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Abstract
Growing needs in localising audiovisual content in multiple languages through subtitles call for the development of automatic solutions
for human subtitling. Neural Machine Translation (NMT) can contribute to the automatisation of subtitling, facilitating the work of
human subtitlers and reducing turn-around times and related costs. NMT requires high-quality, large, task-specific training data. The
existing subtitling corpora, however, are missing both alignments to the source language audio and important information about subtitle
breaks. This poses a significant limitation for developing efficient automatic approaches for subtitling, since the length and form of
a subtitle directly depends on the duration of the utterance. In this work, we present MuST-Cinema, a multilingual speech translation
corpus built from TED subtitles. The corpus is comprised of (audio, transcription, translation) triplets. Subtitle breaks are preserved
by inserting special symbols. We show that the corpus can be used to build models that efficiently segment sentences into subtitles and
propose a method for annotating existing subtitling corpora with subtitle breaks, conforming to the constraint of length.

Keywords:Subtitling, Neural Machine Translation, Audiovisual Translation

1. Introduction

In the past few years, the audiovisual sector has witnessed an
unprecedented growth, mostly due to the immense amounts
of videos on-demand becoming available. In order to reach
global audiences, audiovisual content providers localise
their content into the language of the target audience. This
has led to a “subtitling boom”, since there is a huge need for
offering high-quality subtitles into dozens of languages in a
short time. However, the workflows for subtitling are com-
plex; translation is only one step in a long pipeline consisting
of transcription, timing (also called spotting) and editing.
Subtitling currently heavily relies on humanwork and hence
manual approaches are laborious and costly. Therefore,
there is ample ground for developing automatic solutions
for efficiently providing subtitles in multiple languages, re-
ducing human workload and the overall costs of spreading
audiovisual content across cultures via subtitling.
Recent developments inNeuralMachine Translation (NMT)
have opened up possibilities for processing inputs other than
text within a single model component. This is particularly
relevant for subtitling, where the translation depends not
only on the source text, but also on acoustic and visual
information. For example, in Multimodal NMT (Barrault et
al., 2018) the input can be both text and image, and Spoken
Language NMT directly receives audio as input (Niehues et
al., 2019). These developments can be leveraged in order to
reduce the effort involved in subtitling.
Training NMT systems, however, requires large amounts
of high-quality parallel data, representative of the task. A
recent study (Karakanta et al., 2019) questioned the confor-
mity of existing subtitling corpora to subtitling constraints.
The authors suggested that subtitling corpora are insuffi-
cient for developing end-to-end NMT solutions for at least
two reasons; first, because they do not provide access to
the source language audio or to information about the dura-
tion of a spoken utterance, and second, because line breaks
between subtitles were removed during the corpus compi-
lation process in order to create parallel sentences. Given

that the length and duration of a subtitle on the screen is
directly related to the duration of the utterance, the missing
audio alignments pose a problem for translating the source
text into a proper subtitle. Moreover, the lack of informa-
tion about subtitle breaks means that splitting the translated
sentences into subtitles has to be performed as part of a
post-editing/post-processing step, increasing the human ef-
fort involved.
In this work, we address these limitations by presenting
MuST-Cinema, a multilingual speech translation corpus
where subtitle breaks have been automatically annotated
with special symbols. The corpus is unique of its kind,
since, compared to other subtitling corpora, it provides ac-
cess to the source language audio, which is indispensable
for automatically modelling spatial and temporal subtitling
constraints.1
Our contributions can be summarised as follows:

• We release MuST-Cinema, a multilingual dataset with
(audio, transcription, translation) triplets annotated
with subtitle breaks;

• we test the usability of the corpus to train models that
automatically segment a full sentence into a sequence
of subtitles;

• we propose an iterative method for annotating sub-
titling corpora with subtitling breaks, respecting the
constraint of length.

2. Subtitling
Subtitling is part of Audiovisual Translation and it consists
in creating a short text that appears usually at the bottom of
the screen, based on the speech/dialogue in a video. Sub-
titles can be provided in the same language as the video,
in which case the process is called intralingual subtitling

1 The corpus, the trained models described in the experiments
as well as the evaluation scripts can be accessed at https:
//ict.fbk.eu/must-cinema

https://ict.fbk.eu/must-cinema
https://ict.fbk.eu/must-cinema
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or captioning, or in a different language (interlingual subti-
tling). Another case of intralingual subtitling is Subtitling
for the Deaf and the Hard-of-hearing (SDH), which also
includes acoustic information. In this paper, we refer to
subtitles as the interlingual subtitles.
Subtitles are a means for facilitating comprehension and
should not distract the viewer from the action on the screen.
Therefore, they should conform to specific spatial and tem-
poral constraints (Cintas and Remael, 2007):

1. Length: a subtitle should not be longer than a specific
number of characters per line (CPL), e.g. 42 characters
for Latin scripts, 14 for Japanese, 12-16 for Chinese.

2. Screen space: a subtitle should not occupy more than
10% of the space on the screen, therefore only 2 lines
are allowed per subtitle block.

3. Reading speed: a subtitle should appear on the screen
at a comfortable speed for the viewer, neither too short,
nor too long. A suggested optimal reading speed is 21
characters per second (CPS).

4. ‘Linguistic wholes’: semantic/syntactic units should
remain in the same subtitle.

5. Equal length of lines: the length of the two lines
should be equal in order to alleviate the need of long
saccades for the viewers’ eyes (aesthetic constraint).

Figure 1 shows an example of a subtitle that does not con-
form to the constraints (top)2 and the same subtitle as it
should be ideally displayed on the screen (bottom). As it
can be seen, the original subtitle (Figure 1a) is spread across
four lines, covering almost 1/3 of the screen. Furthermore,
the last two lines of the original subtitle are not split in a
way such that linguistic wholes are preserved: “There’s the
ball” should in fact be displayed in a single line. In the
bottom subtitle (Figure 1b) instead, the lines have been kept
at two, by removing redundant information and unnecessary
repetitions (“Socrates, There’s the ball”). Each subtitle line
consists of a full sentence, therefore logical completion is
accomplished in each line and linguistic wholes are pre-
served. Lastly, “going through” has been substituted with a
synonym (“passing”) in order not to exceed the 42-character
limit. This all shows that the task of subtitlers is not limited
to simply translating the speech on the screen, but they are
required to compress and adapt their translation to match
the temporal, spatial and aesthetic constraints. Translating
subtitles can hence be seen as a complex optimisation pro-
cess, where one needs to find an optimal translation based
on parameters beyond semantic equivalence.
Subtitlers normally translate aided by special software that
notifies them whenever their translation does not comply to
the aforementioned constraints. Amara,3 for instance, is a
collaborative subtitling platform, widely used both for pub-
lic and enterprise projects, as well as by initiatives like TED
Talks.4 In order to speed up the process, another common

2 Screenshot taken from: https://www.youtube.com/
watch?v=i21OJ8SkBMQ

3 https://amara.org/en/subtitling-platform/
4 https://www.ted.com/

(a) Original subtitle

(b) Subtitle adapted based on the subtitling constraints

Figure 1: Example of a subtitle not conforming to the subti-
tling constraints and the same subtitle as it should be ideally
displayed.

practice is to transcribe the speech and automatically trans-
late it into another language. However, this process requires
complex pre-and post-processing to restore theMToutput in
subtitle format and does not necessarily reduce the effort of
the subtitler, since post-editing consists both in correcting
the translation and adapting the text to match the subtitle
format. Therefore, any automatic method that provides a
translation adapted to the subtitle format would greatly sim-
plify the work of subtitlers, significantly speeding up the
process and cutting down related costs.

3. Related work
In the following sections we describe several corpora that
have been used in Machine Translation (MT) research for
subtitling and attempts to create efficient subtitling MT sys-
tems.

3.1. Subtitling Corpora
The increasing availability of subtitles inmultiple languages
has led to several attempts of compiling parallel corpora
from subtitles. The largest subtitling corpus is OpenSub-
titles (Lison and Tiedemann, 2016), which is built from
freely available subtitles5 in 60 languages. The subtitles

5 http://www.opensubtitles.org/

https://www.youtube.com/watch?v=i21OJ8SkBMQ
https://www.youtube.com/watch?v=i21OJ8SkBMQ
https://amara.org/en/subtitling-platform/
https://www.ted.com/
http://www.opensubtitles.org/
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come from different sources, hence converting, normalis-
ing and splitting the subtitles into sentences was a major
task. The corpus contains both professional and amateur
subtitles, therefore the quality of the translations can vary.
A challenge related to creating such a large subtitle cor-
pus is the parallel sentence alignment. In order to create
parallel sentences, the subtitles are merged and informa-
tion about the subtitle breaks is removed. Even though
the monolingual data, offered in XML format, preserve in-
formation about the subtitle breaks and utterance duration,
mapping this information back to the parallel corpora is not
straightforward. Another limitation is that the audiovisual
material from which the subtitles are obtained is generally
protected by copyright, therefore the access to audio/video
is restricted, if not impossible.
A similar procedure was followed for the Japanese-English
Subtitle corpus (JESC) (Pryzant et al., 2018), a subtitle cor-
pus consisting of 3.2 million subtitles. It was compiled by
crawling the web for subtitles, standardising and aligning
them with automatic methods. The difference with Open-
Subtitles is that JESC is aligned at the level of captions and
not sentences, whichmakes it closer to the subtitling format.
Despite this, the integrity of the sentences is harmed since
only subtitles with matching timestamps are included in the
corpus, making it impossible to take advantage of a larger
context.
Apart fromfilms andTV series, another source for obtaining
multilingual subtitles is TED Talks. TED has been hosting
talks (mostly in English) from different speakers and on dif-
ferent topics since 2007. The talks are transcribed and then
translated by volunteers into more than 100 languages, and
they are submitted to multiple reviewing and approval steps
to ensure their quality. Therefore TED Talks provide an
excellent source for creating multilingual corpora on a large
variety of topics. The Web Inventory of Transcribed and
Translated Talks (WIT3) (Cettolo et al., 2012) is a multi-
lingual collection of transcriptions and translations of TED
talks.
Responding to the need for sizeable resources for training
end-to-end speech translation systems, MuST-C (Di Gangi
et al., 2019) is to date the largest multilingual corpus for
speech translation. Like WIT3, it is also built from TED
talks (published between 2007 and April 2019). It contains
(audio, transcription, translation) triplets, aligned at sen-
tence level. Based on MuST-C, the International Workshop
on Spoken Language Translation (IWSLT) (Niehues et al.,
2019) has been releasing data for its campaigns on the task
of Spoken Language Translation (SLT).
MuST-C is a promising corpus for building end-to-end sys-
tems which translate from an audio stream directly into
subtitles. However, as in OpenSubtitles, the subtitles were
merged to create full sentences and the information about
the subtitle breaks was removed. In this work, we attempt
to overcome this limitation by annotating MuST-C with the
missing subtitle breaks in order to provide MuST-Cinema,
the largest subtitling corpus available aligned to the audio.

3.2. Machine Translation for Subtitles
The majority of works on subtitling MT stem from the era
of Statistical Machine Translation (SMT), mostly in rela-

tion to large-scale production projects. Volk et al. (2010)
built SMT systems for translating TV subtitles for Danish,
English, Norwegian and Swedish. The SUMAT project,
an EU-funded project which ran from 2011 to 2014, aimed
at offering an online service for MT subtitling. The scope
was to collect subtitling resources, build and evaluate vi-
able SMT solutions for the subtitling industry in nine lan-
guage pairs, but there are only limited project findings avail-
able (Bywood et al., 2013; Bywood et al., 2017). The sys-
tems involved in the above mentioned initiatives were built
with proprietary data, which accentuates the need for offer-
ing freely-available subtitling resources to promote research
in this direction. Still using SMT approaches, Aziz et al.
(2012) modeled temporal and spatial constraints as part of
the generation process in order to compress the subtitles
only in the language pair English into Portuguese.
The only approach utilising NMT for translating subtitles is
described in Matusov et al. (2019) for the language pair En-
glish into Spanish. The authors proposed a complex pipeline
of several elements to customise NMT to subtitle transla-
tion. Among those is a subtitle segmentation algorithm that
predicts the end of a subtitle line using a recurrent neu-
ral network learned from human segmentation decisions,
combined with subtitle length constraints established in the
subtitling industry. Although they showed reductions in
post-editing effort, it is not clear whether the improvements
come from the segmentation algorithm or from fine-tuning
the system to a domain which is very close to the test set.

4. Corpus creation
MuST-Cinema is built on top of MuST-C, by annotating
the transcription and the translation with special symbols,
which mark the breaks between subtitles. The following
sections describe the process of creating MuST-Cinema for
7 languages: Dutch, French, German, Italian, Portuguese,
Romanian and Spanish.

4.1. Mapping sentences to subtitles
As described in (Di Gangi et al., 2019), theMuST-C corpus
contains audios, transcriptions and translations obtained by
processing the TED videos, and the source and target lan-
guage SubRip subtitle files (.srt). This process consists in
concatenating the textual parts of all the .srt files for each
language, splitting the resulting text according to strong
punctuation and then aligning it between the languages. The
source sentences are then aligned to the audio by using the
Gentle software.6 Although this sequence of steps allows
the authors to release a parallel corpus aligned at sentence
level, the source and target subtitle properties mentioned in
Section 2. are not preserved. To overcome this limitation
of MuST-C and create MuST-Cinema, the following pro-
cedure was implemented in order to segment the MuST-C
sentences at subtitle level:

• All the subtitles in the original .srt files obtained from
the ted2srt website7 are loaded in an inverted index
(text, talk ID and timestamps);

6 github.com/lowerquality/gentle
7 https://ted2srt.org/

github.com/lowerquality/gentle
https://ted2srt.org/
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• For each sentence in MuST-C, the index is queried to
retrieve all the subtitles that: i) belong to the same TED
talk of the sentence query and ii) are fully contained in
the sentence query;

• An identical version of the query is created by concate-
nating the retrieved subtitles, and by adding special
symbols to indicate the breaks.

4.2. Inserting breaks
When reconstructing the sentences from the .srt files, we
insert special symbols in order to mark the line and block
breaks. We distinguish between two types of breaks: 1)
block breaks, i.e. breaks denoting the end of the subtitle on
the current screen and 2) line breaks, i.e. breaks between
two consecutive lines (wherever 2 lines are present) inside
the same subtitle block. We use the following symbols: 1)
<eob>, to mark the end of block, and 2) <eol>, to mark the
end of line. In the case of one line per subtitle block, we
use <eob>. Figure 2 shows and example of a sentence after
inserting the breaks based on the corresponding .srt file.

164
00:08:57,020 –> 00:08:58,476 164
I wanted to challenge the idea

165
00:08:58,500 –> 00:09:02,060
that design is but a tool
to create function and beauty.

I wanted to challenge the idea <eob> that design is but a
tool <eol> to create function and beauty. <eob>

Figure 2: Subtitle file (top) and the full sentence annotated
with the subtitle breaks (bottom).

4.3. Development and test sets
For the development and test sets of MuST-Cinema, our
goal is to 1) offer high-quality sets, that are also manually
checked against the video, 2) avoid having subtitles above
the character limit or subtitles with missing breaks and 3)
preserve the integrity of the talks by including all segments.
For these reasons we created new development and test
sets for MuST-Cinema based on talks which were not part
of MuST-C, for which we obtained the subtitles offered
through Amara.8 We selected the subtitle files from Amara,
because, compared to ted2srt, they contain the .srt files that
are actually used in the TED videos, therefore the subtitle
breaks in these files are accurate.
For the test set, we manually selected 5 talks with subti-
tles available in all 7 languages, which were published after
April 2019, in order to avoid any overlap with the training
data. Hence, we obtained a common test set for all the lan-
guages. Each languagewas separately andmanually aligned
to the English transcription using InterText (Vondřička,
2014) in order to obtain parallel sentences.
The same steps were performed for the development set,
with the difference that we manually selected talks for each

8 https://amara.org/en/teams/ted/videos/

language without the requirement that the English talk has
translations for all the languages. Therefore the develop-
ment sets differ for each language, but the size of the set
was kept similar for all languages.

5. Corpus structure and statistics
The structure of MuST-Cinema is shown in Figure 3.

Figure 3: Structure of MuST-Cinema.
There are connections at two levels; first, on the horizon-
tal axis, the corpus is composed of triplets of audio, source
language transcription annotatedwith subtitle breaks (Subti-
tles EN), target language translation annotated with subtitle
breaks (Subtitles Tgt). Both the transcription and the trans-
lation are full sentences, aligned between English and the
target language, as in MuST-C. On the vertical axis, there is
a monolingual mapping between sentences with and with-
out subtitle breaks: the EN transcription is paired to the EN
subtitles of the same sentence and the Target language (Tgt)
translation is paired to the Tgt subtitles of the same sen-
tence. The utterance duration (start and end time) of each
sentence is stored asmetadata in a YAMLfile. The structure
of MuST-Cinema makes it optimal for several tasks related
to subtitling, from monolingual subtitle segmentation (as
we show in Section 6.) to subtitling-oriented NMT and
End-to-End speech-to-subtitling NMT.
The statistics of the corpus (train, development and test sets)
are presented in Table 1.

Train Dev Test
Tgt sents tgt w sents tgt w sents tgt w
De 229K 4.7M 1088 19K 542 9.3K
Es 265K 6.1M 1095 21K 536 10K
Fr 275K 6.3M 1079 22K 544 10K
It 253K 5.4M 1049 20K 545 9.6K
Nl 248K 4.8M 1023 20K 548 10K
Pt 206K 4.2M 975 18K 542 10K
Ro 236K 4.7M 494 9K 543 10K

Table 1: Number of sentences and target side words for each
language of MuST-Cinema for the training, development
and test set for all 7 languages.

5.1. Analysis and subtitle quality
MuST-Cinema incorporates missing elements of other sub-
titling corpora as described in (Karakanta et al., 2019), by:
i) providing the duration of the utterance, both through the
alignment to the audio and as metadata, ii) preserving the
integrity of the documents, since the talks in the dev and
test sets were used as a whole and without shuffling the sen-
tences, iii) including subtitle breaks as annotations and iv)

https://amara.org/en/teams/ted/videos/
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Figure 4: Statistics about the sentences conforming to the
subtitling constraint of length (blue) and not-conforming
(red) for CPL<=42.

offering a reliable gold standard for evaluation of subtitling-
related tasks. For the analysis of the corpus, we focus on
the primary aspects of subtitling quality, subtitle length and
number of lines. We explore this aspect in breadth, for all
the 7 languages of MuST-Cinema.
For length, we considered as conforming sentences the sen-
tences for which each one of the subtitles composing it has
a length <= 42 characters. Understandably, this is a strict
criterion, since the sentence is considered non-conforming
even if just one of the subtitles composing it is longer than
the 42-threshold. Figure 4 shows that nearly 70% of the
sentences are non-conforming. An inspection of the data
showed that the subtitle blocks in the .srt files downloaded
from ted2srt are never composed of two lines. When com-
paring the subtitles in the .srt files with the video published
on the TED website, we noticed that the line breaks inside
subtitle blocks were removed from the .srt files (for rea-
sons not explained anywhere). We observed though, that
in some talks the subtitle blocks contained a double space,
which corresponds to the <eol> in the videos. We replaced
the double spaces with the <eol> symbol. We concluded
that the subtitle lines inside the blocks were collapsed into
one sentence. In fact, whenwe performed the analysis of the
CPL with a maximum length of 84 (2 ∗ 42), more than 90%
of the sentences conform to the length criterion (Figure 5).
The top portions in the figure show the number of sentences
where the <eol> symbol is present. This is a small portion
of the data, however, later we will show that it can valuable
for learning subtitle line segmentations. This is an issue
present only in the training data, as the development and
test sets were manually downloaded from the TED Amara
website, where the subtitle lines inside the .srt files are not
collapsed. In this work, instead of attempting to recreate
MuST-C from the Amara website (which would require a
new pipeline and weeks for downloading and processing the
dumps), we re-annotate the existing data with a model that
learns to insert the <eol> symbol (Section 6.).

6. Experiments
In the following sections, we present the experiments for
the task of monolingual segmentation of a sentence into
subtitles.
We train a segmenter, i.e. amodel that inserts subtitle breaks

237059 248362 242074 193613 222570 209371 233291

16529
26723 23551

12542

13598
20332

15037
1009

7563 6103

1218

522 2512
377

N
um

be
r o

f s
en

te
nc

es
 in

 th
ou

sa
nd

s

0

100

200

300

IT FR ES PT RO DE NL

Lines with <eol> Non-conforming Conforming

Figure 5: Statistics about the sentences conforming to the
subtitling constraint of length (blue), not-conforming (red)
for CPL<=84 and number of sentences containing infor-
mation about the <eol> (yellow).

given a non-annotated sentence monolingually. Here, we
address the problem of splitting the sentences into subtitles
as a sequence-to-sequence problem, where the input is the
full sentence and the output is the same sentence annotated
with <eol> and <eob> symbols.

6.1. Experimental Setting
We create two portions of training data; one containing all
the parallel sentences available, and a smaller one contain-
ing only the sentences where <eol> symbols are present
(top parts in Figure 5). We segment the data into subword
units with SentencePiece9 with a different model for each
language and 8K vocabulary size. The break symbols are
maintained as a single word-piece.
We train a sequence-to-sequence model based on the Trans-
former architecture (Vaswani et al., 2017) using fairseq (Ott
et al., 2019). The model is first trained on all the available
data (All) and then fine-tuned on the sentences containing
the <eol> symbols (ft_eol). This two-step procedure was
applied to force the NMT system to take into consideration
also the <eol> symbols. This was necessary considering the
mismatch in the number between sentenceswith andwithout
<eol> symbols. For optimisation, we use Adam (Kingma
and Ba, 2015) (betas 0.9, 0.98), and dropout (Srivastava et
al., 2014) is set to 0.3. We train the initial model for 12
epochs and fine-tune for 6 epochs.
As baseline, we use an algorithm based on counting char-
acters (Count Char). The algorithm consumes characters
until the maximum length of 42 is reached and then inserts
a break after the last consumed space. If the previous break
is an <eob>, it randomly selects between <eob> and <eol>,
while if the previous break is an <eol>, it inserts an <eob>.
This choice is motivated by the fact that, due to the con-
straint of having only two lines per block, we cannot have a
segmentation containing consecutive <eol> symbols. The
last break is always an <eob>.

6.2. Evaluation
We evaluate our models using 3 categories of metrics. First,
we compute the BLEU (Papineni et al., 2002) between the
human reference and the output of the system. We report

9 https://github.com/google/sentencepiece

https://github.com/google/sentencepiece
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BLEU score 1) on the raw output, with the breaks (gen-
eral BLEU) and 2) on the output without the breaks. The
first computes the n-gram overlap between reference and
output. Higher values indicate a high similarity between
the system’s output and the desired output. The second
ensures that no changes are performed to the actual text,
since the task is only about inserting the break symbols,
without changing the content. Higher values indicate less
changes between the original text and the text where the
break symbols were inserted.
Then, we test how good the model is at inserting a sufficient
number breaks and at the right places. Hence, we compute
the precision, recall and F1-score, as follows:

Precision =
#correct_breaks

#total_breaks(output)
(1)

Recall =
#correct_breaks

#total_breaks(reference)
(2)

F1 = 2 ∗ precision ∗ recall
precision+ recall

(3)

Finally, we want to test the ability of the system to segment
the sentences into properly formed subtitles, i.e. how well
the system conforms to the constraint of length and number
of lines. Therefore, we compute CPL to report the number
of subtitles conforming to a length <= 42.

7. Results and Analysis
The results for the three categories of metrics are shown in
the figures. Figure 6 shows the general BLEU (with breaks)
of the segmented output compared to the human reference.
The count characters (baseline) algorithm performs poorly,
while the sequence-to-sequencemodels reach aBLEU score
of above 70 for all the languages, with the model fine-tuned
on the <eol> achieving an extra improvement (up to 7 points
for En-De). The BLEU without the breaks (not reported
here) was always above 98%, indicating that there were not
significant changes to the actual text. Upon inspection of
the few differences, we noticed that the system corrected
inconsistencies in the reference, such as apostrophes (J'ai
to J’ai) or removed spaces before punctuation. The BLEU
score, although useful to indicate the changes compared to
the reference, is not very informative on the type of mistakes
in inserting the breaks.
The picture is similar for the F1-score (Figure 7). Counting
characters barely reaches 50%, and the gap between pre-
cision and recall is small (both between 42%-50% for all
languages). The fine-tuned model is better than the All with
6 points on average. It is interesting noticing the trade-off
between precision and recall; while precision drops with 7
points on average when fine-tuning compared to the non-
fine-tuned model, recall increases by 13 points. In fact, for
every fine-tuning epoch, precision drops by about 1 point
compared to the previous epoch while recall increases at
a double rate. This shows that fine-tuning helps in seg-
menting the sentence into smaller pieces by inserting more
breaks, even though small differences in positioning them
are highly penalised in terms of precision.
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Figure 6: BLEU (general).
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Figure 8: Percentage of subtitles conforming to the length
constraint.

Figure 8 shows the percentage of subtitles which are <=42
characters long. The method of counting characters con-
forms for almost all sentences; there is a minimum loss
due to “orfans”, which are subtitles containing less than 5
characters. Despite this, the low F1-score of the breaks
shows that the breaks are not inserted in the correct posi-
tion. Moreover, the model trained on all data (All) does not
insert sufficient breaks to reduce the length of the subtitles
inside the sentence. Here the fine-tuned model achieves on
average a 21% improvement, reaching up to 92% of length
conformity for French and Spanish. In spite of the limited
amount of data, the proposed fine-tuning method shows that
the corpus is a valuable resource towards achieving outputs
conforming to the subtitle format.
Table 2 contains some examples of the output of the seg-
menter: Sentence 1 shows that the segmenter is able to insert
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1. La forma del bottone non è variata molto <eol> da quella che era nel Medioevo. <eob>
The design of a button hasn’t changed much since the Middle Ages.

2. Sie lief aus dem Haus des Mannes fort, <eol> den sie nicht heiraten wollte, <eob>
und heiratete schließlich <eol> den Mann ihrer Wahl. <eob>
She ran away from the house of the man she did not want to marry and
ended up marrying the man of her choice.

3. C’est donc toujours plus difficile. <eob>
So it gets to be more and more of a challenge.

4. Je m’enroule en une petite <eol> boule comme un foetus. <eob>
And I curl up into a little fetal ball.

Table 2: Examples of sentences output by the segmenter. Text in blue indicates insertions by the segmenter.

breaks in the correct place. In Sentence 2, the segmenter
inserts both <eol> and <eob> symbols, correctly alternating
between the two. Sentence 3 is a sentence shorter than 42
characters, which was not changed by the segmenter. This
shows that the segmenter doesn’t insert breaks for sentences
that do not need to be further split. Lastly, Sentence 4 is
already annotated with breaks. In this case, the segmenter
does not insert any breaks because the sentence is already
segmented.

7.1. Iterative Re-annotation
The analysis of the corpus in Section 5.1. showed that
the majority of the sentences in the training data of MuST-
Cinema do not contain <eol> breaks because this infor-
mation has been erased from the .srt files. We attempt
to address this inadequacy by applying the models in Sec-
tion 6. to iteratively re-annotate the training data only with
the missing <eol> symbols. The difference with the models
in Section 6. is that the input sentences to the segmenter
already contain the <eob> symbols. This is because we
wanted to preserve the subtitle block segmentation of the
data while splitting the blocks into subtitle lines. The pro-
cess is carried out as follows: 1) Using the best-performing
models, that is the models fine-tuned on a small amount of
data containing <eol> symbols (ft_eol), we annotate sen-
tences in the training data which do not respect the length
constraint. 2) We filter the annotated data with the CPL
criterion and select the length-conforming sentences con-
taining <eol> symbols. Moreover, we make sure that no
sentences contain two or more consecutive <eol> symbols,
even though we observe that this is rarely the case. 3) Fi-
nally, we concatenate the selected data in step 2) with the
initial data containing <eol> and fine-tune again the base
model (All). The procedure can be iterated until all sen-
tences in the corpus conform to the criterion of length. Our
intuition is that, even though sub-optimal due to possible in-
sertion errors done by the system, the new training instances
collected at step t can be used to improve the model at step
t+1.
Figure 9 shows the percentage of length-conforming sub-
titles for the training data of MuST-Cinema at 3 stages; at
the initial corpus compilation stage (None), after segment-
ing the data with the model fine-tuned on small amounts of
data with <eol> (ft_eol), and after 1 iteration of the method
proposed above (ft_iter1). There is a clear increase in the
number of length-conforming subtitles, reaching up to 92%
for Italian after only one iteration. This shows that training
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Figure 9: Percentage of subtitles in theMuST-Cinema train-
ing data conforming to CPL< 42 after segmenting with
different models.

data can be efficiently and automatically annotated with the
missing line breaks.

8. Conclusions and future work
There aremissing elements in the existing subtitling corpora
which hinder the development of automatic NMT solutions
for subtitling. These elements are i) lack of audio/utterance
duration, and ii) information about subtitle breaks. MuST-
Cinema addresses these limitations by mapping the parallel
sentences to audio and annotating the sentenceswith subtitle
breaks. Based onMuST-Cinema, we proposed an automatic
method that can be used to annotate other subtitling corpora
with subtitle breaks. Our proposed segmenter shows that
full sentences can be successfully segmented into subtitles
conforming to the subtitling constraints. In the future, we
are planning to use the corpus for building translation mod-
els with text and audio as input. We hope MuST-Cinema
will be used as a basis for kick-starting the development of
end-to-end NMT solutions for subtitling.
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