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Abstract
This paper describes “TLT-school”, a corpus of speech utterances collected in schools of northern Italy for assessing the performance
of students learning both English and German. The corpus was recorded in the years 2017 and 2018 from students aged between nine
and sixteen years, attending primary, middle and high school. All utterances have been scored, in terms of some predefined proficiency
indicators, by human experts. In addition, most of utterances recorded in 2017 have been manually transcribed carefully. Guidelines and
procedures used for manual transcriptions of utterances will be described in detail, as well as results achieved by means of an automatic
speech recognition system developed by us. Part of the corpus is going to be freely distributed to scientific community particularly
interested both in non-native speech recognition and automatic assessment of second language proficiency.
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1 Introduction
A large set of both written and spoken data has been col-
lected during the implementation of campaigns aimed at
assessing the proficiency of Italian students learning both
German and English. Part of these data has been included
in a corpus, named “Trentino Language Testing” in schools
(TLT-school), that will be described in the following. De-
sign of the campaigns, involvement of schools, data collec-
tion and annotation by human experts were carried out and
coordinated by IPRASE, a research institute dealing with
education which is located in Trentino, North Italy.
All the collected sentences have been annotated by human
experts in terms of some predefined “indicators” which,
in turn, were used to assign the proficiency level to each
student undertaking the assigned test. This level is ex-
pressed according to the well-known Common European
Framework of Reference for Languages (Council of Eu-
rope, 2001) scale. The CEFR defines 6 levels of profi-
ciency: A1 (beginner), A2, B1, B2, C1 and C2. The levels
considered in the evaluation campaigns where the data have
been collected are: A1 (primary school), A2 (secondary
school) and B1 (high school).
The indicators measure the linguistic competence of test
takers both in relation to the content (e.g. grammatical cor-
rectness, lexical richness, semantic coherence, etc.) and to
the speaking capabilities (e.g. pronunciation, fluency, etc.).
Refer to Section 2 for a description of the adopted indica-
tors.
The learners are Italian students, between 9 and 16 years
old. They took proficiency tests by answering question
prompts provided in written form. The “TLT-school” cor-
pus, that we are going to make publicly available, contains
part of the spoken answers (together with the respective
manual transcriptions) recorded during some of the above
mentioned evaluation campaigns. We will release the writ-
ten answers in future. Details and critical issues found dur-
ing the acquisition of the answers of the test takers will be
discussed in Section 2.
The tasks that can be addressed by using the corpus are very
challenging and pose many problems, which have only par-

tially been solved by the interested scientific community.
From the ASR perspective, major difficulties observed in
this corpus are represented by: a) recognition of both child
and non-native speech, i.e. Italian pupils speaking both En-
glish and German, b) presence of a large number of spon-
taneous speech phenomena (hesitations, false starts, frag-
ments of words, etc.), c) presence of multiple languages
(English, Italian and German words are frequently uttered
in response to a single question), d) presence of a signifi-
cant level of background noise due to the fact that the mi-
crophone remains open for a fixed time interval (e.g. 20 sec-
onds - depending on the question), and e) presence of non-
collaborative speakers (students often joke, laugh, speak
softly, etc.). Refer to Section 2.3 for a detailed description
of the collected spoken data set.
Furthermore, since the sets of data from which “TLT-
school” was derived were primarily acquired for measur-
ing proficiency of second language (L2) learners, it is quite
obvious to exploit the corpus for automatic speech rat-
ing. To this purpose, one can try to develop automatic
approaches to reliably estimate the above-mentioned indi-
cators used by the human experts who scored the answers
of the pupils (such an approach is described in (Gretter et
al., 2019)). However, it has to be noted that scientific lit-
erature proposes to use several features and indicators for
automatic speech scoring which are partly different from
those adopted in “TLT-school” corpus (see below for a brief
review of the literature). Hence, we believe that adding
new annotations to the corpus, related to particular aspects
of language proficiency, can stimulate research and experi-
mentation in this area.
Finally, it is worth mentioning that also written responses
of “TLT-school” corpus are characterised by a high level of
noise due to: spelling errors, insertion of word fragments,
presence of words belonging to multiple languages, pres-
ence of off-topic answers (e.g. containing jokes, comments
not related to the questions, etc.). This set of text data will
allow scientists to investigate both language and behaviour
of pupils learning second languages at school. Written data
are described in detail in Section 2.2



379

Relation to prior work. Scientific literature is rich in
approaches for automated assessment of spoken language
proficiency. Performance is directly dependent on ASR ac-
curacy which, in turn, depends on the type of input, read or
spontaneous, and on the speakers’ age, adults or children;
see (Eskenazi, 2009) for an overview of spoken language
technology for education. A recent publication reporting an
overview of state-of-the-art automated speech scoring tech-
nology as it is currently used at Educational Testing Service
(ETS) can be found in (Zechner and Evanini, 2019).
In order to address automatic assessment of complex spo-
ken tasks requiring more general communication capabili-
ties from L2 learners, the speaking part of the Arizona En-
glish Language Learner Assessment (AZELLA), a large-
scale test (Cheng et al., 2014) developed by Pearson, has
been used for some researches (Angeliki and Cheng, 2014;
Cheng et al., 2014). The work described in (Cheng et al.,
2014) reports results achieved on 1, 500 spoken tests, each
double graded by human professionals, from a variety of
tasks.
A public set of spoken data has been recently distributed in
a spoken CALL (Computer Assisted Language Learning)
shared task1 where Swiss students learning English had to
answer to both written and spoken prompts. The goal of this
challenge is to label students’ spoken responses as “accept”
or “reject”. Refer to (Baur et al., 2018) for details of the
challenge and of the associated data sets.
Many non-native speech corpora (mostly in English as tar-
get language) have been collected over the years. A list,
though not recent, as well as a brief description of most of
them can be found in (Raab et al., 2007). The same paper
also gives information on how the data sets are distributed
and can be accessed (many of them are available through
both LDC2 and ELDA3 agencies). Some of the corpora
also provide proficiency ratings to be used in CALL appli-
cations. Among them, we mention the ISLE corpus (Men-
zel et al., 2000), which also contains transcriptions at the
phonetic level and was used in the experiments reported
in (Gretter et al., 2019).
Note that all corpora mentioned in (Raab et al., 2007)
come from adult speech while, to our knowledge, the ac-
cess to publicly available non-native children’s speech cor-
pora, as well as of children’s speech corpora in general, is
still scarce. Specifically concerning non-native children’s
speech, we believe worth mentioning the following cor-
pora. The PF-STAR corpus (Batliner et al., 2005) contains
English utterances read by both Italian and German chil-
dren, between 6 and 13 years old. The same corpus also
contains utterances read by English children. The ChildIt
corpus (Russell, 2007) contains English utterances (both
read and imitated) by Italian children.
By distributing “TLT-school” corpus, we hope to help re-
searchers to investigate novel approaches and models in the
areas of both non-native and children’s speech and to build
related benchmarks.

1https://regulus.unige.ch/spokencallsharedtask 3rdedition/ for
details.

2https://www.ldc.upenn.edu/
3http://www.elra.info/en/about/elda/

Table 1: Evaluation of L2 linguistic competences in
Trentino: level, grade, age and number of pupils partici-
pating in the evaluation campaigns. Most of the pupils took
both the English and the German tests.

CEFR Grade, School Age Number of pupils
2016 2017 2018

A1 5, primary 9-10 1074 320 517
A2 8, secondary 12-13 1521 111 614
B1 10, high school 14-15 378 124 1112
B1 11, high school 15-16 141 0 467
tot 5-11 9-16 3114 555 2710

Table 2: Written data collected during different evaluation
campaigns. Column “#Q” indicates the total number of dif-
ferent (written) questions presented to the pupils.

Year Lang #Pupils #Sentences #Tokens #Q
2016 ENG 3074 5062 299138 20
2016 GER 2870 4658 192144 25
2017 ENG 533 758 37225 5
2017 GER 529 745 30802 5
2018 ENG 2560 4600 293958 5
2018 GER 2200 3889 202309 5

2 Data Acquisition
In Trentino, an autonomous region in northern Italy, there
is a series of evaluation campaigns underway for testing L2
linguistic competence of Italian students taking proficiency
tests in both English and German. A set of three evalua-
tion campaigns is underway, two having been completed in
2016 and 2018, and a final one scheduled in 2020. Note that
the “TLT-school” corpus refers to only the 2018 campaign,
that was split into two parts: 2017 try-out data set (involv-
ing about 500 pupils) and the actual 2018 data (about 2500
pupils). Each of the three campaigns (i.e. 2016, 2018 and
2020) involves about 3000 students ranging from 9 to 16
years old, belonging to four different school grade levels
(5th, 8th, 10th, 11th) and three proficiency levels (A1, A2,
B1). The schools involved in the evaluations are located in
most part of the Trentino region, not only in its main towns;
Table 1 highlights some information about the pupils that
took part to the campaigns. Several tests, aimed at assessing
the language proficiency of the students, were carried out
by means of multiple-choice questions, which can be eval-
uated automatically. However, a detailed linguistic evalua-
tion cannot be performed without allowing the students to
express themselves in both written sentences and spoken ut-
terances, which typically require the intervention of human
experts to be scored.
Tables 2 and 3 report some statistics extracted from both
the written and spoken data collected so far in all the cam-
paigns. Each written sentence or spoken utterance received
a total score by human experts, computed by summing up
the scores related to 6 indicators in 2017/2018 (in the 2016
campaign, the number of indicators ranged from 3 to 6, ac-
cording to the proficiency levels and the type of test). Each



380

Table 3: Spoken data collected during different evaluation
campaigns. Column “#Q” indicates the total number of dif-
ferent (written) questions presented to the pupils. Column
“Duration” relates to the total duration of the recordings of
each row.

Year Lang #Pupils #Utterances Duration #Q
2016 ENG 2748 17462 69:03:37 85
2016 GER 2542 15866 60:03:01 101
2017 ENG 511 4112 16:25:45 24
2017 GER 478 3739 15:33:06 23
2018 ENG 2332 15770 93:14:53 24
2018 GER 2072 13658 95:54:56 23

Table 4: List of the indicators used by human experts to
evaluate specific linguistic competences.

lexical richness
pronunciation and fluency
syntactical correctness: morpho-syntactical correct-
ness, orthography and punctuation
fulfillment on delivery: relevancy of the answer with
respect to the prompt
coherence and cohesion
communicative, descriptive, narrative skills

indicator can assume a value 0, 1, 2, corresponding to bad,
medium, good, respectively.
The list of the indicators used by the experts to score written
sentences and spoken utterances in the evaluations, grouped
by similarity, is reported in Table 4. Since every utterance
was scored by only one expert, it was not possible to evalu-
ate any kind of agreement among experts. For future eval-
uations, more experts are expected to provide independent
scoring on same data sets, so this kind of evaluation will be
possible.

2.1 Prompts
The speaking part of the proficiency tests in 2017/2018 con-
sists of 47 question prompts provided in written form: 24
in English and 23 in German, divided according to CEFR
levels. Apart from A1 level, which differs in the number
of questions (11 for English; 10 for German), both English
and German have 6 questions for A2 level and 7 questions
for B1 level. As for A1 level, the first four introductory
questions are the same (How old are you?, Where do you
live?, What are your hobbies?, Wie alt bist du?, Wo wohnst
du?, Was sind deine Hobbys?) or slightly different (What’s
your favourite pet?, Welche Tiere magst du?) in both lan-
guages, whereas the second part of the test puts the test-
takers in the role of a customer in a pizzeria (English) or
in a café (German). The presence of small differences be-
tween the questions in English and those in German is moti-
vated by the need to make the tests less redundant and more
engaging for students.
A2 level test is composed of small talk questions which re-
late to everyday life situations. In this case, questions are
more open-ended than the aforementioned ones and allow

the test-takers to interact by means of a broader range of an-
swers. Finally, as for B1 level, questions are similar to A2
ones, but they include a role-play activity in the final part,
which allows a good amount of freedom and creativity in
answering the questions.

2.2 Written Data
Table 2 reports some statistics extracted from the written
data collected so far. In this table, the number of pupils tak-
ing part in the English and German evaluation is reported,
along with the number of sentences and tokens, identified
as character sequences bounded by spaces.
It is worth mentioning that the collected texts contain a
large quantity of errors of several types: orthographic, syn-
tactic, code-switched words (i.e. words not in the required
language), jokes, etc. Hence, the original written sentences
have been processed to produce “cleaner” versions, in order
to make the data usable for some research purposes (e.g. to
train language models, to extract features for proficiency
assessment, etc.).
To do this, we have applied some text processing, that in
sequence:
• removes strange characters;
• performs some text normalisation (lowercase, umlaut,
numbers, . . . ) and tokenisation (punctuation, etc.)
• removes / corrects non words (e.g. hallooooooooooo be-
comes hallo; aaaaaaaaeeeeeeeeiiiiiiii is removed)
• identifies the language of each word, choosing among
Italian, English, German;
• corrects common typing errors (e.g. ai em becomes i am)
• replaces unknown words, with respect to a large lexicon,
with the label <unk>.
Table 5 reports some samples of written answers.

2.3 Spoken Data
Table 3 reports some statistics extracted from the acquired
spoken data. Normally, around 20 students of the same
class took the test together, at the same time and in the same
classrooms, so it is quite common that speech of mates or
teachers overlaps with the speech of the student speaking in
her/his microphone. Also, the type of microphone depends
on the equipment of the school. On average, the audio sig-
nal quality is nearly good, while the main problem is caused
by a high percentage of extraneous speech. This is due to
the fact that organisers decided to use a fixed duration -
which depends on the question - for recording spoken utter-
ances, so that all the recordings for a given question have
the same length. However, while it is rare that a speaker has
not enough time to answer, it is quite common that, espe-
cially after the end of the utterance, some other speech (e.g.
comments, jokes with mates, indications from the teachers,
etc.) is captured. In addition, background noise is often
present due to several sources (doors, steps, keyboard typ-
ing, background voices, street noises if the windows are
open, etc). Finally, it has to be pointed out that many an-
swers are whispered and difficult to understand.

3 Manual Transcriptions
In order to create both an adaptation and an evaluation set
for ASR, we manually transcribed part of the 2017 data
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Table 5: Samples of written answers to English questions. On each line the CEFR proficiency level, the question and
the answer are reported. Other information (session and question ID, total and individual scores, school/class/student
anonymous ID) is also available but not included below.

CEFR Question Answer
A1 You are on a trip to Trentino with your family.

Add a message to a picture you took and want
to send it to a friend. Tell us: 1. where you are;
2.what you do; 3. what you like or dislike.

dear tiago . i’m swimming in the lake . there are some beautiful moun-
tains . i swim in the levico lake . later i go home on the bikeand i eats
ice creamwith my brother and my father . i like water is beautiful but i
don’t like the sun is very very hot ! is very impressive levico lake . see
you soon . byee ! kacper
——————————————————
hello , i’m in the lake with my family . i play football with my dad and
i eat a ice cream . the water is beautiful . it’s very sunny . goodbye see
you soon .

A2 Reply to Susan
Hi! How are you? I’ve just received a new ten-
nis racket. Would you like to meet at the sports
centre and play a little? We can play for an hour
and then we can get an ice cream together. Can
you come at 5 o’clock? Don’t forget to bring
your tennis shoes, ok? I’m really looking for-
ward to playing with you! Bye, Susan.

hello susan ! i’m fine thanks and you ? i’m very happy for you and for
your message and i would like see your new racket but unfortunately
today i can’t come . tomorrow i have a very important football match
and i must wake up at six o’clock so i need to sleep more than usually .
we can meet
——————————————————
hello susan i’m fine . i’m sorry but i can’t come with you , because i go
to land between london for one concert at five o’clock . bye .

B1 Write an English post for your blog where you
talk about what you need to do to learn a lan-
guage well.

if you want to learn a new language you can make it . the first thing is
studying many words and make a course . the second thing is go out
of your state and arrive at the state where speak the language that you
want learn . the first days are more difficult , but then its more easy .
you must study the grammar too .

B1 Write a short email to a friend of yours to tell
him / her that you intend to start studying an-
other foreign language and what the reasons are.

hi sophie ! how are you ? i am writing to you because i desire to say
you that i will start to study a new langueges . why i decide it ? because
i wont to live in spain in the future . what do you thing ? i wait your
answer . with love ! bye !

sets. An initial set of guidelines for the annotation was de-
fined and adopted by 5 researchers to manually transcribe
about 20 minutes of these audio data. This experience led
to a discussion, from which a second set of guidelines orig-
inated, aiming at reaching a reasonable trade-off between
transcription accuracy and speed. Briefly, the most impor-
tant guidelines are:

• only the main speaker has to be transcribed; presence
of other voices (schoolmates, teacher) should be re-
ported only with the label “@voices”,

• presence of whispered speech was found to be signif-
icant, so it should be explicitly marked with the label
“()”,

• badly pronounced words have to be marked by a
“#” sign, without trying to phonetically transcribe
the pronounced sounds; “#*” marks incomprehensible
speech;

• speech in a different language from the target language
has to be reported by means of an explicit marker “I
am 10 years old @it(io ho già risposto)”.

Next, we concatenated utterances to be transcribed into
blocks of about 5 minutes each. We noticed that know-
ing the question and hearing several answers could be of
great help for transcribing some poorly pronounced words
or phrases. Therefore, each block contains only answers to
the same question, explicitly reported at the beginning of
the block.

Table 6: Inter-annotator agreement between pairs of stu-
dents in terms of words. Students transcribed English utter-
ances first and German ones later.

High Language #Transcribed #Different Agreement
school words words

C English 965 237 75.44%
C German 822 139 83.09%
S English 1370 302 77.96%
S German 1290 226 82.48%

Table 7: Statistics from the spoken data sets (2017) used
for ASR.

ID # of duration tokens
utt. total avg total avg

Ger Train All 1448 04:47:45 11.92 9878 6.82
Ger Train Clean 589 01:37:59 9.98 2317 3.93
Eng Train All 2301 09:03:30 14.17 26090 11.34
Eng Train Clean 916 02:45:42 10.85 6249 6.82

Ger Test All 671 02:19:10 12.44 5334 7.95
Ger Test Clean 260 00:43:25 10.02 1163 4.47
Eng Test All 1142 04:29:43 14.17 13244 11.60
Eng Test Clean 423 01:17:02 10.93 3404 8.05

At this point, we engaged about 30 students from two Ital-
ian linguistic high schools (namely “C” and “S”) to perform
manual transcriptions of most of the 2017 audio data.
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After a joint training session, where the guidelines were
explained and motivated, we paired students together. Each
pair first transcribed, individually, the same block of 5 min-
utes. Then, they went through a comparison phase, where
each pair of students discussed their choices and agreed
on a single transcription for the assigned data. Transcrip-
tions made before the comparison phase were retained to
evaluate inter-annotator agreement. Apart from this first
5 minute block, each utterance was transcribed by only
one transcriber. Inter-annotator agreement for the 5-minute
blocks is shown in Table 6 in terms of words (after re-
moving hesitations and other labels related to background
voices and noises, etc.). The low level of agreement reflects
the difficulty of the task.
In order to assure quality of the manual transcriptions, ev-
ery sentence transcribed by the high school students was
automatically processed to find out possible formal errors,
and manually validated by researchers in our lab.
Speakers were assigned either to training or evaluation sets,
with proportions of 2

3 and 1
3 , respectively; then training and

evaluation lists of utterances were built, accordingly. Ta-
ble 7 reports statistics from the spoken data set. The ID All
identifies the whole data set, while Clean defines the subset
in which sentences containing background voices, incom-
prehensible speech and word fragments were excluded.

4 Usage of the Data
From the above description it appears that the corpus can
be effectively used in many research directions.

4.1 ASR-related Challenges
The spoken corpus features non-native speech recordings
in real classrooms and, consequently, peculiar phenomena
appear and can be investigated. Phonological and cross-
language interference requires specific approaches for ac-
curate acoustic modelling. Moreover, for coping with
cross-language interference it is important to consider al-
ternative ways to represent specific words (e.g. words of
two languages with the same graphemic representation).
Table 8, extracted from (Gretter et al., 2019), reports WERs
obtained on evaluation data sets with a strongly adapted
ASR, demonstrating the difficulty of the related speech
recognition task for both languages. Refer to (Matassoni
et al., 2018) for comparisons with a different non-native
children speech data set and to scientific literature (Wilpon
and Jacobsen, 1996; Das et al., 1998; Li and Russell, 2001;
Giuliani and Gerosa, 2003; Potamianos and Narayanan,
2003; Gerosa et al., 2007; Gerosa et al., 2009; Liao et al.,
2015; Serizel and Giuliani, 2016) for detailed descriptions
of children speech recognition and related issues. Impor-
tant, although not exhaustive of the topic, references on
non-native speech recognition can be found in (Wang and
Schultz, 2003; Wang et al., 2003; Oh et al., 2006; Strik et
al., 2009; Steidl et al., 2004; Bouselmi et al., 2006; Duan
et al., 2017; Li et al., 2016; Lee and Glass, 2015; Das and
Hasegawa-Johnson, 2015).
As for language models, accurate transcriptions of spoken
responses demand for models able to cope with not well-
formed expressions (due to students’ grammatical errors).

Table 8: WER results on 2017 spoken test sets.

German English
42.6 35.9

Also the presence of code-switched words, words frag-
ments and spontaneous speech phenomena requires specific
investigations to reduce their impact on the final perfor-
mance.
We believe that the particular domain and set of data pave
the way to investigate into various ASR topics, such as:
non-native speech, children speech, spontaneous speech,
code-switching, multiple pronunciation, etc.

4.2 Data Annotation
The corpus has been (partly) annotated using the guidelines
presented in Section 3 on the basis of a preliminary analysis
of the most common acoustic phenomena appearing in the
data sets.
Additional annotations could be included to address topics
related to other spurious segments, as for example: under-
standable words pronounced in other languages or by other
students, detection of phonological interference, detection
of spontaneous speech phenomena, detection of overlapped
speech, etc. In order to measure specific proficiency indi-
cators, e.g. related to pronunciation and fluency, supraseg-
mental annotations can be also inserted in the corpus.

4.3 Proficiency Assessment of L2 Learners
The corpus is a valuable resource for training and evaluat-
ing a scoring classifier based on different approaches. Pre-
liminary results (Gretter et al., 2019) show that the usage of
suitable linguistic features mainly based on statistical lan-
guage models allow to predict the scores assigned by the
human experts.
The evaluation campaign has been conceived to verify the
expected proficiency level according to class grade; as a
result, although the proposed test cannot be used to assign
a precise score to a given student, it allows to study typical
error patterns according to age and level of the students.
Furthermore, the fine-grained annotation, at sentence level,
of the indicators described above is particularly suitable for
creating a test bed for approaches based on “word embed-
dings” (Chen et al., 2018; Oh et al., 2017; Qian et al., 2019)
to automatically estimate the language learner proficiency.
Actually, the experiments reported in (Chen et al., 2018)
demonstrate superior performance of word-embeddings for
speech scoring with respect to the well known (feature-
based) SpeechRater system (Zechner et al., 2009; Zechner
and Evanini, 2019). In this regard, we believe that addi-
tional, specific annotations can be developed and included
in the “TLT-school” corpus.

4.4 Modelling Pronunciation
By looking at the manual transcriptions, it is straightfor-
ward to detect the most problematic words, i.e. frequently
occurring words, which were often marked as mispro-
nounced (preceded by label “#”). This allows to prepare
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Table 9: Words suitable for pronunciation analysis. Data
come from the 2017 manually transcribed data. Numbers
indicate the number of occurrences, divided into test and
training, with good and bad pronounciations.

word tot occ good vs. bad good vs. bad

German Test GER Train GER
ich 1132 317 32 735 48
lieblingsessen 113 22 15 45 31
ist 374 131 9 211 23
mein 204 52 9 129 14
tschüss 33 6 5 7 15
höre 19 2 4 4 9
alt 191 67 7 111 6
frühstück 31 4 3 15 9
milch 22 1 6 9 6
heisse 54 14 3 30 7

English Test ENG Train ENG
favourite 578 171 17 362 28
pet 169 49 10 96 14
thank 179 57 4 102 16
live 291 87 8 185 11
volleyball 97 22 5 60 10
football 246 75 7 157 7
years 170 47 2 109 12
subject 60 13 7 34 6
prefer 116 37 6 66 7
friends 120 27 3 82 8

a set of data composed by good pronounced vs. bad pro-
nounced words.
A list of words, partly mispronounced, is shown in Table 9,
from which one can try to model typical pronunciation
errors (note that other occurrences of the selected words
could be easily extracted from the non-annotated data). Fi-
nally, as mentioned above, further manual checking and an-
notation could be introduced to improve modelling of pro-
nunciation errors.

5 Distribution of the Corpus
The corpus to be released is still under preparation, given
the huge amount of spoken and written data; in particular,
some checks are in progress in order to:

• remove from the data responses with personal or inad-
equate content (e.g. bad language);

• normalise the written responses (e.g. upper/lower
case, punctuation, evident typos);

• normalise and verify the consistency of the transcrip-
tion of spoken responses;

• check the available human scores and - if possible -
merge or map the scores according to more general
performance categories (e.g. delivery, language use,
topic development) and an acknowledged scale (e.g.
from 0 to 4)4.

In particular, the proposal for an international challenge fo-
cused on non-native children speech recognition is being

4https://www.ets.org/s/toefl/pdf/toefl speaking rubrics.pdf

submitted where an English subset will be released and the
perspective participants are invited to propose and evaluate
state-of-art techniques for dealing with the multiple issues
related to this challenging ASR scenario (acoustic and lan-
guage models, non-native lexicon, noisy recordings, etc.).

6 Conclusions and Future Works
We have described “TLT-school”, a corpus of both spoken
and written answers collected during language evaluation
campaigns carried out in schools of northern Italy. The
procedure used for data acquisition and for their annotation
in terms of proficiency indicators has been also reported.
Part of the data has been manually transcribed according
to some guidelines: this set of data is going to be made
publicly available. With regard to data acquisition, some
limitations of the corpus have been observed that might be
easily overcome during next campaigns. Special attention
should be paid to enhancing the elicitation techniques, start-
ing from adjusting the questions presented to test-takers.
Some of the question prompts show some lacks that can
be filled in without major difficulty: on the one hand, in
the spoken part, questions do not require test-takers to shift
tense and some are too suggestive and close-ended; on the
other hand, in the written part, some question prompts are
presented both in source and target language, thus causing
or encouraging code-mixing and negative transfer phenom-
ena. The elicitation techniques in a broader sense will be
object of revision (see (Cooke, 1994) and specifically on
children speech (Beckman et al., 2017)) in order to max-
imise the quality of the corpus. As for proficiency indica-
tors, one first step that could be taken in order to increase
accuracy in the evaluation phase both for human and au-
tomatic scoring would be to divide the second indicator
(pronunciation and fluency) into two different indicators,
since fluent students might not necessarily have good pro-
nunciation skills and vice versa, drawing for example on
the IELTS 5 Speaking band descriptors. Also, next cam-
paigns might consider an additional indicator specifically
addressed to score prosody (in particular intonation and
rhythm), especially for A2 and B1 level test-takers. Consid-
ering the scope of the evaluation campaign, it is important
to be aware of the limitations of the associated data sets:
proficiency levels limited to A1, B1 and B2 (CEFR); cus-
tom indicators conceived for expert evaluation (not particu-
larly suitable for automated evaluation); limited amount of
responses per speaker. Nevertheless, as already discussed,
the fact that the TLT campaign was carried out in 2016 and
2018 in the whole Trentino region makes the corpus a valu-
able linguistic resource for a number of studies associated
to second language acquisition and evaluation. In partic-
ular, besides the already introduced proposal for an ASR
challenge in 2020, other initiatives for the international
community can be envisaged: a study of a fully-automated
evaluation procedure without the need of experts’ supervi-
sion; the investigation of end-to-end classifiers that directly
use the spoken response as input and produce proficiency
scores according to suitable rubrics.

5https://www.ielts.org
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