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Abstract
In this paper we present the first full morphological analysis and disambiguation system for Gulf Arabic. We use an existing state-of-the-
art morphological disambiguation system to investigate the effects of different data sizes and different combinations of morphological
analyzers for Modern Standard Arabic, Egyptian Arabic, and Gulf Arabic. We find that in very low settings, morphological analyzers
help boost the performance of the full morphological disambiguation task. However, as the size of resources increase, the value of the
morphological analyzers decreases.
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1. Introduction
Despite the many advances in the field in Natural Language
Processing (NLP) for Arabic, many dialectal Arabic vari-
eties are lagging behind. Modern Standard Arabic (MSA),
the official language of the Arab world, is well studied in
NLP and has an abundance of resources including corpora
and tools. On the other hand, most Arabic dialects are
considered under-resourced, with the exception of Egyp-
tian Arabic (EGY).
One of the main challenges for Arabic NLP is data spar-
sity due to morphological richness and the lack of orthog-
raphy standards. To address such challenges, recent NLP
models use deep learning architectures that have access to
character and subword-level information. Such models are
well equipped to model some aspects of morphology im-
plicitly as part of an end-to-end system without requiring
explicit feature engineering. However, these models are
very data-intensive, and do not scale down well in the case
of low-resource languages. Moreover, some morphological
behaviors can be complicated and irregular at times. This
makes morphology more challenging to capture implicitly
while modeling other tasks. This further highlights the im-
portance of explicit morphological modeling for languages
that are morphologically-rich and low-resource in particu-
lar.
Morphological analyzers are dictionary-like resources
that provide all the potential analyses for a given word
out-of-context. Ideal morphological analyzers are expected
to return all possible analyses of a given word (modeling
ambiguity), along with covering all the different inflected
forms of a word lemma (modeling richness). The quality of
the morphological analyzers varies drastically based on the
method used to create them. Higher quality analyzers are
carefully built using existing linguistic dictionaries, and are
manually checked. On the other end of the spectrum, mor-
phological analyzers created automatically (e.g., extracted
from annotated text or seed dictionaries) can have a lower
quality depending on the quantity and quality of data used
or the methods employed in creating them.
Morphological disambiguation is the process of provid-

ing the most probable morphological analysis in context
for a given word. This task is achieved by either ranking
the output of a morphological analyzer or through an end-
to-end system that generates a single answer.
In this paper, we focus on Gulf Arabic (GLF), a morpho-
logically rich and resource poor Arabic dialect. We aim to
benchmark full morphological analysis and disambiguation
for GLF using state-of-the-art approaches for the first time.
As part of this work, we investigate the relationship
between the size of the training data and the different
available analyzers with respect to the disambiguation
model.

The rest of the paper is structured as follows. We present
related work in Section 2, and briefly discuss the linguis-
tic background of GLF and its challenges in Section 3. We
present the morphological analyzer creation process in Sec-
tion 4. In Sections 5 and 6, we present our experimental
setup and evaluation, respectively. We conclude and out-
line future work in Section 7.

2. Related Work
In the past two decades, there have been a lot of efforts on
morphological modeling for Arabic, as it proved to be use-
ful in a number downstream NLP tasks (Sadat and Habash,
2006; El Kholy and Habash, 2012; Halabi, 2016; Baly et
al., 2017). In this section we review early efforts on mor-
phological modeling of MSA and dialectal Arabic. We then
present the latest neural-based contributions with special
interest in Arabic.

Modern Standard Arabic Morphological Modeling
One of the earliest morphological tagging systems for Ara-
bic was presented by Khoja (2001); it was based on a cor-
pus of 50,000 words. Later, the LDC released the Penn
Arabic Treebank (PATB) (Maamouri et al., 2004), which
was substantially larger, and supported many further efforts
on Arabic morphological modeling. The PATB relied on
the existence of the Buckwalter Morphological Analyzer
(BAMA) (Buckwalter, 2004) and its later version the Stan-
dard Arabic Morphological Analyzer (SAMA) (Maamouri
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et al., 2010). Among such efforts, are MADAMIRA (Pasha
et al., 2014) and it predecessors MADA (Habash and Ram-
bow, 2005; Roth et al., 2008; Habash et al., 2009; Habash et
al., 2013) and AMIRA (Diab et al., 2004; Diab et al., 2007).
MADAMIRA uses a morphological analyzer and SVMs-
based taggers for different features, along with n-gram lan-
guage models for lemmatization and diacritization. More
recent efforts include Farasa (Abdelali et al., 2016; Dar-
wish and Mubarak, 2016) and YAMAMA (Khalifa et al.,
2016b), which are out-of-context taggers/segmenters that
use different techniques to achieve reasonable performance
and fast running time.

Adaptation of MSA Tools and Resources for Dialectal
Arabic A number of approaches attempt to exploit lin-
guistic similarity between MSA and Arabic dialects to build
dialect tools using existing MSA resources (Duh and Kirch-
hoff, 2005; Habash and Rambow, 2006; Zribi et al., 2013;
Salloum and Habash, 2014; Hamdi et al., 2015; Albogamy
and Ramsay, 2015; Eskander et al., 2016). MAGEAD is
a morphological analyzer that models Arabic dialects to-
gether with MSA using a common multi-tape finite-state-
machine framework (Habash and Rambow, 2006). Zribi
et al. (2013) adapt an MSA analyzer, Al-Khalil (Boudlal
et al., 2010), to Tunisian Arabic, where they modify the
derivation patterns and add Tunisian-specific roots and pat-
terns. Eskander et al. (2016), on the other hand, presented
a paradigm completion approach to generate morphological
analyzers for low-resource dialects using morphologically
annotated corpora. They then make use of available MSA
and EGY analyzers as backoff.

Dialect-Specific Contributions Al-Sabbagh and Girju
(2012) presented a POS annotated data set and tagger for
EGY. Habash et al. (2012) presented CALIMA, a mor-
phological analyzer for EGY, which was built by extend-
ing the Egyptian Colloquial Arabic Lexicon (ECAL) (Ki-
lany et al., 2002). The LDC has also released the EGY
treebank (ARZATB) (Maamouri et al., 2012). The tree-
bank is morphologically annotated in a similar style to the
PATB. The aforementioned MADAMIRA and YAMAMA
systems were extended to EGY using CALIMA (Habash
et al., 2012) and ARZATB (Maamouri et al., 2012). Jarrar
et al. (2014) released the Curras Corpus of Palestinian Ara-
bic, also annotated in the PATB morphology style. Darwish
et al. (2018) used a CRF model for a multi-dialect POS
tagging, using a small annotated Twitter corpus for several
dialects. Erdmann et al. (2019) developed a de-lexical seg-
mentation tool for dialectal content. Their model is mainly
unsupervised, relying on a small grammar of closed-class
affixes. Alshargi et al. (2019) presented morphologically
annotated corpora for seven different dialects.
Regarding GLF specifically, Khalifa et al. (2017) pre-
sented a morphological analyzer for Gulf verbs, covering
segmentation, POS, and lemmatization details for Gulf ver-
bal paradigms. Khalifa et al. (2018) also presented a large-
scale morphologically annotated corpus of Emirati Arabic,
extracted from online novels, with about 200K words. The
annotation includes tokenization, POS, lemmatization, En-
glish glosses and dialect identification, as the corpus in-
cludes traces of other dialects, along with MSA content.

So far, the mentioned efforts regarding disambiguation suf-
fer from two main issues. First, they require explicit fea-
ture engineering which can lead to over fitting and not be-
ing able to generalize to new dialects. Second, those sys-
tems rely heavily on pre-existing morphological analyzers
to generate the final answers. This reliance limits the sys-
tem’s performance to the quality of the analyzer, especially
when generating open class features such as lemmas. In this
work we use state-of-the-art neural architectures that have
the ability to model morphologically rich and complex lan-
guages such as Arabic and its different verities.

Neural-based contributions for Arabic Morphology
Neural-based contributions for Arabic NLP are relatively
scarce and specific to individual tasks rather than full
morphological disambiguation. Among the contributions
that utilize morphological structures to enhance the
neural models in different NLP tasks, we note Guzmán
et al. (2016) for machine translation, and Abandah et
al. (2015) for diacritization. Shen et al. (2016) applied
their Bi-LSTM morphological disambiguation model
on MSA, but did not present any improvements over
the state-of-the-art. Heigold et al. (2016) developed
character-based neural models for morphological tagging
for 14 different languages, including Arabic, using the
UD treebank. Samih et al. (2017a) used a Bi-LSTM-CRF
architecture and pre-trained character embeddings for the
segmentation of EGY tweets. They then build up on this
approach using a similar architecture for segmentation in
multiple dialects, through combining the training datasets
for the different dialects, and train a unified segmentation
model. They report the results using both an SVM-Rank
and Bi-LSTM-CRF models (Samih et al., 2017b). Darwish
et al. (2017) use Bi-LSTM models to train a POS tagger,
and compared it against SVM-based model. The SVM
model in their system outperformed the neural model,
even with incorporating pre-trained embeddings. Other
notable contributions include the work of Inoue et al.
(2017), who used multi-task learning to model fine-grained
POS tags, using the individual morphosyntactic features.
More recently, Zalmout and Habash (2017) presented
the first neural based full morphological disambigua-
tion system for Arabic. Alharbi et al. (2018) also use
a Bi-LSTM model for GLF POS tagging, with good results.

In this work, we introduce the first morphological analy-
sis and disambiguation system for GLF. We base our work
on Zalmout and Habash (2019), and we use the data from
Khalifa et al. (2018).

3. Relevant Linguistic Background
Gulf Arabic We follow the definition of GLF mentioned
in (Khalifa et al., 2016a), as the variety of Arabic spoken
by indigenous populations residing the six countries of the
Gulf Cooperation Council (GCC): Saudi Arabia, United
Arab Emirates, Qatar, Kuwait, Bahrain, and Oman. In this
work, the GLF data used in this work is of the Emirati di-
alect specifically.

Arabic NLP Challenges Similar to MSA and other di-
alects, GLF is morphologically rich; a single lemma can
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mςqwl~ hðy Hbh AlwHyd? ? YJ
kñË@ éJ.k ø
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®ªÓ Is this really his only love?

Diac Gloss Analysis (condensed) pos asp per gen num prc3 prc2 prc1 prc0 enc0
Hib∼+ah love,kiss him VERB.C2MS+PRON.3MS verb c 2 m s 0 0 0 0 3ms_dobj

Hab∼+ah loved,kissed him VERB.P3MS+PRON.3MS verb p 3 m s 0 0 0 0 3ms_dobj

Hub∼+ah his love NOUN.MS+PRON.3MS noun na na m s 0 0 0 0 3ms_poss

Hab∼a~ pill, seed NOUN.FS noun na na f s 0 0 0 0 0

Hab∼+ah his seeds NOUN.MS+PRON.3MS noun na na m s 0 0 0 0 3ms_poss

Table 1: Possible analyses of the word éJ.k Hbh. The correct analysis is highlighted in gray. The annotations are represented
using condensed tags, we converted them to the verbose representation of 10 morphological non-lexical features.

have a large number of forms realizing different combina-
tions of morphological inflections and cliticized particles.
Arabic orthography adds a lot of ambiguity due to the com-
mon omission of short-vowel (and other) diacritics. Table 1
demonstrates a set of possible morphological analyses for
the word éJ.k Hbh1 in GLF.

Dialectal Differences and NLP Arabic dialects differ
significantly from each other and from MSA to the point
that using MSA tools and resources for processing di-
alects is not sufficient. Jarrar et al. (2014) report that
MADAMIRA MSA (Pasha et al., 2014) only correctly an-
alyzes 64% of Palestinian Arabic words, compared with
78% using MADAMIRA EGY. Eryani et al. (2020) re-
ports that the average vocabulary overlap between any pair
of Arabic city dialects from the MADAR parallel dialectal
corpus (Bouamor et al., 2018), is about 36%.2

Dialectal Orthography Dialectal Arabic has no standard
orthography. A word can be spelled differently depending
on the writer’s decision to either fall back to the MSA cog-
nate or to spell phonetically. In extreme cases, a word can
have more than twenty different spelling variations (Habash
et al., 2018). This is very challenging due to the incon-
sistency and therefore more sparsity in the data. In this
work, we use text that has been normalized according to the
Conventional Orthography for Dialectal Arabic (CODA)
(Habash et al., 2018). CODA provides a set of guidelines
and rules to help create spelling conventions for Arabic di-
alects. For more details about specific decisions on GLF,
see (Khalifa et al., 2016a). For the full latest set of guide-
lines, see (Habash et al., 2018).

Morphological Representations There are different ap-
proaches to represent morphological analysis for a word
depending on the task in hand. From the annotation point
of view, the data is often annotated in a way that guaran-
tees annotation efficiency, hence, the representation of tags
used is often more readable and explainable to the human
annotator. The data we use from Khalifa et al. (2018)
was annotated using the MADARi morphological annota-
tion interface (Obeid et al., 2018). Where for each word
in context the annotators were asked to produce a CODA
spelling, then tokenize and assign a single condensed tag

1Arabic script transliteration is presented in the Habash-Soudi-
Buckwalter transliteration scheme (Habash et al., 2007).

2The specific city dialects were of Beirut, Cairo, Doha, Tunis
and Rabat (Eryani et al., 2020).

that includes the core POS along with the functional mor-
phological features for each token.
Computationally, a more verbose representation of the anal-
ysis is usually used to have more control over modeling
choices. In this work, we follow the same format used in
previous efforts (Habash, 2007; Pasha et al., 2014), where
we have a vector like representation of feature value pairs.
We therefore map from the condensed representation to the
more verbose one. This mapping includes POS tags, clitics
position mapping, and stemming.
Table 1 shows the two different representations side by side
for the different analyses. We use a vector of 10 non-lexical
morphological features which are POS, aspect (asp), per-
son (per), gender (gen), number (num),3 four proclitcis
(prc0, prc1, prc2, prc3), and one enclitic (enc0). We use
the POS tagset introduced in (Habash et al., 2013) which
consists of 36 tags.

4. Morphological Analyzer Creation
through Paradigm Completion

Morphological analyzers are rich resources that can be used
as lexical and grammatical references. In a number of pop-
ular tools for Arabic morphological disambiguation, the
task is defined as an in-context ranking of the out-of-context
morphological analyses produced by an analyzer (Habash
et al., 2009; Pasha et al., 2014). There are different ways
of building morphological analyzers: manually, automati-
cally, or semi-automatically. In this work, we use two man-
ually created morphological analyzers for MSA and EGY.
However, for GLF, we use the approach of paradigm com-
pletion as demonstrated by Eskander et al. (2013a) and Es-
kander et al. (2016).
Paradigm completion makes use of the templatic nature of
Arabic to model morphology through roots and patterns.
The approach mainly aims at completing the inflectional
classes (ICs) generated from available morphological an-
notations. The set of inflectional forms for a given lexeme
is called a paradigm. The completion is performed on the
level of POS tags present in the data, where all the possi-
ble morphosyntactic feature combinations from the words
that share the same POS tag are collected. This set of po-
tential feature combinations represent the slots for inflected
forms in the ICs. Using this set to indicate the potential
slots, the algorithm goes through each of the lemmas in the

3We use form-based not functional gender and number fea-
tures in this work (Alkuhlani and Habash, 2011).
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Split Sentences Tokens Types Analyses
Type

Analyses
Lemma

TRAIN 12,274 162,031 20,079 1.28 3.69
DEV 1,499 20,198 5,090 1.14 2.53
TEST 1,452 20,100 4,980 1.15 2.48

ALL 15,225 202,329 22,924 1.29 3.89

Table 2: Statistics on TRAIN, DEV, and TEST in terms of number of sentences, tokens, and types, as well as an ambiguity
measure (analyses per type) and a richness measure (analyses per lemma). Note that ‘ALL’ represents the statistics on the
entire corpus as a whole and not the sum of the splits.

dataset and fills the corresponding slot in the IC using all
the inflected forms of that lemma in the dataset. The slots
include information on the prefixes, stems, and suffixes for
each lemma. After this process, many slots will still be
empty; so the algorithm automatically completes the ICs to
fill in the missing slots, and obtains all inflections of all the
lexemes. The resulting paradigms and ICs are then com-
bined into a morphological analyzer.
We used paradigm completion by Eskander et al. (2016)
as is in this work, where the only input is the training data
and the output is a morphological analyzer. We used the
training data (TRAIN, see next section) as the input to the
paradigm completion pipeline after filtering all sentences
that are not marked as GLF. We also filtered out potential
annotation mistakes that would propagate throughout the
paradigm completion process. We identified some errors
automatically: for words that share the same lemma, gloss,
POS, and morphological features we chose the entries that
had the highest stem count throughout the text.
The resulting analyzer has the same basic structure of the
Buckwalter analyzer (Buckwalter, 2004): it consists of
three tables for complex prefixes, complex suffixes, and
stems, and three tables representing the compatibility be-
tween prefixes, suffixes, and stems (Habash, 2007).

5. Experimental Setup
We describe in this section all the relevant details for the
experiments we conducted.

5.1. Data
Corpus In this work, we use the Annotated Gumar Cor-
pus (Khalifa et al., 2018), which is a portion of the Emi-
rati Arabic subset of the Gumar corpus (Khalifa et al.,
2016a). The text was manually annotated for full mor-
phology, which includes all morphological features in ad-
dition to lemmatization, tokenization, CODA spelling an-
notation, English gloss, and sentence level dialect tagging.
The data comes in eight documents, where each document
is roughly 25,000 words and represents a portion (the first
25,000 words on the sentence cut) of a complete novel.

Splits We split the data into three sets: training, devel-
opment, and testing, henceforth TRAIN, DEV, and TEST,
respectively. Given the nature of the data, where each doc-
ument comes from a different novel written by a different
author, there are a number of ways to split. An intuitive
way is to split on the novel level, but because of the vary-
ing styles of the novels, the trained model could be heavily
biased towards a certain style. Therefore, we split the data

equally across the eight documents, this way we ensure fair
coverage of different styles across the splits. From each
document, the first 80% is TRAIN, the following 10% is
DEV, and the last 10% is TEST, where the portions for each
split are concatenated together. Table 2 shows the statistics
on sentence and word token count of the different splits.
The table also includes a the average number of analyses
per type (ambiguity), and the average number of analyses
per lemma (richness). Table 2 illustrates that TRAIN is rep-
resentative of the entire dataset in terms of ambiguity and
richness measures.

Word Embeddings For pre-trained embeddings, we used
FastText (Bojanowski et al., 2016) trained on the full Gu-
mar corpus (Khalifa et al., 2016a) which contains about 100
million tokens of Gulf Arabic.

CODA The Annotated Gumar Corpus (Khalifa et al.,
2018) provides the raw text as well as the CODA version
of the text. The word error rate of the raw text against
CODA is 24.9% of which 21.2% is due to substitutions,
2.5% to insertions, and 1.1% to deletions. All of the ref-
erence annotations are linked to the CODA version of the
text. As a result, full processing of raw text must include
an initial conversion into CODA, comparable to the work
of Eskander et al. (2013b) and Eryani et al. (2020), and
related to general Arabic spelling correction efforts (Mohit
et al., 2014; Watson et al., 2018). Since spelling modifi-
cations, especially insertions and deletions, will lead to a
more complex full morphological evaluation process, we
leave this effort to future work. In this paper, all of our
results assume starting with CODA text.

5.2. Morphological Analyzers
We used three morphological analyzers for MSA, EGY, and
GLF.

• MSA-MAManual For MSA, we used the Standard
Arabic Morphological Analyzer (SAMA) (Graff et al.,
2009), a manually created morphological analyzer.

• EGY-MAManual For EGY, we used CALIMA Egyp-
tian (Habash et al., 2012), also a manually created
morphological analyzer.

• GLF-MAPC For GLF, we used the analyzer described
in Section 4, which was automatically created through
paradigm completion.

We expect the different analyzers to exhibit different qual-
ities based on the approach and the data that were used to
build them. Both MSA and EGY analyzers are custom-built
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with high coverage compared to the GLF analyzer that is
automatically generated from the training data as explained
in Section 4. Non-GLF features in the output of the MSA
and EGY analyzers are dropped to make the output com-
patible with GLF features we model. These include case,
state, mood, voice and additional enclitics. We experiment
with using no analyzers, only GLF-MAPC , and extending
it with non GLF analyzers, by taking the union of outputs
of different analyzers.

5.3. Disambiguation Models
We report performance on two disambiguation models.

MLE First is a Maximum Likelihood Estimation (MLE)
model based on TRAIN, where each word is assigned the
most frequent full analysis; and out-of-vocabulary (OOV)
words are treated as proper nouns and assigned default gen-
der and number features (i.e., NOUN_PROP.MS).

Neural Joint Model Second is the full neural morpho-
logical tagger from Zalmout and Habash (2019), which
is a joint-modeling approach for lemmatization, diacritiza-
tion, and normalization (modeled at the character level) and
non-lexical morphological features (modeled at the word
level). We used a modified sequence-to-sequence archi-
tecture, where some components of the encoder are shared
between a tagger, for the morphological features, and the
encoder-decoder architecture, for the lemma and other lex-
icalized features. We also used separate decoders for the
different lexical features that share the same encoder and
trained jointly using a shared loss function.
Because of the corpus’ conversational style (Khalifa et al.,
2016a), some portions of the text had particularly long sen-
tences. Therefore, we split sentences in a cascading fash-
ion with a length of 200 words and a buffer of 10 words at
the beginning of the new sentence from the previous one to
maintain contextual integrity.
We consider three setups for using the morphological ana-
lyzers with the Neural Joint Model.

• No Analyzer: This is the most basic mode for Neural
Joint Model. The system generates all the lexical and
non-lexical features directly.

• +EMBED: We use morphological analyzers to get the
potential candidates for each morphological feature,
and embed them as part of the input to the model.
This approach helps the system narrow down the space
of potential tags to the ones that are considered likely
through the analyzer.

• +EMBED+RANK: In addition to embedding the poten-
tial candidate features, the system ranks the potential
analyses produced by the morphological analyzer. The
predicted analysis from the model is used to evalu-
ate each of the potential analyses obtained from the
morphological analyzer. The analysis with the highest
matching score, weighted through pre-tuned weight
values, is returned as the overall chosen analysis.

5.4. Metrics
To evaluate our performance we compute the accuracy in
terms of the following metrics:

• FULL: The overall accuracy of the full analysis, i.e.,
POS, morphological features, and lemma.

• TAGS: The accuracy of the combined set of the 10 non-
lexical morphological features described in Section 3.

• LEX: The accuracy of matching the fully diacritized
lemma.

• POS: The accuracy of matching the POS, described in
Section 3.

• SEG: The accuracy of all five clitic features (four pro-
clitics and one enclitic). This measure estimates the
segmentation performance.

6. Results
Next, we evaluate the performance of the above mentioned
models and analyzers on the GLF dataset.

6.1. Baselines
As an initial experiment, assuming that we do not have
any GLF training resources, we measure the performance
of the Neural Joint Model+EMBED+RANK model trained
on MSA, and on EGY, and using their respective analyzers,
MSA-MAManual and EGY-MAManual. We ignore non-
GLF features such as MSA case and voice; as well as EGY
additional enclitics. Table 3 shows the results in the dif-
ferent metrics. Although both models perform poorly on
GLF, the EGY trained model outperforms the MSA trained
model. This behavior is expected since dialects are gener-
ally closer to each other than to MSA.

FULL TAGS LEX POS SEG

EGY Model 39.5 52.6 63.1 74.9 74.8
MSA Model 37.8 50.0 60.1 69.9 75.6

Table 3: DEV set baseline results of the Neural Joint
Model+EMBED+RANK trained on MSA and EGY and us-
ing their respective analyzers.

6.2. Morphological Analyzers & Disambiguation
Models

We experimented with different combinations of morpho-
logical analyzers: no analyzer, GLF-MAPC , and GLF-
MAPC extended with MSA and EGY analyzers (MSA-
MAManual and EGY-MAManual, respectively). When us-
ing a morphological analyzer with Neural Joint Model,
we include the results for both settings, +EMBED and +EM-
BED+RANK. Table 4 shows the results. The different ana-
lyzers provide minor or no improvements over the Neural
Joint Model alone when embedding the candidate tags. On
the other hand, the ranking approach reduces the accuracy
drastically for different combinations of analyzers.
This behavior might suggest that for relatively higher-
resource dialects, the model is capable of identifying the in-
flectional relationships between the different surface forms
without having to rely on an explicit paradigm completion
process, nor external analyzers. We can also observe that
LEX scores in particular had the biggest drop when we used
the ranking approach. This suggests that constraining the
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Analyzer Model FULL TAGS LEX POS SEG

No Analyzer
MLE 84.7 85.9 89.4 88.9 90.1
Neural Joint Model 89.3 93.1 93.1 96.8 97.5

GLF-MAPC
Neural Joint Model+EMBED 89.7 93.0 93.3 96.6 97.3
Neural Joint Model+EMBED+RANK 84.8 92.2 88.4 95.0 96.3

GLF-MAPC+MSA-MAManual
Neural Joint Model+EMBED 89.6 93.3 93.2 96.8 97.5
Neural Joint Model+EMBED+RANK 86.4 92.4 90.7 95.9 97.4

GLF-MAPC+MSA-MAManual+EGY-MAManual
Neural Joint Model+EMBED 89.4 93.1 93.2 96.9 97.5
Neural Joint Model+EMBED+RANK 87.7 92.4 92.2 96.2 97.4

Table 4: DEV results of the various morphological analyzer configurations for GLF, using GLF-MAPC first, then using
external morphological analyzers from MSA and EGY.

system to the lemmas in the analyzer rather than the gen-
erated lemmas is not beneficial. We investigate those is-
sues in more detail next, where we run the Neural Joint
Model with different combinations of analyzers on a learn-
ing curve of the training data size, where we control the
amount of GLF data that the model has access to.

6.3. Training Data Learning Curve
Next, we report the results on the relationship between the
training data size, and the morphological analyzer and dis-
ambiguation model choice. This gives insights on the per-
formance under different degrees of data availability. Our
hypothesis is that the role of morphological analyzers de-
pends on the amount of training data. With less training
data we expect to see more added value; and with more
training data, we except less added value. However, since
paradigm completion relies on training data, it is possible
that the effect of morphological analyzers created through
paradigm completion may be muted all along.
To investigate this hypothesis, we control the amount of
data that the model has access to. We train the Neural Joint
Model on portions of the available training data through
reducing the size by a factor of two each time and select-
ing the data samples randomly. For each fraction, we run
the paradigm completion on the corresponding amount of
data. We also incorporate the existing MSA-MAManual

and EGY-MAManual analyzers at each run of the model,
since these resources are independent of the amount of
training data available for GLF.
Table 5 shows the results for different training data sizes.
We use the FULL metric only for this evaluation. We ob-
serve three regions of different performance behaviors. In
the very low setting (5k-10K), using the combination of
the different analyzers in the +EMBED+RANK model con-
figuration outperforms all the others. In the medium set-
ting (20k-40k), the combination of analyzers still helps but
only when embedding the candidate analysis. Finally, in
the highest setting (>80k), the GLF-MAPC slightly out-
performs the Neural Joint Model with no analyzer, and the
Neural Joint Model with the combination of analyzers.
We can see that morphological analyzers are generally
helpful. Embedding candidate tags is helpful when us-
ing any combinations of the analyzers. The ranking ap-
proach, on the other hand, is more helpful in smaller sizes

of the training data, but as the size increases, the ranking ap-
proach seems to be lagging even behind the Neural Joint
Model with no analyzer. It seems that with more training
data, the Neural Joint Model is producing better analyses
than the limited morphological analyzers. Hence, in higher-
resource settings, the morphological analyzer actually con-
straints the overall modeling capacity of the system, rather
than improving it when used for ranking.

6.4. Discussion
Our experiments show the clear relationship between the
different combinations of resources and model configura-
tion, where more training data helps when available in large
amounts, otherwise, high-coverage morphological analyz-
ers boosts the performance in very low settings.
However, when we examine the performance closely, we
notice that lemmatization in particular seems to suffer a lot
when +RANK is introduced as shown in Table 4. To inves-
tigate more, we evaluate the lemmatization accuracy in par-
ticular across the different training data sizes in the learning
curve experiments. We contrast the lemmatization accuracy
LEX values against the FULL metric. We also compare the
LEX values to the results of the TAGS metric, which eval-
uates the non-lexical features only. The results illustrated
in Figure 1 confirm our intuition regarding the lemmatiza-
tion behavior. The gap between the LEX and TAGS values
increases when using more training data. Increasing the
training data enhances the modeling capacity in general.
But the limited number of different lemmas in the morpho-
logical analyzer, and having to choose an analysis from the
analyzer in the ranking step, prevents further improvement.
We also observe that the FULL values are highly correlated
with LEX. So the drop in the FULL accuracy when using
the ranking approach, compared to the Neural Joint Model
alone or embedding the candidate tags, can be attributed to
the drop in the lemmatization accuracy compared to those
models.
This observation motivates future efforts on automati-
cally creating high-coverage morphological analyzers from
available training data. This is in contrast to the paradigm
completion approach described in Section 4, where it is
aimed at expanding the coverage for the non-lexical fea-
tures through filling the missing slots in the inflectional
classes.
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Analyzer Model 5K 10K 20K 40K 80K 162K

No Analyzer
MLE 64.9 69.7 74.9 78.7 81.9 84.7
Neural Joint Model 69.7 75.2 82.4 85.6 88.1 89.3

GLF-MAPC
Neural Joint Model+EMBED 71.1 75.9 82.9 85.5 88.4 89.5
Neural Joint Model+EMBED+RANK 73.1 76.9 80.9 82.5 82.0 84.9

GLF-MAPC+MSA-MAManual+EGY-MAManual
Neural Joint Model+EMBED 72.2 76.9 83.8 86.5 88.5 89.2
Neural Joint Model+EMBED+RANK 73.8 77.2 81.8 82.2 83.0 87.1

Table 5: DEV results in the FULL metric on a learning curve of the training data size against different morphological
analyzers and disambiguation models.

Analyzer Model FULL TAGS LEX POS SEG

No Analyzer
MLE 84.2 85.9 88.9 88.8 90.0
Neural Joint Model 88.7 92.9 92.6 96.9 97.2

GLF-MAPC Neural Joint Model+EMBED 89.2 92.9 93.1 96.7 97.3

Table 6: TEST results on the different baselines and the best performing system.
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Figure 1: The relationship between lemmatization (LEX) accuracy and the overall accuracy (FULL) of the model at different
data sizes. The chart also shows the relationship between lemmatization and accuracy of the non-lexical features (TAGS).

6.5. Blind Test
Finally, we apply our baseline systems and best performing
setup from Table 4 (according to the FULL metric) on the
TEST set. Table 6 shows the results for the different metrics.
The results are consistent with our previous experiments,
where using the morphological analyzer with the Neural
Joint Model helps the overall performance.

7. Conclusion and Future Work
We presented a morphological analysis and disambiguation
system for Gulf Arabic. We experimented using different
combinations of morphological analyzers, disambiguation
models, and training data sizes. There are several take-
aways from this work. In lower-resource settings, the state-
of-the-art neural approach suffers severely, and adding a

morphological analyzer generated from the same training
data alone boosts the performance by 3.4% at the lowest
setting. Morphological analyzers are most beneficial at
lower settings because of their lexical coverage. On the
other hand, non-lexical features are bounded in the lan-
guage and therefore can be captured easily. This suggests
that lexically rich analyzers can benefit full morphological
disambiguation at very low resource settings. Moreover,
using morphological analyzers to provide candidates as ad-
ditional embedding features is more helpful than using it for
potential answers since it can restrict the space of possible
answers depending on the quality of the analyzer.

In the future we plan to provide benchmarks for other low
resource dialects and investigate more ways to enhance the
coverage of automatically generated analyzers.



3902

Acknowledgments
We would like to thank Ramy Eskander for help using the
paradigm completion tool. The second author was sup-
ported by the New York University Abu Dhabi Global PhD
Student Fellowship program. We also gratefully acknowl-
edge the support and resources from the High Performance
Computing Center at New York University Abu Dhabi.

Bibliographical References
Abandah, G. A., Graves, A., Al-Shagoor, B., Arabiyat, A.,

Jamour, F., and Al-Taee, M. (2015). Automatic diacriti-
zation of Arabic text using recurrent neural networks. In-
ternational Journal on Document Analysis and Recogni-
tion (IJDAR), 18(2):183–197.

Abdelali, A., Darwish, K., Durrani, N., and Mubarak, H.
(2016). Farasa: A Fast and Furious Segmenter for Ara-
bic. In Proceedings of the Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics (NAACL), pages 11–16, San Diego, California.

Al-Sabbagh, R. and Girju, R. (2012). A supervised POS
tagger for written Arabic social networking corpora. In
Jeremy Jancsary, editor, Proceedings of the Conference
on Natural Language Processing (KONVENS), pages
39–52. ÖGAI. Main track: oral presentations.

Albogamy, F. and Ramsay, A. (2015). POS tagging for
Arabic tweets. In Proceedings of the International Con-
ference Recent Advances in Natural Language Process-
ing, pages 1–8, Hissar, Bulgaria, September. INCOMA
Ltd. Shoumen, BULGARIA.

Alharbi, R., Magdy, W., Darwish, K., Abdelali, A., and
Mubarak, H. (2018). Part-of-speech tagging for Arabic
gulf dialect using bi-lstm. In Proceedings of the Lan-
guage Resources and Evaluation Conference (LREC),
Miyazaki, Japan.

Alkuhlani, S. and Habash, N. (2011). A Corpus for Mod-
eling Morpho-Syntactic Agreement in Arabic: Gender,
Number and Rationality. In Proceedings of the Confer-
ence of the Association for Computational Linguistics
(ACL), Portland, Oregon, USA.

Alshargi, F., Dibas, S., Alkhereyf, S., Faraj, R., Abdulka-
reem, B., Yagi, S., Kacha, O., Habash, N., and Rambow,
O. (2019). Morphologically annotated corpora for seven
Arabic dialects: Taizi, sanaani, najdi, jordanian, syrian,
iraqi and Moroccan. In Proceedings of the Fourth Ara-
bic Natural Language Processing Workshop, pages 137–
147, Florence, Italy, August. Association for Computa-
tional Linguistics.

Baly, R., Hajj, H., Habash, N., Shaban, K. B., and El-Hajj,
W. (2017). A sentiment treebank and morphologically
enriched recursive deep models for effective sentiment
analysis in arabic. ACM Transactions on Asian and Low-
Resource Language Information Processing (TALLIP),
16(4):23.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2016). Enriching word vectors with subword informa-
tion. arXiv preprint arXiv:1607.04606.

Bouamor, H., Habash, N., Salameh, M., Zaghouani, W.,
Rambow, O., Abdulrahim, D., Obeid, O., Khalifa, S.,
Eryani, F., Erdmann, A., and Oflazer, K. (2018). The

MADAR Arabic Dialect Corpus and Lexicon. In Pro-
ceedings of the Language Resources and Evaluation
Conference (LREC), Miyazaki, Japan.

Boudlal, A., Lakhouaja, A., Mazroui, A., Meziane, A., Be-
bah, M., and Shoul, M. (2010). Alkhalil Morpho Sys1:
A morphosyntactic analysis system for Arabic texts. In
Proceedings of the International Arab Conference on In-
formation Technology, pages 1–6.

Buckwalter, T. (2004). Buckwalter Arabic Morpho-
logical Analyzer Version 2.0. LDC catalog number
LDC2004L02, ISBN 1-58563-324-0.

Darwish, K. and Mubarak, H. (2016). Farasa: A new fast
and accurate Arabic word segmenter. In Proceedings
of the Language Resources and Evaluation Conference
(LREC), Portorož, Slovenia.

Darwish, K., Mubarak, H., Abdelali, A., and Eldesouki,
M. (2017). Arabic pos tagging: Don’t abandon feature
engineering just yet. In Proceedings of the Workshop for
Arabic Natural Language Processing (WANLP), pages
130–137, Valencia, Spain.

Darwish, K., Mubarak, H., Abdelali, A., Eldesouki, M.,
Samih, Y., Alharbi, R., Attia, M., Magdy, W., and
Kallmeyer, L. (2018). Multi-dialect Arabic pos tagging:
A CRF approach. In Proceedings of the Language Re-
sources and Evaluation Conference (LREC), Miyazaki,
Japan.

Diab, M., Hacioglu, K., and Jurafsky, D. (2004). Auto-
matic Tagging of Arabic Text: From Raw Text to Base
Phrase Chunks. In Proceedings of the Conference of the
North American Chapter of the Association for Compu-
tational Linguistics (NAACL), pages 149–152, Boston,
MA.

Diab, M., Hacioglu, K., and Jurafsky, D., (2007). Arabic
Computational Morphology: Knowledge-based and Em-
pirical Methods, chapter Automated Methods for Pro-
cessing Arabic Text: From Tokenization to Base Phrase
Chunking. Springer Netherlands, kluwer/springer edi-
tion.

Duh, K. and Kirchhoff, K. (2005). POS tagging of dialec-
tal Arabic: a minimally supervised approach. In Pro-
ceedings of the Workshop on Computational Approaches
to Semitic Languages (CASL), pages 55–62, Ann Arbor,
Michigan.

El Kholy, A. and Habash, N. (2012). Orthographic and
morphological processing for English–Arabic statistical
machine translation. Machine Translation, 26(1-2):25–
45.

Erdmann, A., Khalifa, S., Oudah, M., Habash, N., and
Bouamor, H. (2019). A little linguistics goes a long way:
Unsupervised segmentation with limited language spe-
cific guidance. In Proceedings of the 16th Workshop on
Computational Research in Phonetics, Phonology, and
Morphology, pages 113–124, Florence, Italy, August.
Association for Computational Linguistics.

Eryani, F., Habash, N., Bouamor, H., and Khalifa, S.
(2020). A Spelling Correction Corpus for Multiple Ara-
bic Dialects. In Proceedings of the Language Resources
and Evaluation Conference (LREC), Marseille, France.

Eskander, R., Habash, N., and Rambow, O. (2013a). Au-



3903

tomatic extraction of morphological lexicons from mor-
phologically annotated corpora. In Proceedings of the
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1032–1043, Seattle, Wash-
ington, USA.

Eskander, R., Habash, N., Rambow, O., and Tomeh, N.
(2013b). Processing spontaneous orthography. In Pro-
ceedings of the Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL), pages 585–595, Atlanta, Georgia.

Eskander, R., Habash, N., Rambow, O., and Pasha, A.
(2016). Creating resources for Dialectal Arabic from a
single annotation: A case study on Egyptian and Lev-
antine. In Proceedings of the International Conference
on Computational Linguistics (COLING), pages 3455–
3465, Osaka, Japan.

Graff, D., Maamouri, M., Bouziri, B., Krouna, S., Kulick,
S., and Buckwalter, T. (2009). Standard Arabic Morpho-
logical Analyzer (SAMA) Version 3.1. Linguistic Data
Consortium LDC2009E73.

Guzmán, F., Bouamor, H., Baly, R., and Habash, N.
(2016). Machine translation evaluation for Arabic us-
ing morphologically-enriched embeddings. In Proceed-
ings of the International Conference on Computational
Linguistics (COLING), pages 1398–1408, Osaka, Japan.
The COLING 2016 Organizing Committee.

Habash, N. and Rambow, O. (2005). Arabic tokenization,
part-of-speech tagging and morphological disambigua-
tion in one fell swoop. In Proceedings of the Conference
of the Association for Computational Linguistics (ACL),
pages 573–580, Ann Arbor, Michigan.

Habash, N. and Rambow, O. (2006). MAGEAD: A mor-
phological analyzer and generator for the Arabic dialects.
In Proceedings of the International Conference on Com-
putational Linguistics and the Conference of the Asso-
ciation for Computational Linguistics (COLING-ACL),
pages 681–688, Sydney, Australia.

Habash, N., Soudi, A., and Buckwalter, T. (2007). On Ara-
bic Transliteration. In A. van den Bosch et al., editors,
Arabic Computational Morphology: Knowledge-based
and Empirical Methods, pages 15–22. Springer, Nether-
lands.

Habash, N., Rambow, O., and Roth, R. (2009).
MADA+TOKAN: A toolkit for Arabic tokenization, dia-
critization, morphological disambiguation, POS tagging,
stemming and lemmatization. In Khalid Choukri et al.,
editors, Proceedings of the International Conference on
Arabic Language Resources and Tools, Cairo, Egypt.
The MEDAR Consortium.

Habash, N., Eskander, R., and Hawwari, A. (2012). A
Morphological Analyzer for Egyptian Arabic. In Pro-
ceedings of the Workshop of the Special Interest Group
on Computational Morphology and Phonology (SIG-
MORPHON), pages 1–9, Montréal, Canada.

Habash, N., Roth, R., Rambow, O., Eskander, R., and
Tomeh, N. (2013). Morphological Analysis and Dis-
ambiguation for Dialectal Arabic. In Proceedings of the
Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics (NAACL), Atlanta,

Georgia.
Habash, N., Eryani, F., Khalifa, S., Rambow, O., Ab-

dulrahim, D., Erdmann, A., Faraj, R., Zaghouani, W.,
Bouamor, H., Zalmout, N., Hassan, S., shargi, F. A.,
Alkhereyf, S., Abdulkareem, B., Eskander, R., Salameh,
M., and Saddiki, H. (2018). Unified guidelines and re-
sources for Arabic dialect orthography. In Proceedings
of the Language Resources and Evaluation Conference
(LREC), Miyazaki, Japan.

Habash, N. (2007). Arabic Morphological Represen-
tations for Machine Translation. In Antal van den
Bosch et al., editors, Arabic Computational Mor-
phology: Knowledge-based and Empirical Methods.
Kluwer/Springer.

Halabi, N. (2016). Modern standard Arabic phonetics for
speech synthesis. Ph.D. thesis, University of Southamp-
ton.

Hamdi, A., Nasr, A., Habash, N., and Gala, N. (2015).
POS-tagging of Tunisian dialect using standard Arabic
resources and tools. In Proceedings of the Second Work-
shop on Arabic Natural Language Processing, pages 59–
68, Beijing, China, July. Association for Computational
Linguistics.

Heigold, G., Genabith, J. v., and Neumann, G. (2016).
Scaling character-based morphological tagging to four-
teen languages. In Proceedings of the International Con-
ference on Big Data (Big Data), pages 3895–3902.

Inoue, G., Shindo, H., and Matsumoto, Y. (2017).
Joint Prediction of Morphosyntactic Categories for Fine-
Grained Arabic Part-of-Speech Tagging Exploiting Tag
Dictionary Information. In Proceedings of the Con-
ference on Computational Natural Language Learning
(CoNLL), pages 421–431, Vancouver, Canada.

Jarrar, M., Habash, N., Akra, D., and Zalmout, N. (2014).
Building a Corpus for Palestinian Arabic: A Preliminary
Study. In Proceedings of the Workshop for Arabic Natu-
ral Language Processing (WANLP), pages 18–27, Doha,
Qatar.

Khalifa, S., Habash, N., Abdulrahim, D., and Hassan,
S. (2016a). A Large Scale Corpus of Gulf Arabic. In
Proceedings of the Language Resources and Evaluation
Conference (LREC), Portorož, Slovenia.

Khalifa, S., Zalmout, N., and Habash, N. (2016b). Ya-
mama: Yet another multi-dialect Arabic morphological
analyzer. In Proceedings of the International Conference
on Computational Linguistics (COLING), pages 223–
227, Osaka, Japan.

Khalifa, S., Hassan, S., and Habash, N. (2017). A Morpho-
logical Analyzer for Gulf Arabic Verbs. In Proceedings
of the Workshop for Arabic Natural Language Process-
ing (WANLP), Valencia, Spain.

Khalifa, S., Habash, N., Eryani, F., Obeid, O., Abdul-
rahim, D., and Kaabi, M. A. (2018). A morphologi-
cally annotated corpus of emirati Arabic. In Proceedings
of the Language Resources and Evaluation Conference
(LREC), Miyazaki, Japan.

Khoja, S. (2001). APT: Arabic Part-of-Speech Tagger.
In Proceedings of NAACL Student Research Workshop
(SRW), pages 20–26, Pittsburgh.



3904

Kilany, H., Gadalla, H., Arram, H., Yacoub, A., El-
Habashi, A., and McLemore, C. (2002). Egyp-
tian Colloquial Arabic Lexicon. LDC catalog number
LDC99L22.

Maamouri, M., Bies, A., Buckwalter, T., and Mekki, W.
(2004). The Penn Arabic Treebank: Building a Large-
Scale Annotated Arabic Corpus. In Proceedings of the
International Conference on Arabic Language Resources
and Tools, pages 102–109, Cairo, Egypt.

Maamouri, M., Graff, D., Bouziri, B., Krouna, S., Bies,
A., and Kulick, S. (2010). Standard Arabic morpholog-
ical analyzer (sama) version 3.1. Linguistic Data Con-
sortium, Catalog No.: LDC2010L01.

Maamouri, M., Bies, A., Kulick, S., Tabessi, D.,
and Krouna, S. (2012). Egyptian Arabic Tree-
bank DF Parts 1-8 V2.0 - LDC catalog num-
bers LDC2012E93, LDC2012E98, LDC2012E89,
LDC2012E99, LDC2012E107, LDC2012E125,
LDC2013E12, LDC2013E21.

Mohit, B., Rozovskaya, A., Habash, N., Zaghouani, W.,
and Obeid, O. (2014). The first QALB shared task on
automatic text correction for Arabic. In Proceedings of
the Workshop for Arabic Natural Language Processing
(WANLP), pages 39–47, Doha, Qatar.

Obeid, O., Khalifa, S., Habash, N., Bouamor, H., Za-
ghouani, W., and Oflazer, K. (2018). MADARi: A Web
Interface for Joint Arabic Morphological Annotation and
Spelling Correction. In Proceedings of the Language Re-
sources and Evaluation Conference (LREC), Miyazaki,
Japan.

Pasha, A., Al-Badrashiny, M., Diab, M., Kholy, A. E.,
Eskander, R., Habash, N., Pooleery, M., Rambow, O.,
and Roth, R. (2014). Madamira: A fast, comprehen-
sive tool for morphological analysis and disambiguation
of Arabic. In Proceedings of the Language Resources
and Evaluation Conference (LREC), pages 1094–1101,
Reykjavik, Iceland.

Roth, R., Rambow, O., Habash, N., Diab, M., and Rudin,
C. (2008). Arabic morphological tagging, diacritiza-
tion, and lemmatization using lexeme models and feature
ranking. In Proceedings of the Conference of the Asso-
ciation for Computational Linguistics (ACL), Columbus,
Ohio.

Sadat, F. and Habash, N. (2006). Combination of Arabic
Preprocessing Schemes for Statistical Machine Trans-
lation. In Proceedings of the International Conference
on Computational Linguistics and the Conference of the
Association for Computational Linguistics (COLING-
ACL), pages 1–8, Sydney, Australia.

Salloum, W. and Habash, N. (2014). ADAM: Ana-
lyzer for Dialectal Arabic Morphology. Journal of King
Saud University - Computer and Information Sciences,
26(4):372–378.

Samih, Y., Attia, M., Eldesouki, M., Abdelali, A., Mubarak,
H., Kallmeyer, L., and Darwish, K. (2017a). A neural
architecture for dialectal Arabic segmentation. In Pro-
ceedings of the Workshop for Arabic Natural Language
Processing (WANLP), pages 46–54, Valencia, Spain.

Samih, Y., Eldesouki, M., Attia, M., Darwish, K., Abdelali,

A., Mubarak, H., and Kallmeyer, L. (2017b). Learning
from relatives: Unified dialectal Arabic segmentation. In
Proceedings of the 21st Conference on Computational
Natural Language Learning (CoNLL 2017), pages 432–
441, Vancouver, Canada, August. Association for Com-
putational Linguistics.

Shen, Q., Clothiaux, D., Tagtow, E., Littell, P., and Dyer, C.
(2016). The role of context in neural morphological dis-
ambiguation. In Proceedings of the International Con-
ference on Computational Linguistics (COLING), pages
181–191, Osaka, Japan. The COLING 2016 Organizing
Committee.

Watson, D., Zalmout, N., and Habash, N. (2018). Uti-
lizing character and word embeddings for text normal-
ization with sequence-to-sequence models. In Proceed-
ings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 837–843, Brussels,
Belgium, October-November. Association for Computa-
tional Linguistics.

Zalmout, N. and Habash, N. (2017). Don’t throw those
morphological analyzers away just yet: Neural morpho-
logical disambiguation for Arabic. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 704–713, Copen-
hagen, Denmark.

Zalmout, N. and Habash, N. (2019). Joint diacritization,
lemmatization, normalization, and fine-grained morpho-
logical tagging. arXiv preprint arXiv:1910.02267.

Zribi, I., Ellouze Khemakhem, M., and Hadrich Belguith,
L. (2013). Morphological analysis of Tunisian dialect.
In Proceedings of the Sixth International Joint Confer-
ence on Natural Language Processing, pages 992–996,
Nagoya, Japan, October. Asian Federation of Natural
Language Processing.


	Introduction
	Related Work
	Relevant Linguistic Background
	Morphological Analyzer Creation through Paradigm Completion
	Experimental Setup
	Data
	Morphological Analyzers
	Disambiguation Models
	Metrics

	Results
	Baselines
	Morphological Analyzers & Disambiguation Models
	Training Data Learning Curve
	Discussion
	Blind Test

	Conclusion and Future Work

