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Abstract
Exploiting the broad translation of the Bible into the world’s languages, we train and distribute morphosyntactic tools for approximately
one thousand languages, vastly outstripping previous distributions of tools devoted to the processing of inflectional morphology.
Evaluation of the tools on a subset of available inflectional dictionaries demonstrates strong initial models, supplemented and improved
through ensembling and dictionary-based reranking. Likewise, a novel type-to-token based evaluation metric allows us to confirm that
models generalize well across rare and common forms alike.
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1. Introduction
Recently, computational linguistics has observed notable
gains on a myriad of tasks, with new benchmarks being
established and broken at an unprecedented pace. While
the breadth of the success is impressive, its depth remains
rather shallow - research is concentrated in a small num-
ber of languages. Part of this concentration is practical -
despite Ethnologue1 classifying approximately 7,000 living
languages as of 2019 (Lewis et al., 2015), more than 50%
of internet traffic is concentrated in just 3 languages (En-
glish, Mandarin Chinese, and Spanish), with 76% repre-
sented by 102. Furthermore, despite the fact that the World
Atlas of Language Structures (WALS) (Dryer and Haspel-
math, 2013) marks the world’s languages along 192 dimen-
sions, these 10 languages observe only 93 (48.4%) of these
categories.
While most of the world’s languages are lacking tools and
datasets along many linguistic dimensions, we concentrate
on the specific task of inflectional morphology. In lan-
guages like English, the syntactic role of words in a sen-
tence is largely dictated through word order and the use
of function words. In the sentence “Mary wished she had
caught an earlier bus.”, it can be inferred that Mary is the
subject of the sentence, and an earlier bus is the direct ob-
ject of the verb — the former precedes the main verb, while
the latter follows it. In a language with nominal case, such
as Czech, the word order may be free — Mary may pre-
cede or follow the verb, but will appear in a distinct form
that indicates that she is the subject; likewise, an earlier bus
will mark that it is a direct object. Similarly, the verbs may
mark features such as tense — which is marked in English
— mood, aspect, person, and many other features. In this
example, Spanish would need to mark the verb catch as
hypothetical — although Mary wished she had caught the
bus, she did not do so. Some languages can realize a single
part of speech in many dozens, or even hundreds of ways.
This productivity is troublesome for algorithms with access
to many millions of lines of text; those with access to only
several hundred or thousand are much worse off.

1www.ethnologue.com
2internetworldstats.com/stats7.htm

Figure 1: An overview of our contributions: projected En-
glish annotations induce inflectional morphology, which is
used to train generators and analysers for many hundreds of
languages.

In this paper, we describe a resource intended to aid with
the inflectional sparsity problem: a set of inflectional ana-
lyzers and generators for more than 1000 languages. Often,
inflectional tools are created on an “as-needed” basis — a
researcher will create and distribute a tool for a particular
language of interest, or a small number of languages are in-
crementally added to an existing tool — the Porter stemmer
(Porter, 1980), which evolved into the Snowball stemming
suite3 is one such example. With the exception of the SIG-
MORPHON shared tasks (Cotterell et al., 2016; Cotterell
et al., 2017; Cotterell et al., 2018a; McCarthy et al., 2019),
we are unaware of any efforts to produce a large number of
inflectional tools across a large number of languages.
Leveraging a large, multi-way parallel corpus of Bible texts
(McCarthy et al., 2020), we exploit languages with high-
accuracy annotation tools to hypothesize and project inflec-
tional morphology across an induced alignment (Figure 1.
We hope that providing these tools to the community will

3https://snowballstem.org/

www.ethnologue.com
internetworldstats.com/stats7.htm
https://snowballstem.org/


3964

encourage and facilitate research in a much wider range of
the world’s languages.
This paper progresses as follows: Section 2. gives a brief
overview of inflectional morphology, and describes the key
operations covered by our inflectional tools. Section 3. es-
tablishes the current state of affairs in computational in-
flection, in both high- and lower-resource settings. Section
4. describes the process of inducing inflectional paradigms
from projected morphological hypotheses, as well as the
process of training the inflectional tools. Section 5. de-
scribes the data used to train our tools, including statistics
regarding its inflectional diversity and appropriateness as
an inflectional dataset. Section 6. describes distribution
details for our tools. Section 7. discusses our evaluation
metrics, including our new metric for the approximation of
token-based evaluation, and evaluates our tools on a subset
of our languages. Section 8. concludes the paper.

2. Morphological Analysis and Generation
Languages with productive inflectional morphology will
have a very high type-to-token ratio. Whereas English
nouns typically realize three forms (e.g. book, books,
book’s), and verbs four to five (e.g. see, sees, saw, seeing,
seen), other languages produce a much larger number of in-
flected forms. For instance, a Polish verb may take on over
100 forms (Sadowska, 2012). Even in a very large corpus,
a large majority of these inflections will never be observed.
Any algorithm acting at the word level will have a very high
proportion of out-of-vocabulary words.
Fortunately, inflectional morphology tends to follow semi-
regular patterns, known as inflectional paradigms. Just as
the past tense in English is regularly marked with an -ed
suffix, inflectional categories in other languages are marked
in similar ways across words. If we can identify the inflec-
tional category of a small number of words, we can train
morphosyntactic tools to extend this knowledge to other,
unknown forms. Figure 2 demonstrates four core inflec-
tional operations, as evidenced on a German verb.
Inflection Generation produces surface realizations by ap-
plying morphosyntactic features to a base form, often re-
ferred to as the lemma4. Going in the opposite direc-
tion, Morphological Analysis produces a lemma and a
set of morphosyntactic features from a surface realization.
Morphological analysis subsumes two individual tasks:
Lemmatization, which identifies the lemma from the sur-
face form, and Morphological Tagging, which identifies the
set of features. Morphological analysis can be used to re-
duce the type-to-token ratio - every inflection is reduced to
its lemmatic class, while generation can be used to produce
surface forms during a generation step, restoring fluent text.

3. Related Work
Morphological inflection has been thoroughly studied by
the community, and has seen a renewed interest in the
past few years, as neural models cannot afford to devote
their limited vocabularies to forms that are only observed a

4How the lemma is defined is a matter of some linguistic dis-
cussion, and is beyond the scope of this paper. For our purposes,
“lemma” is interchangeable with “citation form”.

Figure 2: Four inflectional operations: generation, analysis,
lemmatization, and tagging.

handful of times. Character-based models, and algorithmic
approximations of morphology, such as BPE (Sennrich et
al., 2015) and SentencePiece (Kudo and Richardson, 2018)
have helped these models overcome some of the difficulties
presented by inflectional sparsity, but may fail to capture
the nuances of true morphological information.
Recently, much of the work in the building of inflectional
tools has been promoted by the Shared Tasks in Morpholog-
ical Inflection (Cotterell et al., 2016; Cotterell et al., 2017;
Cotterell et al., 2018a; McCarthy et al., 2019). Side-by-
side with the UniMorph project (Kirov et al., 2018), which
aims to increase the availability of morphological dictionar-
ies, these tasks have encouraged the rapid progression of
the state of the art in inflection generation and lemmatiza-
tion in more than 100 languages. In high-resource settings
(i.e., 10,000 annotated training instances), many of the lan-
guages covered by these tasks are near-solved, with inflec-
tional generators producing accuracies in the high 90s.
When data is scarcer, however, there is still much room
for improvement - the best systems average below 60%,
with many languages performing much worse. Further-
more, these tasks assume the presence of gold-annotated
inflectional dictionaries. These dictionaries are expensive
to create, and for many of the world’s languages, finding
annotators can be a difficult task.
An alternative to hand-annotated dictionaries is automatic
induction via semi-supervised methods. The class of meth-
ods introduced by Yarowsky et al. (2001) project informa-
tion from a high-resource parse and a bilingual dictionary.
Fossum and Abney (2005) and Agić et al. (2015) ex-
ploit the parallel nature of the Bible to project POS tags
to lower-resources languages, using this projection to then
train POS-taggers. Buys and Botha (2016) extend this tag-
ging paradigm to morphological tagging, projecting mor-
phological tags onto a low-resource language, and training
a tagger on these morphologically-aware tags. In the op-
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Figure 3: Projecting induced morphological categories and lemmas across an alignment from English to Finnish. Red
arrows indicate a right-to-left syntactic dependency.

posite direction, Kirov et al. (2017) uses a morphologi-
cally rich language to train a morphologically-aware tag-
ger in English. Instead of tags, Soricut and Och (2015)
induce morphological transformation rules in an unsuper-
vised manner, recovering the lemma from inflected forms.
We expand upon the work of Nicolai and Yarowsky (2019),
who first richly annotate the English side of a bitext be-
fore projecting morphological information onto the low-
resource text. The paucity of English morphological tag-
ging is augmented through the heuristic interpretation of
syntactic and semantic parses, as well as a reverse projec-
tion of a number of other high-resource languages. Our
main contribution over their work is the expansion of the
language set by a factor of 40 (from 26 languages to more
than 1000). We also augment the set of inflectional features
covered by their methods and incorporate frequency statis-
tics into their learning model. Details follow in Section 4.

4. Morphological Induction
Traditionally, inflection has been a heavily supervised task,
assuming the existence of an inflectional dictionary. In this
section, we elaborate and extend the recent work of Nicolai
and Yarowsky (2019), who lessen the existence assumption
to that of a small parallel corpus and an optional bilingual
dictionary.
Parallel corpora are themselves rare; however, there do ex-
ist several small texts, such as the Universal Declaration
of Human Rights (UDHR),5 that have have been translated
into a large number of the world’s languages. Of these cor-
pora, the Bible stands out as a uniquely suitable corpus
for projection and induction. First, it is several orders of
magnitude larger than the UDHR, with the New Testament
containing more than 7,000 sentences, and a full transla-
tion consisting of nearly 40,000. Second, the Bible has a
very specific structure that simplifies its parallelizability: it
is divided into short verses that contain roughly the same
semantic content across translations. Each verse is num-
bered according to a defined canon, allowing the Bible to
be approximately parallelized across translations with little
linguistic knowledge.
Starting from the Bible, we learn a word-level alignment
between the English and target translations. To strengthen

5https://www.ohchr.org/EN/UDHR/

the alignment signal, we concatenate 27 translations of the
English Bible and align them to each target Bible. The En-
glish Bible is syntactically and semantically parsed as well
as lemmatized. The resulting parse is used to hypothesize
inflectional categories on the English Bible, which are then
projected along the alignment to the target Bible.

Nicolai and Yarowsky (2019) heuristically derive morpho-
logical feature tags on the English from the syntactic and
semantic parse. For example, in the phrase “I baptize you
with water”, the syntactic parse indicates that water is gov-
erned by the preposition “with”, and the semantic parse in-
dicates an instrumental use. Both highly suggest that “wa-
ter” is in the instrumental case.

Lemmas are projected in a similar fashion, with the help
of a bilingual dictionary. The English lemma is first trans-
lated via the dictionary — if there are multiple translations
each is considered as a candidate target lemma. Candidates
are then compared with the target inflected form, and only
those that pass a minimum edit-distance threshold are re-
tained.

Bilingual dictionaries are rare and often small; in the ab-
sence of a large bilingual dictionary, we use the alignment
to induce one. We consider as translations any target form
that is frequently aligned to an English citation form. Only
those dictionaries with fewer than 20,000 individual en-
tries are expanded in such a manner. The impoverished in-
flectional morphology of English means that some English
forms will match the citation form, despite being inflected
in other languages. Consulting the parses, we only keep
lemma hypotheses aligned to nominal subjects, their modi-
fying adjectives and non-finite verbs.

The projection process is illustrated in Figure 3. Note that
although some words in the source sentence are not aligned,
such as “of”, their information is not necessarily lost —
“of” is used to mark “men” as the genitive case, which is
then projected onto the Finnish translation.

Nicolai and Yarowsky (2019) only consider two parts of
speech — nouns and verbs — predicting plurality and case
for the former, and temporality for the latter. We extend
the verbal inflectional categories to include person and plu-
rality. English verbs do not mark person explicitly, but
much of the information can be inferred from the use of

https://www.ohchr.org/EN/UDHR/
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Figure 4: Percolating nominal information to the adjective.

pronouns6.
We also extend the inflectional induction to include adjec-
tives, which must agree with their modified noun in many
languages. A syntactic parse marks the adjectival modifier
of a noun, and can be used to extend nominal information to
an adjective. Figure 4 illustrates the process. The syntactic
parse indicates that the adjective “wise” modifies the noun
“men”. “Men” has already been tagged as a nominative
plural, and this information percolates up the dependency
relation, so that “wise” is tagged with the same informa-
tion.

4.1. Training Morphological Tools
The projection process creates a set of morphological tuples
for each target language. Each tuple consists of an inflected
form, a lemma, a set of morphosyntactic features that iden-
tify the paradigmatic category of the inflection, and the fre-
quency that this inflectional relation occured in the aligned
corpora. We use the notation {Inflection, Lemma,
Inflectional Category, Frequency} to repre-
sent one of these tuples; an inflectional category is
composed of several inflectional features defined by the
UniMorph (Kirov et al., 2018) schema. Many words
may have multiple interpretations depending upon con-
text and thus may be represented by several individual tu-
ples. For example, the German form gesegnet may be
the past participle of a verb: {gesegnet, segnen,
VB;PTCP.PST, 15}, or an adjective: {gesegnet,
gesegnet, JJ;NOM;SG, 8}. Note that not only do
the morphological categories of the two words differ, but
the lemmas differ as well.
Nicolai and Yarowsky (2019) use these sets of tuples to
train morphological analyzers, but they disregard the fre-
quency of the inflectional processes. Alignment and projec-
tion are noisy operations. Without considering frequency,
rare processes are given the same weight as frequent ones.
This noise then unfairly biases the learning algorithms. We
mitigate this issue by incorporating frequency statistics into
training. During training, each instance in the extracted
inflectional set is represented n times, where n is the bi-
nary logarithm of its frequency. This step has the effect of
strengthening the signal of frequent alignments, while also
eliminating tuples that only occur a single time in training.
The training data is then used to train a sequence-to-
sequence character transducer. Morphological analyzers
are trained by presenting the inflected form as input, pro-
ducing a lemma and inflectional category; the data is re-
versed to train morphological generators (see Figure 2).

6The 2nd person plural and singular pronouns are identical in
modern English. 2nd person verbs are thus marked for number
only. We leave the 2nd person plurality distinction to future work.

Figure 5: Reranking a list of hypotheses with a gazetteer of
observed forms.

Details of the learning algorithms are in Section 5.. Unlike
Nicolai and Yarowsky (2019), we train a single analyzer
and generator for all parts of speech. For analysis, this is a
more natural setting, as it is unlikely the part of speech is
known a priori, while for generation, we saw no degrada-
tion in the quality of the systems by combining the parts of
speech.

4.2. Reranking
Due to the inherent levels of noise in operations such as
alignment and projection, the inflectional tools may pro-
duce the correct output, but not as the top prediction for a
given input. One simple method to promote desirable forms
is dictionary reranking. Under this paradigm, a gazetteer of
known valid forms is combined with an initial list of hy-
pothesis, with observed forms being promoted to the top of
the list. For analysis, a list of lemmas can promote more
likely analyses; in the opposite direction, we can promote a
list of observed forms from a monolingual corpus.
Figure 5 demonstrates this process. Both generators and
analyzers can produce an n-best list that contains the pre-
dicted output, its rank, and a confidence score. Any output
form that is observed in the supplied gazetteer has its score
increased by the score of the previous best hypothesis. In
this example, “sah” is originally ranked third in a list of
hypotheses, but neither of the predictions above it are ob-
served forms. By increasing the confidence for forms listed
in the gazetteer, we promote attested words to the top of the
list while preserving the order of the hypotheses.

5. Data
All of our generators and analyzers are trained on inflec-
tional paradigms extracted from the Bible corpus of Mc-
Carthy et al. (under review), which contains 4032 paral-
lel translations in 1108 languages. Among these are 27
English translations, whose archaic forms have been re-
placed with their modern equivalents (i.e., “believeth” is
replaced with “believes”). The English and target Bibles
have been aligned using the Berkeley aligner (Liang et al.,
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2006), POS-tagged and syntactically-parsed using the Stan-
ford NLP toolkit (Manning et al., 2014), and semantically-
parsed using the Deep Semantic Role Labeler (He et al.,
2017). If a target Bible has multiple translations, they are
all used to extract inflectional paradigms.
The Bible corpus contains languages representing a wide
spectrum of morphological phenomena, including lan-
guages that do not inflect at all. Many Polynesian lan-
guages, such as Indonesian, Tangoa, and Balinese, for ex-
ample, have very little inflectional morphology on nouns,
verbs, and adjectives. Likewise, the Sino-Tibetan language
family, containing languages like Mandarin Chinese, ob-
serves very little inflectional morphology (cf. Tibetan).
The URIEL typological database (Littel et al., 2016) cat-
egorizes almost 8000 languages and dialects along 290
dimensions. Unlike other typological databases, such
as WALS (Dryer and Haspelmath, 2013), or PHOIBLE
(Moran and McCloy, 2019), which require expert annota-
tions of typological features, URIEL is an automatically-
derived database that extrapolates from other typological
sources, allowing for much wider coverage. It is the only
database that covers all of the languages in the Bible cor-
pus.
Of the dimensions marked by URIEL, 12 are exclusively
concerned with morphology. Table 1 gives a breakdown of
how many languages in the Bible corpus observe each of
the appropriate features, as well as the percentage of the
entire corpus such coverage represents.

Feature Number % of dataset
Plural Prefix 111 10.0
Plural Suffix 635 57.5
Plural (Any) 746 67.5
Case Prefixing 54 4.9
Case Suffixing 290 26.2
Case Proclitic 14 1.3
Case Enclitic 57 5.2
Case Other 112 10.5
Case (Any) 526 47.6
Adjective Agreement 590 53.4
Past Vs. Present 599 54.2
Future Affix 584 52.9
3-way distinction 389 35.2
Tense/Aspect/Mood Prefix 294 26.6
Tense/Aspect/Mood Suffix 586 53.0
Tense/Aspect/Mood (Any) 880 79.6
None 79 7.1

Table 1: Number and percentage of the dataset that ob-
serves specific morphological phenomena. Note that sev-
eral languages observe multiple phenomena, so the percent-
ages will add up to more than 100%.

These statistics demonstrate that the Bible corpus is a mor-
phologically diverse dataset and furthermore that it fol-
lows typical linguistic trends observed in the literature.
Namely, suffixing is much more frequent than prefixing
(Dryer, 2013), and that past-tense (Östen Dahl and Velupil-
lai, 2013) and case marking (Iggesen, 2013) are roughly
evenly distributed between languages that observe it and

those that do not. We also note that verbal marking is much
more prevalent than nominal marking, which in turn occurs
more frequently than adjective agreement. Furthermore,
languages that inflect nouns are much more likely to mark
plurality than case.

Category # of lemmas Average Count
1st;SG;PST 353 0.57

2nd;PST 298 0.28
3rd;SG;PST 1125 1.71
1st;PL;PST 263 0.27
3rd;PL;PST 844 0.96
1st;SG;PRS 389 0.83

2nd;PRS 456 0.41
3rd;SG;PRS 1027 0.69
1st;PL;PRS 321 0.49
3rd;PL;PRS 670 0.43
1st;SG;FUT 206 0.32

2nd;FUT 154 0.28
3rd;SG;FUT 382 0.41
1st;PL;FUT 66 0.13
3rd;PL;FUT 260 0.28

Infinitive 1875 4.28
Undetermined 510 0.40

Table 2: The average number of times that any verbal
lemma will appear as a given inflection in a single trans-
lation of the Bible.

We also collect statistics on the inflectional coverage ap-
pearing in the English Bibles. Verbal statistics are collected
in Table 2. For each inflectional category, we calculate
both the number of individual lemmas observed, as well as
the average frequency across all English Bibles. There are
3642 verbal lemmas inflected across the 27 English Bibles,
including 1009 hapaxes7. While the past tense and the 3rd

person singular form a majority of finite verb forms, even
the rarer categories are observed with some regularity. For
example, the 1st person plural future form is observed on
average 8.6 times in each English Bible; that is, 66 dif-
ferent verbs are inflected to this category on average 0.13
times in each Bible. When projecting across to a target
language Bible, each category demonstrates both moderate
frequency and wide lemmatic coverage.
Table 3 demonstrates similar observations regarding nouns.
The 27 translations of the English Bible contain 10,118
nominal lemmas, including 3,292 hapaxes. As would be
expected, the four Germanic cases (nominative, accusative,
dative, and genitive) are highly represented, with several
hundred individual instances occurring in each Bible. How-
ever, other cases are also represented, with a wide distribu-
tion of lemmas across Bibles, and a small number of indi-
vidual instances within a single Bible.

6. Distribution Details
We train two separate sequence transduction models: one
neural, and one non-neural, and construct an ensemble that
combines their hypotheses. We make these models avail-
able to the community, but understanding that portability

7Words that occur only once.
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Case SG PL SG Ave PL Ave
NOM 5431 2054 0.90 0.26
ACC 4220 1720 0.54 0.18
GEN 3896 1392 0.39 0.11
DAT 2132 763 0.08 0.04
INS 2080 782 0.09 0.03
ESS 1892 632 0.08 0.02
ABL 726 220 0.01 0.00
ALL 718 197 0.01 0.00
COM 151 86 0.00 0.00
PRT 234 73 0.00 0.00
PRV 4 1 0.00 0.00
UNK 4385 1537 0.66 0.12

Table 3: The average number of times that any verbal
lemma will appear as a given inflection in a single trans-
lation of the Bible.

issues may arise, we also provide the induced inflectional
paradigms, so that members can train their own models.
We also provide wrapper scripts that encompass hypothesis
generation, reranking, and ensembling. Due to the num-
ber of models, the resource suite is too large to store online,
and we ask that interested parties contact the first author for
access.
The non-neural training algorithm is DirecTL+ (Jiampo-
jamarn et al., 2010) {DTL}, a Semi-Markov model that
aligns source and target strings with an unsupervised char-
acter aligner (Jiampojamarn et al., 2007) before extracting
traditional HMM transition operations. The model allows
a character window of up to 4 on each side of the focus
character, with joint source-target n-grams of length 3, as
well as a copy operation that learns the identity operation
explicitly.
The neural system is the hard-attention model over edit ac-
tions of Makarov and Clematide (2018), which has been
shown to perform well in low-resource settings (Cotterell
et al., 2018b). The system aligns inflections and lem-
mas before training an encoder-decoder model to predict
edit-actions over a string sequence. We use the best low-
resource parameters indicated in their paper. That is, a sin-
gle layer encoder and decoder of 200 hidden units, embed-
dings size of 100, 50% dropout, ADADelta optimization,
and a ReLU activation function.
The two models are ensembled using a linear combination
of the normalized confidence scores produced by the indi-
vidual models. Each model produces an n-best hypothesis
list, with scores normalized to fall in the range [0.1, 1.1].
Dictionary reranking is performed as described in Section
4.2..

6.1. Wrapper script
We provide a script that enables the use of the generators
and analyzers described in this paper, with all modification
described herein. It is written in Python 3, and requires that
the appropriate training tools be installed locally. It requires
a list of words to analyze, the 3-character ISO 639-3 code
for the language (with the option -l), a configuration file
(-c) and a location to write the output (-o). If no other
options are provided, it will assume that the user wishes

to perform morphological analysis. The user can specify
inflection generation with the (-g) option.
The configuration file is a tab-separated file indicating the
locations of the trained models for each language. Each
row in the file must include the ISO code of the language,
followed by 3 database locations: the location of a inflec-
tional dictionary, the location of the DTL trained model,
and the the location of the neural model. If such a model is
non-existent, the file may specify N/A.
The wrapper will first look for the input word in the pro-
vided inflectional dictionary; if the word is found, the anal-
ysis from the dictionary is provided; if not, then the pro-
vided models will be run, and ensembled, if possible. The
user can specify the length of the n-best list of the models
(-n). 1 is the default.
If a lemma-dictionary or type-dictionary is available, it can
be provided with the (-d) option, which will enable dictio-
nary reranking. The dictionary should consist of a single
column of acceptable word forms.

7. Evaluation
We construct both inflection generators and morphological
analyzers for more than 1000 languages. In this section, we
evaluate the quality of the tools that we present to the com-
munity. It is not possible to collect evaluation sets for each
and every language represented in this dataset — the evalu-
ation of morphological tools requires annotated inflectional
dictionaries, which do not exist for a majority of languages.
We instead evaluate on a subset of the languages for which
we do have inflecional dictionaries. We turn to UniMorph
(Sylak-Glassman et al., 2015; Kirov et al., 2018), a col-
lection of morphological dictionaries that spans more than
100 languages. Of these languages, 50 overlap with our
languages, and can be used as a test set. For each language,
we extract a validation set of 500 randomly-sampled tuples
of the form {LEMMA, INFLECTED, MORPH}, and a test
set of 1000 instances. For example, an English instance of
the word “played” would appear as {play, played, PST}.
The validation set is used to tune hyper-parameters, and
for early stopping of the neural models. The languages are
listed in Table 4.
From these tuples, we construct test sets for both generation
and morphological analysis. Generators must correctly pro-
duce an inflected form when given a lemma and inflectional
category as input. If a given input pair has multiple correct
outputs, such as {dive, dived/dove, PST}, a generator is
evaluated as correct if it produces any of the correct forms;
however, each type is only evaluated once.
In the opposite direction, we evaluate two separate produc-
tions. Recall from Figure 2 that morphological analysis is
a composite of two sub-tasks — we report the accuracy of
our tools on both complete analysis, as well as the sub-task
of lemmatization. Analysis accuracy requires both the cor-
rect lemma and the correct inflectional category for a given
inflected form. Lemmatization accuracy evaluates the same
hypothesis, but only requires that the correct lemma be re-
turned. For example, the German type “gehend” - going can
either be a present participle with the lemma gehen, or an
adjective with the lemma gehend. Thus, while the anal-
ysis {gehend, VB;PST.PTCP} has the correct lemma,
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Family Number of Languages
Albanian 1
Armenian 1

Balto-Slavic 11
Bantu 2
Celtic 1

Dravidian 2
Germanic 7
Hellenic 1

Indo-Aryan 2
Iranian 1
Italic 1

Kartvelian 1
Quechuan 1
Romance 6
Semitic 3
Turkic 5
Uralic 4

Table 4: Distribution of Evaluation Languages

it is an incorrect analysis. As with generation, we deem an
analysis to be correct if it matches one of several correct
analyses.
For both generation and analysis, we report accuracy @1,
@5, and at @50. While it is desirable to return a correct
result as the top prediction of a system, it is not always nec-
essary. For many downstream tasks, it is sufficient to return
the correct result in a list of hypotheses, trusting the down-
stream algorithm to robustly find the correct signal. Fur-
thermore, accuracy @n can help indicate instances where
the correct signal exists in training, but may indicate that
more robust noise-reduction strategies might be beneficial.
Furthermore, we evaluate our tools at two levels of gran-
ularity: Type accuracy, and token accuracy. While inflec-
tional dictionaries facilitate the computation of type-level
accuracy, this metric may over-represent rare forms, which
are often regularly inflected, and thus simpler to produce.
We report the standard type accuracy in Section 7.1. be-
fore describing our novel type-to-token conversion, which
allows an approximation of token-level accuracy when an-
notated corpora are unavailable.

7.1. Type Accuracy
We first evaluate our systems on type accuracy: given a
morphological dictionary, we report the percentage of in-
stances that are correctly analyzed. We present the type ac-
curacy for generation, lemmatization, and analysis in Table
5. We report the average over all 50 evaluation languages.
We observe that ensembling and reranking is much more
successful going from inflections to lemmas than the re-
verse. The neural system of Makarov and Clematide (2018)
was specifically designed for inflection generation, and is
very successful at producing inflected forms, even with
noisy training data - the non-neural system has little to add
in an ensemble. Likewise, the inflectional sparsity problem
means that most inflectional forms will not be observed in
the corpus used for reranking, and thus few forms are pro-
moted.
On the lemmatization side, the ensemble clearly improves
over either individual system. Lemmatization is an exer-

System Generation Lemma Analysis
DTL@1 21.1 23.6 10.5
M&C@1 25.0 24.1 9.7

Ensemble@1 24.1 25.2 11.6
Ensemble+RR@1 24.1 44.1 16.9

DTL@5 35.6 39.1 20.2
M&C@5 43.9 46.6 19.9

Ensemble@5 43.0 47.3 23.7
Ensemble+RR@5 43.0 60.3 31.0

DTL@50 48.8 52.1 31.0
M&C@50 60.7 66.9 32.9

Ensemble@50 57.7 68.0 37.0
Ensemble+RR@50 57.7 69.3 39.5

Table 5: Generation, Lemmatization, and Analysis accu-
racy at the type level.

cise in reconciliation - many disparate forms are collected
under a single paradigm. It is not surprising that the number
of hypotheses is therefore limited, and that the two systems
would share hypotheses - an ideal condition for an ensem-
ble. Furthermore, lemmatization is much more likely to
benefit from reranking, if a suitable dictionary exists.

7.2. Token Accuracy
While type accuracy can demonstrate how well a given sys-
tem can generalize to new lemmas, it is in some ways ar-
tificial: while a Polish verb can be inflected in hundreds
of different ways, a large number of the inflectional slots
will only rarely be used in standard text and speech. A
system that correctly predicts the 80% least frequent types
with 100% accuracy is very different than one that correctly
analyzes types with 80% accuracy, regardless of type fre-
quency.
Ideally, a token-based evaluation metric would consider a
corpus annotated for morphological inflection, and weight
each type by its frequency. This is infeasible for a number
of reasons. Even if such a corpus existed in more than a
handful of languages, morphological fecundity prevents all
but a very small number of inflections from appearing in
any text - most types would receive a weight of 0.
We propose instead a simple approximation to convert type-
based accuracy into token-based accuracy. We only assume
the presence of an annotated English corpus, and a raw
monolingual corpus in the target language. All reported
results are on the best reported system from Figure 5 (ie,
the Ensemble with reranking).
We can weigh input types by the likelihood that they ap-
pear in a monolingual corpus. Due to the inflectional spar-
sity problem, we use a smoothed Witten–Bell unigram lan-
guage model to arrive at a normalized likelihood for each
inflection in our evaluation set. We do not know the correct
distribution of inflectional categories, so instead distribute
them uniformly. This is a naive assumption, but it allows us
to achieve an initial approximation, which will be modified
in subsequent steps. We refer to this metric as our “Surface-
based” metric, and use the target translation of the Bible as
our monolingual corpus. Our generators and analyzers are
evaluated using this metric in Table 6.
We typically see that the surface-based accuracy surpasses
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the type-based accuracy by several percentage points, sug-
gesting that our tools are consistent across frequency levels
- if our tools were exploiting rare types, it would perform
much worse on the token level. It is not overly surprising
that the tools can handle common types - these are likely to
be discovered by the induction algorithm. If one of these
types is irregular, the model should learn its morphology in
a highly specialized context.
There are two disincentives to using a metric that estab-
lishes token frequency based on the frequency of target
types. Smoothing helps mitigate the under-representation
of rare types, but the domain of the corpus also heavily
biases certain types. The test set of Unimorph is largely
modern terminology, which is heavily disjoint with Bible
text. While it might be possible for some languages to find
a large enough monolingual text in the correct domain, we
instead propose a new metric that approximates token fre-
quency from an English corpus and a bilingual dictionary.
We first lemmatize our English corpus, and establish the
smoothed probability of each lemma as P{Lemma}. We
can then determine the likelihood of a target lemma,
P{Target} through the use of a translation model. Ide-
ally, this likelihood would come from a high-quality trans-
lation, but lacking such a model, we use a bilingual dic-
tionary, with equal probability assigned to each translation.
If a target lemma is not in our dictionary, we assign it the
smoothed likelihood of an unseen lemma in the English cor-
pus. Thus, the probability of a target lemma, P{Target} is
equal to Equation 1. From our annotated English corpus,
we can obtain the likelihood of each inflectional category
in a corpus, denoted P{Morph}. Then, the probability of
an inflected form, P{Inflected} is equal to Equation 2.

P{Target} = P{Lemma} × P{Translation} (1)

P{Inflected} = P{Target} × P{Morph} (2)

For example, consider the French type {finirons,
finir, 1;PL;FUT}. Our dictionary tells us that
finir translates as to finish and to complete.
Finish appears in the English corpus with a likelihood
of 0.00047, and complete appears with a likelihood of
0.00018. The only back-translation of to complete
in the dictionary is finir, while to finish back-
translates to both finir and terminer. P{finir}
is then equal to 0.5 * 0.00047 + 1.0 * 0.00018 (ie, to
finish only has a 50% probability of translating to
finir. Finally, the 1;PL;FUT feature set appears with
a likelihood of 0.009% in the English Bible, so the fi-
nal likelihood of {finirons, finir, 1;PL;FUT} is
0.00009 * 0.000415 = 3.735x10-8.
To investigate the variance of this metric, we determine the
English lemma likelihood using two differently-sized cor-
pora of different genres. The Brown corpus (Kucera and
Francis, 1979) consists of approximately 50K sentences
across numerous genres and domains. The LORELEI
project (Onyshkevych, 2014) provides parallel disaster
snippets for low-resource languages, and consists of ap-
proximately 1500 unique sentences. Table 5 summarizes
the token-level accuracies of our generators and analyzers.

System Generation Lemma Analysis
Types@1 24.1 44.1 16.9

Surface@1 36.6 45.5 19.5
Brown@1 36.9 52.2 26.4

LORELEI@1 38.3 51.9 26.1
Types@5 43.0 60.3 31.0

Surface@5 59.8 66.6 40.2
Brown@5 57.6 71.4 46.5

LORELEI@5 58.5 70.0 45.8
Types@50 57.7 69.3 39.5

Surface@50 71.1 72.9 45.2
Brown@50 70.2 77.1 57.1

LORELEI@50 71.2 77.5 56.9

Table 6: Generation, Lemmatization, and Analysis accu-
racy at the type level.

We first note that for generation, our new metric is very
close to the original surface-based metric. This suggests
that our combination of lemma, translation, and morphol-
ogy probabilities is a modest approximation of actual type
distribution. For lemmatization, we see that the token-
based metrics are moderately higher than the surface-based
one. While some of this improvement may be attributed
to noise, we instead suggest that lemmatization, being an
easier task than generation, is simply benefiting from the
domain-shift to a modern corpus.
We further observe that although the two corpora are very
different in size and genre, they do not vary significantly in
their reported numbers, suggesting that they are both rea-
sonably representing common lemmas, with the smoothed
probability of less common lemmas also approximating the
true distribution.

8. Conclusion
We have learned inflectional generators and analyzers on
a scale never before attempted. Leveraging a corpus of
parallel Bibles, we project inflectional categories from
automatically-annotated English, creating tools that learn
nominal, verbal, and adjectival morphology in more than
1000 languages. Intrinsic evaluation demonstrates that the
tools are able to generalize beyond their initial Bible lex-
icons to modern terminology, and a novel type-to-token
conversion metric further demonstrates their applicability
over a wide range of inflectional types. We freely distribute
these tools to the community, in the hopes that they will
encourage research in languages that have previously been
underserved.
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