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Abstract
Data-driven segmentation of words into subword units has been used in various natural language processing applications
such as automatic speech recognition and statistical machine translation for almost 20 years. Recently it has became
more widely adopted, as models based on deep neural networks often benefit from subword units even for morphologically
simpler languages. In this paper, we discuss and compare training algorithms for a unigram subword model, based on the
Expectation Maximization algorithm and lexicon pruning. Using English, Finnish, North Sami, and Turkish data sets,
we show that this approach is able to find better solutions to the optimization problem defined by the Morfessor Baseline
model than its original recursive training algorithm. The improved optimization also leads to higher morphological
segmentation accuracy when compared to a linguistic gold standard. We publish implementations of the new algorithms
in the widely-used Morfessor software package.

Keywords: Morphology, Statistical and Machine Learning Methods, Language Modelling, Unsupervised learning,
Tools, Less-Resourced/Endangered Languages

1. Introduction
Subword segmentation has become a standard prepro-
cessing step in many neural approaches to natural
language processing (NLP) tasks, e.g Neural Machine
Translation (NMT) (Sennrich et al., 2015) and Auto-
matic Speech Recognition (ASR) (Smit et al., 2017).
Word level modeling suffers from sparse statistics, is-
sues with Out-of-Vocabulary (OOV) words, and heavy
computational cost due to a large vocabulary. Word
level modeling is particularly unsuitable for morpho-
logically rich languages, but subwords are commonly
used for other languages as well. Subword segmen-
tation is best suited for languages with agglutinative
morphology.
While rule-based morphological segmentation systems
can achieve high quality, the large amount of human
effort needed makes the approach problematic, partic-
ularly for low-resource languages. The systems are lan-
guage dependent, necessitating use of multiple tools in
multilingual setups. As a fast, cheap and effective al-
ternative, data-driven segmentation can be learned in
a completely unsupervised manner from raw corpora.
Unsupervised morphological segmentation saw much
research interest until the early 2010’s; for a sur-
vey on the methods, see Hammarström and Borin
(2011). Semi-supervised segmentation with already
small amounts of annotated training data was found
to improve the accuracy significantly when compared
to a linguistic segmentation; see Ruokolainen et al.
(2016) for a survey. While this line of research has
been continued in supervised and more grammatically
oriented tasks (Cotterell et al., 2017), the more recent
work on unsupervised segmentation is less focused on
approximating a linguistically motivated segmentation.
Instead, the aim has been to tune subword segmenta-

tions for particular applications. For example, the sim-
ple substitution dictionary based Byte Pair Encoding
segmentation algorithm (Gage, 1994), first proposed
for NMT by Sennrich et al. (2015), has become a
standard in the field. Especially in the case of multi-
lingual models, training a single language-independent
subword segmentation method is preferable to linguis-
tic segmentation (Arivazhagan et al., 2019).
In this study, we compare three existing and one novel
subword segmentation method, all sharing the use of
a unigram language model in a generative modeling
framework. The previously published methods are
Morfessor Baseline (Creutz and Lagus, 2002), Greedy
Unigram Likelihood (Varjokallio et al., 2013), and Sen-
tencePiece (Kudo, 2018). The new Morfessor variant
proposed in this work is called Morfessor EM+Prune.
The contributions of this article are
(i) a better training algorithm for Morfessor Base-

line, with reduction of search error during train-
ing, and improved segmentation quality for En-
glish, Finnish and Turkish;

(ii) comparing four similar segmentation methods, in-
cluding a close look at the SentencePiece reference
implementation, highlighting details omitted from
the original article (Kudo, 2018);

(iii) and showing that the proposed Morfessor
EM+Prune with particular hyper-parameters
yields SentencePiece.

1.1. Morphological Segmentation with
Unigram Language Models

Morphological surface segmentation is the task of split-
ting words into morphs, the surface forms of meaning-
bearing sub-word units, morphemes. The concatena-
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Morfessor BL Greedy Unigram SentencePiece Morfessor EM+Prune
Model Unigram LM Unigram LM Unigram LM Unigram LM
Cost function MAP ML MAP MAP

Prior MDL – DP MDL+DP
Training algorithm Local search EM+Prune EM+Prune EM+Prune

Initialization Words Seed lexicon Seed lexicon Seed lexicon
EM variant – Lateen-EM once EM EM / Lateen-EM

Stopping criterion
Cost change threshold ✓ ✓ – ✓
Target lexicon size Approximate ✓ ✓ ✓

N-best decoding ✓ – ✓ ✓
Sampling decoding – – ✓ ✓
Count dampening ✓ – – ✓
Semi-supervised ✓ – – ✓
Requires pretokenization ✓ ✓ – ✓
Reference implementation Python C++ C++ Python

Table 1: Comparison of subword segmentation methods applying a unigram language model.

tion of the morphs is the word, e.g.

reliability 7→ reli++ abil ++ ity

Probabilistic generative methods for morphological
segmentation model the probability P (s) of generat-
ing a sequence of morphs (a word, sentence or corpus)
s = [m0, . . . ,mN ], as opposed to discriminative meth-
ods that model the conditional probability of the seg-
mentation boundaries given the unsegmented data.
This study focuses on segmentation methods applying
a unigram language model. In the unigram lan-
guage model, an assumption is made that the morphs
in a word occur independently of each other. Alterna-
tively stated, it is a zero-order (memoryless) Markov
model, generalized so that one observation can cover
multiple characters. The probability of a sequence of
morphs decomposes into the product of the probabili-
ties of the morphs of which it consists.

Pθ(s) =

N∏
i=1

Pθ(mi) (1)

The Expectation Maximization (EM) algo-
rithm (Dempster et al., 1977) is an iterative algorithm
for finding Maximum Likelihood (ML) or Maximum a
Posteriori (MAP) estimates for parameters in models
with latent variables. The EM algorithm consists of
two steps. In the E-step (2), the expected value of the
complete data likelihood including the latent variable
is taken, and in the M-step (3), the parameters are
updated to maximize the expected value of the E-step:

Q(θ,θ(i−1)) =

∫
y

logP (D,y |θ)P (y |D,θ(i−1))dy

(2)
θi = arg max

θ
Q(θ,θ(i−1)). (3)

When applied to a (hidden) Markov model, EM is
called the forward-backward algorithm. Using instead

the related Viterbi algorithm (Viterbi, 1967) is some-
times referred to as hard-EM.1 Spitkovsky et al. (2011)
present lateen-EM, a hybrid variant in which EM and
Viterbi optimization are alternated.
Virpioja (2012, Section 6.4.1.3) discusses the chal-
lenges of applying EM to learning of generative mor-
phology. Jointly optimizing both the morph lexicon
and the parameters for the morphs is intractable. If,
like in Morfessor Baseline, the cost function is dis-
continuous when morphs are added or removed from
the lexicon, there is no closed form solution to the
M-step. With ML estimates for morph probabilities,
EM can neither add nor remove morphs from the lex-
icon, because it can neither change a zero probability
to nonzero nor vice versa.
One solution to this challenge is to apply local search.
Starting from the current best estimate for the param-
eters, small search steps are tried to explore near-lying
parameter configurations. The choice that yields the
lowest cost is selected as the new parameters. Greedy
local search often gets stuck in local minima. Even if
there are parameters yielding a better cost, the search
may not find them, causing search error. The error re-
maining at the parameters with globally optimal cost
is the model error.
Another solution is to combine EM with pruning
(EM+Prune). The methods based on pruning begin
with a seed lexicon, which is then iteratively pruned
until a stopping condition is reached. Subwords can-
not be added to the lexicon after initialization. As
a consequence, proper initialization is important, and
the methods should not prune too aggressively without
reestimating parameters, as pruning decisions cannot
be backtracked. For this reason, EM+Prune methods

1An analogy can be drawn to clustering using k-means,
which yields a hard assignment of data points to clus-
ters, and using EM for clustering with a Gaussian Mixture
Model (GMM), where the assignment is soft.
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proceed iteratively, only pruning subwords up to a pre-
defined iteration pruning quota, e.g. removing at most
20% of the remaining lexicon at a time.

2. Related Work
In this section we review three previously published
segmentation methods that apply a unigram language
model. Table 1 summarizes the differences between
these methods.

2.1. Morfessor Baseline
Morfessor is a family of generative models for un-
supervised morphology induction (Creutz and Lagus,
2007). Here, consider the Morfessor 2.0 implemen-
tation (Virpioja et al., 2013) of Morfessor Baseline
method (Creutz and Lagus, 2002).
A point estimate for the model parameters θ̂ is found
using MAP estimation with a Minimum Description
Length (MDL) (Rissanen, 1989) inspired prior that fa-
vors lexicons containing fewer, shorter morphs. The
MAP estimate yields a two-part cost function, consist-
ing of a prior (the lexicon cost) and likelihood (the cor-
pus cost). The model can be tuned using the hyper-
parameter α, which is a weight applied to the likeli-
hood (Kohonen et al., 2010):

θ̂ = arg min
θ

{− log
prior︷ ︸︸ ︷
P (θ) −α log

likelihood︷ ︸︸ ︷
P (D |θ)} (4)

The α parameter controls the overall amount of seg-
mentation, with higher values increasing the weight of
each emitted morph in the corpus (leading to less seg-
mentation), and lower values giving a relatively larger
weight to a small lexicon (more segmentation).
The prior can be further divided into two parts: the
prior for the morph form properties and the usage prop-
erties. The form properties encode the string repre-
sentation of the morphs, while the usage properties
encode their frequencies. Morfessor Baseline applies a
non-informative prior for the distribution of the morph
frequencies. It is derived using combinatorics from the
number of ways that the total token count ν can be
divided among the µ lexicon items:

P (τ1, . . . , τµ |µ, ν) = 1/

(
ν − 1

µ− 1

)
. (5)

Morfessor Baseline is initialized with a seed lexicon
of whole words. The Morfessor Baseline training al-
gorithm is a greedy local search. During training, in
addition to storing the model parameters, the current
best segmentation for the corpus is stored in a graph
structure. The segmentation is iteratively refined, by
looping over all the words in the corpus in a random or-
der and resegmenting them. The resegmentation is ap-
plied by recursive binary splitting, leading to changes
in other words that share intermediary units with the
word currently being resegmented. The search con-
verges to a local optimum, and is known to be sensitive
to the initialization (Virpioja et al., 2013).

In the Morfessor 2.0 implementation, the likelihood
weight hyper-parameter α is set either with a grid
search using the best evaluation score on a held-out
development set, or by applying an approximate auto-
matic tuning procedure based on a heuristic guess of
which direction the α parameter should be adjusted.

2.2. Greedy Unigram Likelihood
Varjokallio et al. (2013) presents a subword segmen-
tation method, particularly designed for use in ASR.
It applies greedy pruning based on unigram likelihood.
The seed lexicon is constructed by enumerating all sub-
strings from a list of common words, up to a speci-
fied maximum length. Pruning proceeds in two phases,
which the authors call initialization and pruning.
In the first phase, a character-level language model is
trained. The initial probabilities of the subwords are
computed using the language model. The probabilities
are refined by EM, followed by hard-EM. During the
hard-EM, frequency based pruning of subwords begins.
In the second phase, hard-EM is used for parameter
estimation. At the end of each iteration, the least fre-
quent subwords are selected as candidates for pruning.
For each candidate subword, the change in likelihood
when removing the subword is estimated by resegment-
ing all words in which the subword occurs. After each
pruned subword, the parameters of the model are up-
dated. Pruning ends when the goal lexicon size is
reached or the change in likelihood no longer exceeds
a given threshold.

2.3. SentencePiece
SentencePiece (Kudo and Richardson, 2018; Kudo,
2018) is a subword segmentation method aimed for use
in any NLP system, particularly NMT. One of its de-
sign goals is use in multilingual systems.
Although (Kudo, 2018) implies a use of maximum like-
lihood estimation, the reference implementation2 uses
the implicit Dirichlet Process prior called Bayesian
EM (Liang and Klein, 2007). In the M-step, the count
normalization is modified to

P (z) =
exp(Ψ(Cz))

exp(Ψ(
∑

z′ Cz′))
(6)

where Ψ is the digamma function.
The seed lexicon is simply the e.g. one million most
frequent substrings. SentencePiece uses an EM+Prune
training algorithm. Each iteration consists of two sub-
iterations of EM, after which the lexicon is pruned.
Pruning is based on Viterbi counts (EM+Viterbi-
prune). First, subwords that do not occur in the
Viterbi segmentation are pre-pruned. The cost func-
tion is the estimated change in likelihood when the
subword is removed, estimated using the assumption
that all probability mass of the removed subword goes
to its Viterbi segmentation. Subwords are sorted ac-
cording to the cost, and a fixed proportion of remaining
subwords are pruned each iteration. Single character

2https://github.com/google/sentencepiece
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Figure 1: Unweighted Morfessor cost function components (prior and likelihood). Log scale.

subwords are never pruned. A predetermined lexicon
size is used as the stopping condition.

3. Morfessor EM+Prune
Morfessor EM+Prune3 uses the unigram language
model and priors similar to Morfessor Baseline, but
combines them with EM+Prune training.

3.1. Prior
The prior must be slightly modified for use with the
EM+Prune algorithm. The prior for the frequency dis-
tribution (5) is derived using combinatorics. When
using real-valued expected counts, there are infinite
assignments of counts to parameters. Despite not be-
ing theoretically motivated, it can still be desirable to
compute an approximation of the Baseline frequency
distribution prior, in order to use EM+Prune as an im-
proved search to find more optimal parameters for the
original cost. To do this, the real valued token count ν
is rounded to the nearest integer4. Alternatively, the
prior for the frequency distribution can be omitted, or
a new prior with suitable properties could be formu-
lated. We do not propose a completely new prior in
this work, instead opting to remain as close as possible
to Morfessor Baseline.

3Software available at https://github.com/Waino/
morfessor-emprune .

4An alternative would be to replace the factorial with
the gamma function. This added precision serves no prac-
tical purpose, particularly as we already use Stirling’s ap-
proximation of the factorial.

In Morfessor EM+Prune, morphs are explicitly stored
in the lexicon, and morphs are removed from the lexi-
con only during pruning. This differs from Morfessor
Baseline, in which a morph is implicitly considered to
be stored in the lexicon if it has non-zero count.
The prior for the morph form properties does not need
to be modified. During the EM parameter estimation,
the prior for the morph form properties is omitted as
the morph lexicon remains constant. During pruning,
the standard form prior is applicable.
Additionally we apply the Bayesian EM implicit Dirich-
let Process prior (Liang and Klein, 2007). We experi-
ment with four variations of the prior:

1. the full EM+Prune prior,
2. omitting the Bayesian EM (noexpΨ),
3. omitting the approximate frequency distribution

prior (nofreqdistr),
4. and omitting the prior entirely (noprior).

3.2. Seed Lexicon
The seed lexicon consists of the one million most
frequent substrings, with two restrictions on which
substrings to include: pre-pruning of redundant sub-
words, and forcesplit. Truncating to the chosen size
is performed after pre-pruning, which means that pre-
pruning can make space for substrings that would oth-
erwise have been below the threshold.
Pre-pruning of redundant subwords is based on oc-
currence counts. If a string x occurs n times, then any
substring of x will occur at least n times. Therefore, if

https://github.com/Waino/morfessor-emprune
https://github.com/Waino/morfessor-emprune
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FS Prior ↓ Likelihood ↓ W-sum ↓
Words 1.79×107 1.32×107 2.98×107

Characters 2.35×102 2.90×107 2.61×107

EM+P MDL ✓ 4.69×105 2.09×107 1.92×107

Morfessor Baseline ✓ 7.55×105 2.05×107 1.92×107

Morfessor Baseline 8.84×105 1.99×107 1.88×107

EM+P MDL 5.80×105 2.02×107 1.88×107

EM+P MDL lateen 6.35×105 2.01×107 1.88×107

Table 2: Morfessor cost results for English. α = 0.9.
FS is short for forcesplit, W-sum for weighted sum of
prior and likelihood. ↓means that lower values are bet-
ter. The bolded method is our primary configuration.

FS Prior ↓ Likelihood ↓ W-sum ↓
Words 8.64×107 4.77×107 8.74×107

Characters 2.46×102 1.27×108 2.54×106

Morfessor Baseline ✓ 8.31×104 8.60×107 1.80×106

Morfessor Baseline 8.36×104 8.59×107 1.80×106

EM+P MDL ✓ 1.29×105 8.28×107 1.79×106

EM+P MDL lateen 1.41×105 8.22×107 1.79×106

EM+P MDL 1.31×105 8.26×107 1.78×106

Table 3: Morfessor cost results for Finnish. α = 0.02.

the substring has a count of exactly n, we know that it
is not needed in any other context except as a part of x.
Such unproductive substrings are likely to be poor can-
didate subwords, and can be removed to make space in
the seed lexicon for more useful substrings. This pre-
pruning is not a neutral optimization, but does affect
segmentation results. We check all initial and final sub-
strings for redundancy, but do not pre-prune internal
substrings.
To achieve forced splitting before or after certain
characters, e.g. hyphens, apostrophes and colons, sub-
strings which include a forced split point can be re-
moved from the seed lexicon. As EM+Prune is unable
to introduce new subwords, this pre-pruning is suffi-
cient to guarantee the forced splits. While Morfessor
2.0 only implements force splitting certain characters
to single-character morphs, i.e. force splitting on both
sides, we implement more fine-grained force splitting
separately before and after the specified character.

3.3. Training Algorithm
We experiment with three variants of the EM+Prune
iteration structure:

1. EM,
2. Lateen-EM,
3. EM+Viterbi-prune

EM+Viterbi-prune is an intermediary mode between
EM and lateen-EM in the context of pruning. The
pruning decisions are made based on counts from a
single iteration of Viterbi training, but these Viterbi
counts are not otherwise used to update the param-
eters. In effect, this allows for the more aggressive
pruning using the Viterbi counts, while retaining the
uncertainty of the soft parameters.
Each iteration begins with 3 sub-iterations of EM. In

Prior ↓ Likelihood ↓ W-sum ↓
Words 1.31×107 9.09×106 1.68×107

Characters 1.19×102 2.08×107 8.30×106

Morfessor Baseline 2.54×105 1.39×107 5.82×106

EM+P MDL lateen 2.79×105 1.37×107 5.78×106

EM+P MDL 2.71×105 1.37×107 5.77×106

EM+P MDL keep-redundant 2.97×105 1.36×107 5.73×106

Table 4: Morfessor cost results for Turkish. α = 0.4

FS Prior ↓ Likelihood ↓ W-sum ↓
Words 2.12×107 1.03×107 3.15×107

Characters 1.38×103 2.98×107 2.98×107

Morfessor Baseline ✓ 1.76×106 1.62×107 1.80×107

Morfessor Baseline 1.87×106 1.61×107 1.80×107

EM+P MDL ✓ 9.52×105 1.70×107 1.79×107

EM+P MDL lateen 9.83×105 1.69×107 1.79×107

EM+P MDL 9.56×105 1.69×107 1.79×107

Table 5: Morfessor cost results for North Sámi. α = 1.0

the pruning phase of each iteration, the subwords in
the current lexicon are sorted in ascending order ac-
cording to the estimated change in the cost function
if the subword is removed from the lexicon. Subwords
consisting of a single character are always kept, to re-
tain the ability to represent an open vocabulary with-
out OOV issues. The list is then pruned according to
one of three available pruning criteria:5

1. (α-weighted) MDL pruning,
2. MDL with automatic tuning of α for lexicon size,
3. lexicon size with omitted prior or pretuned α.

In (α-weighted) Minimum Description Length (MDL)
pruning, subwords are pruned until the estimated cost
starts rising, or until the pruning quota for the itera-
tion is reached, whichever comes first.
A subword lexicon of a predetermined size can be used
as pruning criterion in two different ways. If the de-
sired α is known in advance, or if the prior is omitted,
subwords are pruned until the desired lexicon size is
reached, or until the pruning quota for the iteration is
reached, whichever comes first.
To reach a subword lexicon of a predetermined size
while using the Morfessor prior, the new automatic
tuning procedure can be applied. For each subword,
the estimated change in prior and likelihood are com-
puted separately. These allow computing the value of
α that would cause the removal of each subword to
be cost neutral, i.e. the value that would cause MDL
pruning to terminate at that subword. For subwords
with the same sign for both the change in prior and
likelihood, no such threshold α can be computed: if
the removal decreases both costs the subword will al-
ways be removed, and if it increases both costs it will
always be kept. Sorting the list of subwords according
to the estimated threshold α including the always kept
subwords allows automatically tuning α so that a sub-

5MDL with or without automatic tuning is not compat-
ible with omitting the prior.
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α FS Pre ↑ Rec ↑ F ↑
EM+P MDL noexpΨ 0.8 ✓ 82.9 71.8 77.0
EM+P MDL nofreqdistr 0.8 ✓ 83.3 71.4 76.9
EM+P MDL 0.9 ✓ 81.9 72.1 76.7 –
Morfessor Baseline 0.8 ✓ 85.0 68.5 75.9 –
Morfessor Baseline 0.7 83.8 69.4 75.9 ∼B
EM+P MDL 0.6 79.0 72.8 75.8
SentencePiece 50k – 75.9 61.9 68.2

Table 6: Boundary Precision (Pre), Recall (Rec)
and F1-score (F) results for English. ∼E indicates
not significantly different (two-sided Wilcoxon signed-
rank test, p < 0.05, zero splitting) from the bolded
EM+Prune method, and ∼B from the bolded Base-
line.

α FS Pre ↑ Rec ↑ F ↑
EM+P MDL 0.035 ✓ 72.0 55.8 62.9 –
EM+P MDL nofreqdistr 0.02 ✓ 68.7 58.0 62.9 ∼E
EM+P MDL noexpΨ 0.02 ✓ 68.4 57.9 62.7 ∼E
EM+P MDL 0.015 66.7 58.5 62.3 ∼E
Morfessor Baseline 0.02 ✓ 62.3 58.2 60.2 –
SentencePiece 50k – 75.7 49.3 59.7 ∼B
Morfessor Baseline 0.02 62.0 57.6 59.7

Table 7: Boundary Precision (Pre), Recall (Rec) and
F1-score (F) results for Finnish.

word lexicon of exactly the desired size is retained after
MDL pruning. The automatic tuning is repeated be-
fore the pruning phase of each iteration, as retraining
the parameters affects the estimates.

3.4. Sampling of Segmentations
Morfessor EM+Prune can be used in subword regu-
larization (Kudo, 2018), a denoising-based regulariza-
tion method for neural NLP systems. Alternative seg-
mentations can be sampled from the full data distri-
bution using Forward-filtering backward-sampling al-
gorithm (Scott, 2002) or approximatively but more ef-
ficiently from an n-best list.

3.5. SentencePiece as a Special Case of
Morfessor EM+Prune

Table 1 contains a comparison between all four meth-
ods discussed in this work. To recover SentencePiece,
Morfessor EM+Prune should be run with the following
settings: The prior should be omitted entirely, leaving
only the likelihood

θ̂ = arg min
θ

{− logP (D |θ)} (7)

As the tuning parameter α is no longer needed when
the prior is omitted, the pruning criterion can be set to
a predetermined lexicon size, without automatic tun-
ing of α. Morfessor by default uses type-based training;
to use frequency information, count dampening should
be turned off. The seed lexicon should be constructed
without using forced splitting. The EM+Viterbi-prune
training scheme should be used, with Bayesian EM
turned on.

α Pre ↑ Rec ↑ F ↑
EM+P MDL keep-redundant 0.3 87.8 58.7 70.4
EM+P MDL noexpΨ 0.4 87.6 58.1 69.9
EM+P MDL nofreqdistr 0.3 86.4 58.2 69.6 ∼E
EM+P MDL 0.2 84.8 58.7 69.4 –
Morfessor Baseline 0.2 78.2 58.4 66.9 –
SentencePiece 12k – 75.2 60.0 66.8 ∼B

Table 8: Boundary Precision (Pre), Recall (Rec) and
F1-score (F) results for Turkish.

α FS Pre ↑ Rec ↑ F ↑
Morfessor Baseline 1.4 75.7 60.7 67.4 ∼E –
EM+P MDL nofreqdistr 1.0 ✓ 73.7 61.8 67.2 ∼B
Morfessor Baseline 1.2 ✓ 75.7 60.4 67.2 ∼E∼B
EM+P MDL 1.3 ✓ 73.0 62.1 67.1 – ∼B
EM+P MDL 1.2 72.8 62.0 66.9
EM+P MDL noexpΨ 0.4 ✓ 66.5 65.9 66.2
SentencePiece 64k – 65.3 61.3 63.3

Table 9: Boundary Precision (Pre), Recall (Rec) and
F1-score (F) results for North Sámi.

4. Experimental Setup
English, Finnish and Turkish data are from the Mor-
pho Challenge 2010 data set (Kurimo et al., 2010a;
Kurimo et al., 2010b). The training sets contain ca
878k, 2.9M and 617k word types, respectively. As
test sets we use the union of the 10 official test set
samples. For North Sámi, we use a list of ca 691k
word types extracted from Den samiske tekstbanken
corpus (Sametinget, 2004). and the 796 word type test
set from version 2 of the data set collected by (Grön-
roos et al., 2015; Grönroos et al., 2016).
In most experiments we use a grid search with a devel-
opment set to find a suitable value for α. The excep-
tion is experiments using autotuning or lexicon size
criterion, and experiments using SentencePiece. We
use type-based training (dampening counts to 1) with
all Morfessor methods.
For English, we force splits before and after hyphens,
and before apostrophes, e.g. “women’s-rights” is force
split into “women ++’s ++- ++rights”. For Finnish, we
force splits before and after hyphens, and after colons.
For North Sámi, we force splits before and after colons.
For Turkish, the Morpho Challenge data is prepro-
cessed in a way that makes force splitting ineffectual.

4.1. Evaluation
The ability of the training algorithm to find parameters
minimizing the Morfessor cost is evaluated by using
the trained model to segment the training data, and
loading the resulting segmentation as if it was a Mor-
fessor Baseline model. We observe both unweighted
prior and likelihood, and their α-weighted sum.
The closeness to linguistic segmentation is evaluated
by comparison with annotated morph boundaries us-
ing boundary precision, boundary recall, and boundary
F1-score (Virpioja et al., 2011). The boundary F1-
score (F-score for short) equals the harmonic mean of
precision (the percentage of correctly assigned bound-
aries with respect to all assigned boundaries) and recall
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Figure 2: Boundary Precision–Recall curve at different
tuning points, The smallest and largest α-values are
labeled.

(the percentage of correctly assigned boundaries with
respect to the reference boundaries). Precision and re-
call are calculated using macro-averages over the word
types in the test set. In the case that a word has more
than one annotated segmentation, we take the one that
gives the highest score.

4.2. Error Analysis
We perform an error analysis, with the purpose of gain-
ing more insight into the ability of the methods to
model particular aspects of morphology. We follow

the procedure used by Ruokolainen et al. (2016). It
is based on a categorization of morphs into the cate-
gories prefix, stem, and suffix. The category labels
are derived from the original morphological analysis
labels in the English and Finnish gold standards, and
directly correspond to the annotation scheme used in
the North Sámi test set.
We first divide errors into two kinds, over-segmentation
and under-segmentation. Over-segmentation occurs
when a boundary is incorrectly assigned within a
morph segment. In under-segmentation, the a cor-
rect morph boundary is omitted from the generated
segmentation. We further divide the errors by the
morph category in which the over-segmentation occurs,
and the two morph categories surrounding the omitted
boundary in under-segmentation.

5. Results
Figure 1 compares the cost components of the Mor-
fessor model across different α parameters. The low-
est costs for the mid-range settings are obtained for
the EM+Prune algorithm, but for larger lexicons, the
Baseline algorithm copes better. As expected, using
forced splits at certain characters increase the costs,
and the increase is larger than between the training al-
gorithms. As Turkish preprocessing causes the results
to be unaffected by the forced splits, we only report
results without them.
Tables 2 to 5 show the Morfessor cost of the segmented
training data for particular α values. Again, the pro-
posed Morfessor EM+Prune reaches a lower Morfessor
cost than Morfessor Baseline. Using the lateen-EM
has only minimal effect to the costs, decreasing the
total cost slightly for English and increasing for the
other languages. Turkish results include the “keep-
redundant” setting discussed below in more detail.
Figure 2 shows the Precision–Recall curves for the pri-
mary systems, for all four languages. While increasing
the Morfessor cost, forced splitting improves BPR. Ta-
bles 6 to 9 show test set Boundary Precision, Recall
and F1-score (BPR) results at the optimal tuning point
(selected using a development set) for each model, for
English, Finnish, Turkish and North Sámi, respec-
tively6. The default Morfessor EM+Prune configura-
tion (“soft” EM, full prior, forcesplit) significantly out-
performs Morfessor Baseline w.r.t. the F-score for all
languages except North Sámi, for which there is no
significant difference between the methods.
Morfessor EM+Prune is less responsive to tuning than
Morfessor Baseline. This is visible in the shorter
lines in Figures 1 and 2, although the tuning param-
eter takes values from the same range. In particular,
EM+Prune can not easily be tuned to produce very
large lexicons.

6Note that SentencePiece is not designed for aiming to-
wards a linguistic morpheme segmentation. Neither does
it attempt to minimize the Morfessor cost. Therefore, Sen-
tencePiece is included in the evaluations for context, not
as a baseline method.
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eng Characters 71.05 11.82 1.66 0.33 15.13 0.00 0.00 0.00 0.00 0.00 100.00
eng Words 0.00 0.00 0.00 0.00 100.00 55.07 5.90 8.56 0.14 4.38 23.06
eng SentencePiece 38k 17.60 10.25 0.18 0.24 71.74 26.40 2.48 2.74 0.05 2.78 65.26
eng Morfessor Baseline 10.17 2.32 0.03 0.07 87.42 22.46 2.10 4.75 0.04 1.65 67.37
eng EM+Prune MDL 15.46 2.75 0.05 0.13 81.61 19.93 1.82 4.32 0.04 1.46 70.84

fin Characters 65.23 13.80 0.67 0.57 19.73 0.00 0.00 0.00 0.00 0.00 0.00 100.00
fin Words 0.00 0.00 0.00 0.00 100.00 49.19 17.16 21.76 4.84 0.96 0.58 4.09
fin SentencePiece 13k 35.11 3.71 0.08 0.41 60.69 25.96 1.45 16.18 0.35 0.08 0.16 55.81
fin Morfessor Baseline 34.75 2.82 0.03 0.38 62.02 24.57 0.86 16.31 0.15 0.04 0.20 57.63
fin EM+Prune MDL 29.34 2.20 0.03 0.26 68.18 24.68 0.90 15.95 0.29 0.05 0.19 57.60

sme Characters 81.44 6.80 11.76 0.00 0.00 0.00 0.00 100.00
sme Words 0.00 0.00 100.00 52.92 13.15 4.43 0.61 28.64
sme SentencePiece 64k 30.10 4.52 65.38 31.35 3.96 3.09 0.20 61.40
sme Morfessor Baseline 23.27 3.02 73.71 33.16 2.22 3.40 0.10 60.99
sme EM+Prune MDL 23.35 4.41 72.25 30.48 3.10 3.23 0.17 62.84

Table 10: Error analysis for English (eng, α = 0.9), Finnish (fin, α = 0.02), and North Sámi (sme, α = 1.0).
All results without forcesplit. Over-segmentation and under-segmentation errors reduce precision and recall,
respectively.

Pre-pruning of redundant substrings gives mixed re-
sults. For Turkish, both Morfessor cost and BPR
are degraded by the pre-pruning, but for the other
three languages the pre-pruning is beneficial or neu-
tral. When tuning α to very high values (less segmen-
tation), pre-pruning of redundant substrings improves
the sensitivity to tuning. The same effect may also be
achievable by using a larger seed lexicon. We perform
most of our experiments with pre-pruning turned on.
To see the effect of pre-pruning on the seed lexicon,
we count the number of subwords that are used in the
gold standard segmentations, but not included in seed
lexicons of various sizes. Taking Finnish as an example,
we see 203 subword types missing from a 1 million
substring seed lexicon without pre-pruning. Turning
on pre-pruning decreases the number of missing types
to 120. To reach the same number without using pre-
pruning, a much larger seed lexicon of 1.7M substrings
must be used.
Omitting the frequency distribution appears to have
little effect on Morfessor cost and BPR. Turning off
Bayesian EM (noexpΨ) results in a less compact lexi-
con resulting in higher prior cost, but improves BPR
for two languages: English and Turkish.
Table 10 contains the error analysis for English,
Finnish and North Sámi. For English and North
Sámi, EM+Prune results in less under-segmentation
but worse over-segmentation. For Finnish these re-
sults are reversed. However, the suffixes are often bet-
ter modeled, as shown by lower under-segmentation on
SUF-SUF (all languages) and STM-SUF (English and
North Sámi).

6. Conclusion
We propose Morfessor EM+Prune, a new training al-
gorithm for Morfessor Baseline. EM+Prune reduces
search error during training, resulting in models with
lower Morfessor costs. Lower costs also lead to im-
proved accuracy when segmentation output is com-
pared to linguistic morphological segmentation.
We compare Morfessor EM+Prune to three previously
published segmentation methods applying unigram
language models. We find that using the Morfessor
prior is beneficial when the reference is linguistic mor-
phological segmentation.
In this work we focused on model cost and linguis-
tic segmentation. In future work the performance of
Morfessor EM+Prune in applications will be evaluated.
Also, a new frequency distribution prior, which is the-
oretically better motivated or has desirable properties,
could be formulated.
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