases where our models can help the
terminologists in determining the best translation, we plot
the precision against the k candidates that are the nearest
neighbors to the source terms. We show three of the lan-
guage pairs with unique patterns in Figure 3. Most lan-
guage pairs follow the same pattern as for en-fr (3a), i.e.
whereas the bilingual lexion induction (BLI) methods out-
perform our model when k is smaller than five, our model
has the potential to suggest candidates that better encom-
pass the correct translation when k is raised slightly.
For the English/German language pair (Figure 3b), our
model surpasses the state-of-the-art only at k around 15
rather than a smaller value like the others. We believe this is
due to the unique abundance of compound nouns as terms
in German, and since the tokenization engine of our model
is based on BERT, the limited quality of the tokenization
does not allow our model to fully learn the tree with com-
positional embeddings. For bilingual lexion induction the
embedding for terms is obtained from the average of token
embeddings and is less affected by the tokenization compo-
sition.
A special case must also be made for lower-resource lan-
guages; as the multilingual BERT and XLM-RoBERTa em-

beddings do not make a distinction based on input text lan-
guage, its capabilities can differ among languages. In the
case of Russian (Figure 3c), where Cyrillic and not Latin
script is used, the results are especially poor, showcasing
the differential coverage of the multilingual model, an is-
sue that is beginning to attract attention in the community
recently (Libovickỳ et al., 2019).
Overall we conclude that the semantic-based BLI methods,
when applied to terminology multilingualization, see room
for improvement as they do not improve in precision even
when k is set to be large. Our method is able to surpass the
bilingual lexion induction methods when k is sufficiently
large. As such, we can see that our method successfully
makes use of the information contained in terminologies.
Whether this is due to the incorporation of domain-specific
elements or of structural nature is, as of now, not clear.
More work is required to improve on the precision by fur-
ther diagnosing the results and exploring structural embed-
dings which capture the position of terms in terminologies
with greater precision.

6.2. Tree Depth and Qualitative Analyses
To clarify the nature of terms where the translation is cor-
rectly returned, we ploted the average precision @ 10 for
all language pairs against the term’s depth in the structural
terminology tree, as shown in Figure 4. We can see that pre-
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(a) Proposed Model (Ours)
Correct Incorrect

(b
)S

em
an

tic
(B

E
R

T
)

C
or

re
ct

Abortion Applicants/Femmes demandant l’avortement Bone Nails/Clous orthopédiques
Sugar Acids/Oses acides Jejunal Disease/Maladies jéjunales

Food, Organic/Nourriture biologique Weed Control/Lutte contre les mauvaises herbes
Caspases, Initiator/Caspases initiatrices Peanut Agglutinin/Lectine cacahuète

Sodium Compounds/Composés du sodium Ergothioneine/Thionéine

In
co

rr
ec

t

Emetics/Agents émétiques Ankle Brachial Index/Index de pression systolique
Mitogen-Activated Protein Kinase 3/MAPkinase-3 Neurturin/Protéine Nrtn

Paragonimiasis/Distomatose à Paragonimus Anostraca/Crevettes féeriques
DNA, Helminth/ADN des helminthes Dental Staff, Hospital/Personnel dentaire hospitalier

Interleukin-8/AMCF-I Ethnic Cleansing/Épuration ethnique

Table 4: Matrix of select samples of English/French term pairs that are both or either correctly and incorrectly translated
with (a) our structural embedding model, and (b) the BLI-based methods. We observe that the semantic embedding model
tend to translate commonly-used words and phrases correctly, while for our structure-based method no such distinction is
found.

cision is higher for our method up to level 3, which contains
more general concepts, whereas the BLI methods based on
BERT embeddings catch up for terms nearer the more spec-
ified terms at or nearer the leave nodes.
We postulate that our structural embeddings, as they are
based only on structural information, perform better in
cases of capturing the nature of terms that represent more
general concepts in a more-fine grained way, which BLI
methods fail to do. On the other hand, the semantic method
can take better advantage of a wider range of information
for decision-making at a more specific concept level. The
diverging strength of our model compared to the bilingual
lexicon induction method suggests that a model that com-
bined both semantic and structural information could push
performances further.
In Table 4 we list example term pairs in the English-to-
French languages that are either correctly translated by (a)
our proposed model or (b) the MUSE method based on
BERT embeddings, or both, or neither. For the seman-
tic methods, we can see that term pairs where the model
performs correctly are cases where the terms are common
phrases that are not limited to the medical domain, while
expert terms are more difficult for the model to get right,
reflecting the method’s original design for general word
translation. For our model we do not see such a deficiency
regarding medical terms.

7. Semantic + Structural Fusion
Embeddings Model

In the final part of our experiments, we combined the two
aforementioned approaches to fuse the semantic and struc-
tural terminology information to observe how the joined
forces can further enhance terminology multilingualization.

7.1. Method
The fusion model creates a prediction based on both the
BERT embeddings transformed with the MUSE method
(§4) and the structural embedding obtained from our pro-
posed GCN model (§5); specifically, between candidate
source term s and target term t:

D (s, t) =β
‖esem (s)− esem (t)‖1

dsem

+ (1− β)
‖estc (s)− estc (t)‖1

dstc

where esem are the semantic embeddings and estc are the
structural embeddings, d is the respective dimensions of the
embeddings, and β is a hyperparameter. The top-k matches
with the lowest distances between the languages are then
selected and accuracies calculated from cases where the
ground truth is in one of the matches.

7.2. Results & Discussion
We found that in general, the fusion model produces
slightly better results compared to the individual embed-
dings models for k = 10 (Table 3). We recognize that this
presents a chance to enhance the embeddings by combining
the semantic and structural information present in the ter-
minologies. Specifically for k = 1 cases, the fusion model
underperforms, which is possibly due to the simplistic na-
ture of the approach which results in the fusion process not
taking full advantage of the strengths offered by each.
The limited improvements to the results suggest the need
for a more advanced fusion model where the semantic and
structural models are trained in tandem instead of combin-
ing the results after the fact. The efforts to tackle this is our
ongoing work, based on our observation that these methods
based on semantic and structural information complement
each other.

8. Conclusion
Terminology processing differs from most language pro-
cessing in the requirement of preciseness, precision, and
consistency, reflecting its theoretical position. Our pro-
posed model serves the needs of terminologists in provid-
ing a consistent approach to assist and partially automate
multilingualization with a short-list of candidates. We have
confirmed the viability of structural information being ap-
plied to the task of multilingualization, which is held to be
an essential step in any translation process involving termi-
nologies.
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Figure 3: Precision varying w.r.t. k from 1 to 50 for three
representative language pairs. For most language pairs our
model initially has lower precision but surpasses the seman-
tic methods quickly at k around 5 to 10, a pattern shown in
(a).
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Figure 4: Precision @ 10 with respect to term location in
tree for all language pairs. The two models complement
each other in strength regarding more general and more pre-
cise term concepts.

With the aforementioned challenges in mind, we are cur-
rently working to:

• make the performance consistent with respect to pre-
cision @ k, to fully harness the power of the domain-
specific structural information;

• extend our model to allow simultaneous learning
based on the fusion of semantic and structural infor-
mation inherent in the terminology tree; and

• generalize the model to generate terms independent of
a list of prescribed candidates, such that new terms can
be translated even when the concept does not yet exist
in the target language.

Semantic information is applied in our proposed model
only in the sense that the tokenziation learned from a gen-
eral, domain-nonspecific language model is applied to de-
velop the composition. We do see, however, that a domain-
specific knowledge model can help produce a fusion model
that takes advantage of both the semantic and structural
domain-specific information. Moreover, more work is
needed to make clear the structural information compo-
nents that contribute directly to the improved performance
within the overall domain-specific training apparatus.
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