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Abstract
We investigate the effect of data augmentation on low-resource morphological segmentation. We compare two settings: the pure
low-resource one, when only 100 annotated word forms are available, and the augmented one, where we use the original training set and
1000 unlabeled word forms to generate 1000 artificial inflected forms. Evaluating on Sigmorphon 2018 dataset, we observe that using
the best among these two models reduces the error rate of state-of-the-art model by 6%, while for our baseline model the error reduction
is 17%.
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1. Introduction
Morphological inflection is the process that generates the
word form given its lexeme and morphological properties.
For example, the inputs volver and V;PRS;1;SG produce
the inflected form vuelvo. This task can be an intermedi-
ate stage of text generation, especially in pattern-based ap-
proaches. It is also significant by itself for creation and
expansion of lexical and morphological resources. Mor-
phological inflection is especially important and challeng-
ing for low-resource languages, where no or little annotated
data is present.
As any string-to-string task, morphological inflection can
be solved by attention-based encoder-decoder architec-
tures(Kann and Schütze, 2016). The effectiveness of differ-
ent approaches was thoroughly tested during multiple edi-
tions of Sigmorphon Shared Task on Morphological Inflec-
tion.1 However, its 2018 edition demonstrated that in high-
resource conditions (10000 inflection examples for train-
ing) several systems are almost perfect, achieving average
accuracy above 96% across 100 languages, whereas for a
significant part of these languages the top accuracy exceeds
99%(Cotterell et al., 2018). For medium (1000 word forms)
and low (100 word forms) settings the results are also sat-
isfiable, however, a plenty room for improvement remains.
Especially hard is the low setting, when some morpholog-
ical tags may have no training forms. Indeed, in some lan-
guages (e.g., Basque) 100 words cannot cover even a sin-
gle verb paradigm. However, even in such restricted con-
ditions some systems perform significantly better than oth-
ers, the state-of-the-art approach is imitation learning via
minimization of Levenshtein distance between the network
output and the correct word form (Makarov and Clematide,
2018b). This model is built on top of the previous systems
(Aharoni and Goldberg, 2017; Makarov et al., 2017) that
use monotonic attention to generate a sequence of string
edits.
We examine two ways of providing more data to the model.
The first are language models. There are multiple ways to
adapt them to this task: language models can be used to ad-
ditionally ensure that the generated string satisfies the rules
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of the language, e.g. phonetic. This approach is inspired
by well-known Hidden Markov Models and was applied in
Gulcehre et al. (2017) for neural machine translation and
in Sorokin (2018) for morphological inflection. In the latter
paper the authors conclude that character language models
are useless in low-resource setting, though give some ad-
vantage in the medium one. However, they trained the lan-
guage model on the same dataset as the inflection network
itself, which led to overfitting. We try to revise Sorokin
(2018) conclusion by training the model on additional list
of word forms.

The second approach is data augmentation or synthetic data
generation. This technique is widely used in many areas of
modern computational linguistics, such as grammar error
correction (Bryant et al., 2019) or reading comprehension
(Yuan et al., 2017). We construct the artificial training ex-
amples by the following procedure2: first, the nonse lex-
emes are generated using a character language model; sec-
ond, the inflection patterns are extracted from training data
using abstract paradigms (Ahlberg et al., 2015; Sorokin,
2016); on the third, the most probable pattern for a given
lexeme is selected. If the model is not confident enough to
select one pattern, the generated word is not added to the
data. We evaluate the usefulness of data augmentation for
three models: the two baselines from Sorokin (2018) and
the state-of-the-art one of Makarov and Clematide (2018b).

Our main result is the following: training on aug-
mented data improves the mean accuracy of Makarov and
Clematide (2018b) model from 53, 2% to 53.8%. This im-
provement is rather modest, however, for 40 of 103 lan-
guages the augmented model reduces the error rate by more
than 5%. If we select the best of two models, the aver-
age accuracy goes up to 55, 6%. Additionally, for a weaker
model of (Sorokin, 2018) the effect is much greater: its av-
erage accuracy goes up from 42% to 49%.

2Actually, this is the prediction algorithm of paradigm-based
model of Sorokin (2018).
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2. Model description
2.1. Baseline model.
Our baseline model is based on Makarov et al. (2017) and
is referred as LM-based in Sorokin (2018). Here we de-
scribe its basic component, focusing on the differences in
the next subsection. The main feature of the model is that it
predicts not the word itself, but the sequence of edits from
the basic lemma form to the inflected word. For example,
the Spanish verb volver “to return” and its +1+Sg present
form vuelvo “(I) return” gives birth to the sequence of edits
in Figure 1:
The model consists of the bidirectional LSTM encoder and
the gated decoder. The decoder also has a pointer observing
current encoder state. The gate outputs the weighted sum
of two distributions: the first is obtained via usual softmax,
while the second outputs the COPY action. Formally,

ẑi = max (Wpzi + bp, 0),
pi = softmax(Woẑi + bo),
σi = sigmoid(Wσzi + bσ),
p̂i = σiI(k = cj) + (1− σi)pi,
yi = argmaxk p̂ik.

When the STEP operation is predicted, the pointer is moved
to the next symbol, so the model implements hard mono-
tonic attention mechanism.3 We refer the reader to the
source paper for more details.

2.2. Language model
We use character-level language model in the same way as
in Sorokin (2018): the state of the language model is con-
catenated with the state of the encoder before passing to
the decoder. This state is changed when the model predicts
a letter (not the STEP move) and is kept unchanged when
a STEP is predicted. The model itself is a gated combina-
tion of LSTM network and attention over recent symbols,
as proposed in Tran et al. (2016). It is trained on the set
of word-feature pairs, where features encode the morpho-
logical category of the word. Features are encoded via 0/1-
vector whose embedding is concatenated to letter embed-
dings. When no morphological features are present, this
vector simply consists of all zeros. Model is trained to opti-
mize perplexity without any supervision, therefore our ap-
proach differs from language model pretraining in the sense
of Peters et al. (2018) and other related works.

2.3. State-of-the-art model
As the state-of-the-art model we choose the one of Makarov
and Clematide (2018b). It also uses a pointer to attend cur-
rent input symbol, but, in contrast to most other models,
applies imitation learning to train the decoder. On each
step, the model learns to mimick the decision that mini-
mizes the edit distance between the golden output and the
sequence generated so far. It allows the model not to rely
on external alignment, but to recover from its own subop-
timal decisions. The training algorithm additionally penal-
izes generation of incorrect letters, as such actions lead to

3This mechanish allows the movement only from left to right,
which is adequate for most inflection systems. However, some
cases as hacerse “to become” 7→ se hizo “I became” are problem-
atic.

an erroneous form no matter which decisions the model se-
lect afterwards.
On inference step, the decoder is simply the recurrent net-
work that conditions on the attended input symbol hi, the
previous output action, at−1 and the global vector f of mor-
phological features (case, gender, etc.). Formally:

st = LSTM(ct−1, [E(at−1), hi, f ]),
P (at|a<t, x) = softmax(Wst + b)

We refer the reader to Makarov and Clematide (2018a) and
Makarov and Clematide (2018b) for more details.

2.4. Abstract paradigms
Another model we use as a baseline is based on abstract
paradigms (APs). Abstract paradigms are patterns used to
encode word inflection tables by replacing the components
of longest common subsequence (LCS) of the word forms
by variables. For examples, the pair volver-vuelvo(“to
return”-“(I) return”) is encoded as 1+o+2+er#1+ue+2+o,
the same pattern also represents the pair mover-muevo(“to
move”-“(I) move”). Note that instead of generating the in-
flected form one may predict the abstract paradigm class of
the given lemma, thus reducing the inflection task to clas-
sification. That is the approach pursued in Ahlberg et al.
(2015) and Sorokin (2016). Though abstract paradigms
lose information, e.g., about the length of LCS segments
and are too rigid to represent all possible inflection pat-
terns, e.g., in languages with complex phonological phe-
nomena, they can “memorize” inflection schemata from
small amounts of data and therefore often require less data
than neural networks to achieve decent performance.
However, when little data is available, abstract paradigms
lack generalization capacity to handle variations, e. g.,
phonological. With more data, they face the opposite prob-
lem – ambiguity. For example, for the +Pres+1+Sg form of
Spanish verbs there exist at least the following patterns:

comer 1+er#1+o como
volver 1+o+2+er#1+ue+2+o vuelvo
tener 1+er#1+go tengo

conocer 1+2+er#1+z+2+o conozco
querer 1+2+er#1+i+2+o quiero

Given a previously unseen lemma, for example, temer,
these patterns produce the following candidate forms4:

1+er#1+o temo
1+o+2+er#1+ue+2+o —
1+er#1+go temgo
1+2+er#1+z+2+o tzemo, tezmo
1+2+er#1+i+2+o tiemo, teimo

As in Sorokin (2016), we rank these candidate forms using
language models. That is, we select the form w with the
highest value log pLeft(w|t) + pRight(w|t). Here pLeft(w|t)

4One may impose additional restrictions by noting that, e. g.,
in the pattern 1+2+er#1+z+2+o the second variable is always -c-,
or that in 1+2+er#1+i+2+o the second variable always starts with
-i. However, this only reduces the ambiguity, but does not avoid
it.
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BEGIN COPY STEP u e STEP COPY STEP COPY STEP o STEP STEP END
BEGIN v v o o o l l v v e e r END

Figure 1: Transformation of alignment to source-target pair.

Tag Paradigm
N PSS1S INS PL 1#1+ykunawan
N PSS1S ESS PL 1#1+ykunapi
N PSS1S INS SG 1#1+niywan
N PSS1S INS PL 1#1+niypi

Table 1: Filling the missing paradigm cells.

and pRight(w|t) are the probabilities with respect to left-to-
right and right-to-left character language models trained on
the set of word forms. We discuss this in more details in
Section 3.. Sorokin (2018) has shown that this AP-based
approach is able to outperform neural baselines at least on a
substantial subset of Sigmorphon 2018 languages. Clearly,
the performance of AP model is bounded form above by the
fraction of abstract paradigms observed in the training data
and, consequently, by the fraction of tags in the test data
that were also present in the training sample. This may be
a serious obstacle for the languages with large inflection ta-
bles, no matter how simple these tables are. To deal with
issue we take into account the intraparadigmatic interac-
tions: consider the Quechua data in Table 1. Observing the
top three forms in it, one may deduce that the essive form is
obtained from the instrumentalis form by substituting -pi-
for -wan- in the affix. It yields the pattern 1#1+niypi for the
N PSS1S INS PL form. We discuss this procedure more
in the Section 3..

3. Data augmentation
The algorithm introduced in 2.4. is too weak to com-
pete with state-of-the-art neural approaches, as the one of
Makarov and Clematide (2018b). Therefore we mainly ap-
ply it to extend the training datasets by artificial inflection
forms. To sample a lemma-tag-word triple, we start with
selecting a tag for which at least one pattern is available in
the set of abstract paradigms, extracted from the training
data. For this tag we generate a lemma, using an ngram
model5, conditioned on its part-of-speech. More precisely,
the probability of the symbol c given history h and part-of-
speech t is calculated as

p(c|h, T ) = (α+ β)pc(c|h, T )+
(1− α)p(c|h) + (1− β)p(c|h′, t),

where h′ refers to the history without the first word in h,
pc denotes the probability calculated using raw counts and
coefficients α and β are calculated analogously to Witten-
Bell smoothing. Given the constructed lemma and tag, we
select the most probable word form according to AP inflec-
tion model.

5With only 100 examples for training, ngram models generally
achieve better perplexity, than the neural ones.

Since AP model is imperfect by itself and therefore often
produces incorrect output, we cannot rely on all the gener-
ated pseudoforms. To filter out the improper inflections we
apply two heuristics:

1. Use only the forms whose probability is at least two
times higher than the second most probable sugges-
tion.

2. Keep only the words where all letters except at most
one have probability higher than a fixed threshold (we
set it to 0.001).

4. Models and data
All our experiments are conducted on Sigmorphon 2018
dataset (Cotterell et al., 2018). For every language we use
the low subset as the basic training data. We also utilize
1000 word forms from the medium dataset to train the lan-
guage models used in data augmentation. Namely, the lan-
guage model for the word forms is trained on 100 word
forms from low training tags together with their tags and on
1000 medium word forms without tags. Here we mimick6

the real-world situation where we probably have an exter-
nal unlabeled data (e. g., Web or Wikipedia). This language
model is used to produce 1000 additional artificial lemma-
tag-word triples, as described in Section 3.. Consequently,
the augmented training dataset consists of 1100 items, 100
original and 1000 generated.
Our main goal is to measure the effect of data augmenta-
tion on models of different quality, therefore we evaluate 4
models:

1. The LM-enhanced model of Sorokin (2018) with lan-
guage model trained on augmented data.

2. The model from (Makarov and Clematide, 2018b), the
winner of Sigmorphon 2018 contest.

3. Their versions trained on augmented dataset.

For our sanity checks we also compare the original versions
of LM-enhanced and AP models used in (Sorokin, 2018),
that use the language models trained on only 100 words
from low dataset, with their variants that use language mod-
els trained on the extended dataset of 1100 words as de-
scribed above.
All the models use the parameters from the original pub-
lications, so refer to (Makarov and Clematide, 2018b) and
(Sorokin, 2018) for training and hyperparameter details.

6We acknowledge that the distribution of word forms in Sig-
morphon dataset or Unimorph word list significantly differs from
the one in real texts.
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5. Related work
Morphological inflection and related tasks (lemmatization
and transliteration) were addressed studied for quite a long
time. Early works include CRF and related architec-
tures (Nicolai et al., 2015) and paradigm-based approaches
(Ahlberg et al., 2014; Ahlberg et al., 2015; Sorokin, 2016).
The first successful neural model was the one of Kann
and Schütze (2016). This model adapted the soft attention
mechanism of Bahdanau et al. (2014). Soft attention was
replaced by hard monotonic one in (Aharoni and Goldberg,
2017), whose model was further improved by (Makarov et
al., 2017).
In Sigmorphon 2018 Shared Task the first place was taken
by Makarov and Clematide (2018b) model, that used im-
itation learning to directly optimize edit distance. This
idea was first applied in Makarov and Clematide (2018a).
Sharma et al. (2018) applied soft attention over the source
word and the sequence of morphological tags. Hard mono-
tonic attention approach, pioneered by Aharoni and Gold-
berg (2017) and Makarov et al. (2017) was further devel-
oped by Wu et al. (2018).
Data augmentation was extensively used, in particular, in
2017 Shared Task (Cotterell et al., 2017). The method
of Bergmanis et al. (2017) uses automatically induced
patterns and mined corresponding lemma-word pairs from
Wikipedia dump. Kann and Schütze (2018) extracted pat-
terns from full inflection tables, filling the missed paradigm
cells. Automatic sampling of word stems and paradigm
completion were also applied by Silfverberg et al. (2018).
However, these approaches work with higher amount of
data (1000-2000 inflection pairs) or/and with complete
paradigm tables, which is not the case for our study.
Among others, language models were applied to morpho-
logical inflection by Sorokin (2016). They were also ex-
tensively used in Najafi et al. (2018) system, that took the
second place in Sigmorphon 2018 Shared Task. However,
they utilized the complete Unimorph data, which is suffi-
ciently more than 1000 word forms used in our work.
Abstract paradigms based on LCS method were introduced
by Ahlberg et al. (2014) and further studied in Ahlberg
et al. (2015). In Sorokin (2016) their algorithm was ex-
tended by additional constraints on prefix and gap length.
A recent study (Silfverberg et al., 2018) also uses this
notion and investigate the interconnection between differ-
ent cells inside the paradigm, as well as between different
paradigms. However, most of these studies deal with much
larger datasets than our work.

6. Results and discussion
6.1. Experiments
Our first experiment is a sanity check: we verify that using
a larger dataset to train a language model actually improves
performance, while our paradigm completion described in
Table 1 does not hamper it. So we compare the models
using the LMs trained on 100 words (low setting) with the
ones using LMs trained on 1100 words (medium). We also
use paradigm completion (PC) in AP model. In Table 2 we
present average accuracy across languages, the results for
mean edit distance show the same pattern. Consequently,
we use the +medium in the following experiments.

Model low +medium
LM-based 39,18 40,79
AP-based 42,06 44,20

Table 2: The effect of language model training data size
and paradigm completion.

In the second and main experiment we compare the re-
sults on the original and augmented dataset. The results
are given in Table 3. MERR denotes mean error reduc-
tion rate between the basic model and the best of the two
and we count only significant improvements with more than
5% of error reduction, while worsenings are taken into ac-
count independently from their value. We observe that the
weaker baseline model clearly benefits from data augmen-
tation with 15% of average error reduction and significant
error reduction on more than 76% of the languages (79 of
103). However, that mostly demonstrates the relative weak-
nesses of the original model.
What concerns the state-of-the-art model, the results are
less convincing. The average improvement in accuracy is
rather mediocre and the average error rate reduction is even
negative. That is due to 37 languages where adding more
data deteriorates performance. However, if we take the best
between two models, the average error rate reduction ex-
ceeds 6%, giving the gain in average accuracy of 2, 4%. It
shows that the cases of performance worsening are mostly
outliers, we discuss the possible causes in Section 7..
In Table 4 we list the languages for which data augmenta-
tion produces the largest gains and worsenings in terms of
error reduction. All the results are given for (Makarov and
Clematide, 2018b) model.

7. Discussion
We observe the controversial effect of data augmentation:
for most languages it does help, often rather significantly,
while for several languages it has strong negative effect.
We suppose that the key reason lies in properties of our
augmentation algorithm and its core methods – abstract
paradigms and language models. For most of the nega-
tive examples their medium dataset includes less than 1000
words (Telugu even lacks such dataset), therefore the lan-
guage model has little data to base on. It explains the
low quality of the produced auxiliary training forms. An-
other key is the quality of the abstract paradigm model:
for Adyghe, Crimean Tatar and Swahili it is comparable
with the basic model, so the generated data is of high qual-
ity; however, that explanation fails for Turkmen (abstract
paradigm outperforms the basic model, but augmentation
has strong negative impact) and Quechua (the AP model is
much weaker).
Actually, under clear inspection the errors for Turkmen are
explained by imbalanced data generation. As most Turkic
languages, it possesses vowel harmony, in particular, the
suffix agrees in vowel type with the ultimate syllable of the
stem. However, the vowels ä and ü that occur in the last
stem syllable in the lemmas that lead to an error were never
encountered in such a position in the augmented training
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Model Basic Augmented Best # Sign. impr. # Worsenings MERR MERR(best)
(Sorokin, 2018) 42,06 49,58 50,21 79 12 15,11 17,14
(Makarov and Clematide, 2018b) 53,18 53,75 55,59 40 37 -0,02 6,23

Table 3: The effect of data augmentation on baseline and SOTA models.

Language Basic Augm. ERR AP model
Crimean Tatar 87,0 93,0 46,2 89,0
Uzbek 90,0 94,0 40,0 75,0
Swahili 56,0 72,0 36,4 53,0
Quechua 58,6 72,3 33,1 41,9
Adyghe 90,0 92,9 29,0 90,0
Turkmen 90,0 84,0 -60,0 96,0
Georgian 85,3 73,2 -82,3 69,9
Middle-high-german 84,0 68,0 -100,0 56,0
Telugu 92,0 82,0 -125,0 74,0
Karelian 84,0 58,0 -162,5 44,0

Table 4: Extreme cases of data augmentation effect.

data, which means, that the algorithm has no chance to cor-
rectly learn the corresponding phonological pattern. In the
case of Karelian the errors are mostly caused by spirious
patterns produced by paradigm extraction algorithm.
Let us discuss the spurious matches in more detail. For ex-
ample, consider the Russian adjective krasivyj“beautiful”
and its form krasivoj“beautiful”+Fem+Gen+Sg. Our al-
gorithm produces the paradigm 1+y+2#1+o+2, however, j
is the part of the ending and a correct pattern should be
1+yj#1+oj. In case of Russian it is easy to write a rule
that word-final components of length 1 are not included,
however, it is not so easy for language with more complex
morphonology, e.g. vowel or consonant harmony. Another
negative consequence of vowel harmony and other phono-
logical alternations is that they divide one general inflection
pattern into several surface realizations and our algorithm
cannot see the common abstract inflection model.
Summarizing, the discussion, abstract paradigms are a
powerful tool for pattern-based morphology, however, they
should be refined to work properly in case of phonolog-
ical alternations and complex intraparadigmatic structure.
In our case the auxiliary data that they generate sometimes
occur to be incorrect, thus forcing the model in the wrong
direction.

8. Conclusion and future work.
We have developed a method of data augmentation for low-
resource morphological inflection by the means of abstract
paradigms. Our algorithm significantly improves the qual-
ity of the SOTA model on 40 languages of 103. Our method
comnines neural and paradigmatic approach and can be ap-
plied to any neural architecture. We observed that the cov-
erage and quality of augmentation method is crucial for the
model performance on augmented data. Clearly, our ver-
sion of abstract paradigm approach is not readily applicable
to all the languages, especially to the ones with complex
intraparadigmatic interactions. We expect the methods of
Kann and Schütze (2018) and Silfverberg et al. (2018) to

be helpful in our case, however, we have not modified them
yet to extremely low-resource setting.
Another problem is the exact amount of augmented data
to achieve the best performance. This parameter is clearly
language- and data-dependent, however, more investiga-
tions are required to uncover the factors that affect its value.
We leave this question for future research.
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