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Abstract
This paper introduces a new web system that integrates English Grammatical Error Detection (GED) and course-specific stylistic
guidelines to automatically review and provide feedback on student assignments. The system is being developed as a pedagogical tool
for English Scientific Writing. It uses both general NLP methods and high precision parsers to check student assignments before they
are submitted for grading. Instead of generalized error detection, our system aims to identify, with high precision, specific classes of
problems that are known to be common among engineering students. Rather than correct the errors, our system generates constructive
feedback to help students identify and correct them on their own. A preliminary evaluation of the system’s in-class performance has
shown measurable improvements in the quality of student assignments.
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1. Introduction
Automated Grammar Error Detection (GED) and Correc-
tion (GEC) are tasks that have attracted some attention
within the NLP community. This is especially true for
English, where a myriad of shared-tasks periodically com-
pare and attest the impact of the latest available technology.
Some recent efforts in organizing shared-tasks within these
topics include: the 2011 Helping Our Own (Dale and Kil-
garriff, 2011, HOO) shared-task on GEC; the more focused
2012 HOO shared-task on Preposition and Determiner Error
Correction (Dale et al., 2012); the 2013 and 2014 CoNLL
shared-tasks on English GEC (Ng et al., 2013; Ng et al.,
2014); the 2016 shared-task on Automated Evaluation of
Scientific Writing, focusing on error detection (Daudaravi-
cius et al., 2016, AESW); and, most recently, the 2019
shared-task on English GEC (Bryant et al., 2019).
Most of these tasks aim to test the ability to perform gen-
eralized GEC, and often include a large variety of common
errors attested by learner corpora. While we agree that these
efforts are of utmost importance for the field, this paper is
best aligned with the spirit of the shared-task on AESW –
where the focus is on the detection of issues (i.e. not strictly
errors), and the goal is to assist authors in writing better
academic papers.
As Daudaravicius (2015) rightfully describes, the task of
assisting academic writing includes monitoring language
quality in dimensions that go well beyond grammatical is-
sues. These might include a variety of stylistic appropriate-
ness checks that include, for example, word and sentence
ambiguity, voice, word-choice, academic and discipline-
specific terminology, etc.
As such, the system we describe here is not a generalized er-
ror detection system. Rather, it is a targeted contribution, fo-
cusing specifically on the needs of our engineering students
in their English Technical Writing. Since the main goal of
our system was for it to be used as a pedagogical tool, we did
not aim to perform coverage on a wide range of error classes.

Instead, we started by focusing on error classes that would
be helpful for the students and that we knew we could detect
well. In addition, the checks that our system performs go be-
yond grammaticality, and include many stylistic checks rec-
ommended by our team of lecturers. While many of these
checks would most likely be useful beyond our classroom, a
few are likely to be specific to either our students’ language
backgrounds, or to our lecturers’ sensitivity to certain as-
pects of style.
Our system differs from most other existing systems in an-
other very important way. The fact that we wanted to use
this system as a pedagogical tool had a direct impact on the
granularity with which errors were considered. We want to
be able to provide constructive feedback that is informative
enough to allow students to understand the problem, to ex-
plore possible solutions and to decide on the best corrections
on their own.
For example, instead of a generalized message ‘something
is wrong with the use of determiners in this phrase.’, when-
ever possible, we aim to provide specific feedback for spe-
cific classes of errors. For example, our system is able to
differentiate problems related with determiners that include,
among others: the omission of an article for single count-
able nouns; the use of indefinite articles with uncountable
nouns; and the use of the wrong form of the indefinite arti-
cle ‘a/an’. This idea, which relates to the type of feedback
we offer students, will be further discussed in Section 5.3.
One final aspect where our system differs significantly from
most other recent systems is the fact that we choose to
perform GED using linguistically inspired computational
parsers (i.e. instead of statistical learning over large sets
of labeled data). The reasons for this are many, and include
both the precision and granularity of this GED. This choice
also allows independence from these datasets, which are of-
ten skewed and impose some restrictions in the way GED
can be learned. In addition, as it will be made clear in Sec-
tion 2, the use of computational parsers enhanced with mal-
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rules allows each ungrammatical sentence to be ambiguated
to many possible intended meanings. Although this is not
fully explored in the current version of this system, we hope
to make use of this to further improve the pedagogical reach
of this system in future versions.
The rest of this paper will be structured as follows: Section 2
explains how we perform GED using computational parsers;
Section 3 discusses the motivation behind the development
of this system; Section 4 discusses the importance of learner
corpora in our system’s design; Section 5 describes the sys-
tem’s building blocks and usage flow; Section 6 provides
an account of our preliminary evaluation experiment; and
Section 7 concludes with a small discussion and pointers to
future work.

2. Grammatical Error Detection using
Computational Parsers

Using symbolic parsers, such as computational grammars,
for GED or GEC has both advantages and disadvantages.
The main disadvantage is, most definitely, coverage. Sym-
bolic parsers take a long time to develop before being able to
compete against statistical parses on coverage. When cov-
erage is not an issue, however, symbolic parsers are often
able to provide much higher quality and richer structure to
language. Our system takes advantage of this benefit to per-
form error detection and select feedback based on a concept
known as mal-rules.
The concept of mal-rule was first proposed by Schneider
and McCoy (1998). These rules are used to extend de-
scriptive grammars in order to allow specific ungrammatical
phenomena, while reconstructing structures that were vio-
lated. Although the design of mal-rules is time consuming,
they can enable fine-tuned error distinctions that statistical
parsers would have a hard time dealing with. Consider ex-
ample (1), below:

(1) * These system corrrect error.

*S

*NP

D

these

N

system

VP

V

correct

*NP

error

A descriptive grammar of English should reject (1) as a
proper sentence. However, the decision of how to correct
this sentence is not simple. Without context, at least four
corrections (2 to 5) should be considered – but other op-
tions could also be considered. From a pedagogical point of
view, each of these corrections should elicit different kinds
of corrective feedback.

(2) These systems correct the error.

(3) These systems correct errors.

(4) This system corrects the error.

(5) This system corrects errors.

While dealing this ambiguity might seem daunting for some
statistical systems, a few mal-rules would allow this sen-
tence to be parsed while reconstructing all of the meanings
shown above. This would require: a mal-rule that allows
disagreement between nouns and determiners, so that both
this system and these systems can be built; a mal-rule to ei-
ther add a quantifier or change error into plural; and, finally,
a rule that would allow subject-predicate disagreement, so
that both this system and these systems can be taken as sub-
jects.
Mal-rules can act on syntactic structures and on individual
lexical items. A system using mal-rules can perform both
error detection and error correction (since ungrammatical
structures can be reconstructed). From a pedagogical point
of view, each mal-rule activation can be converted into a
constructive feedback message (e.g. ‘the subject and the
verb of your sentence do not agree in number’). Because of
this, these rules are often named in a special way, or kept
in different layers of the parser, such that grammatical and
ungrammatical constructions can be differentiated.
Within implemented grammars, mal-rules can be selec-
tively available for parsing but not for generation (Bender
et al., 2004), or to allow one type of error but not oth-
ers. If these implemented grammars produce a semantic
representation, as is the case for the grammar used in this
project, these mal-rules can be further designed to recon-
struct the semantics of ungrammatical sentences in a way
that allows the generation of corrected counterparts (Bender
et al., 2004). Often, as shown above, the same ungrammat-
ical sentence can trigger multiple parses, each reconstruct-
ing different semantics, so as to mimic different possible
intended meanings behind an ungrammatical input. Mor-
gado da Costa et al. (2016) provide a fuller account of how
mal-rules and semantic reconstruction can be used in Com-
puter Assisted Language Learning.

2.1. English Resource Grammar
The system presented in this paper uses, at its core, the En-
glish Resource Grammar (Copestake and Flickinger, 2000;
Flickinger, 2000, ERG) as the main parser. The ERG is a
symbolic grammar with a very large lexicon and wide cov-
erage of syntactic phenomena. It has, in fact, been used by
a different team in the 2016 AESW task (Flickinger et al.,
2016). The team that used the ERG ranked second in the
probabilistic estimation track, and fourth in the boolean de-
cision track.
Of special interest for our system is the fact that this gram-
mar has had substantial work to allow it to parse and identify
both ungrammatical and stylistically deprecated sentences
(Bender et al., 2004; Flickinger and Yu, 2013; Suppes et al.,
2014). This is made available through a variety of methods,
including mal-rules and the ability to define parsing strict-
ness using root conditions of the tree (e.g. disable parsing of
sentence fragments). In addition, the ERG provides a deep
linguistic representation for each sentence (with detailed
syntactic and semantic information), as opposed to a shal-
lower representation such as an ngram language model. The
information contained in this representation, such as verbal
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mood, can be very useful for designing extra-grammatical
checks.

3. Motivation
The motivation behind the development of our system is to
assist undergraduate engineering students in a mandatory
course on English Scientific Writing at Nanyang Techno-
logical University, in Singapore. This system was primarily
conceived as a pedagogical tool, with the goal of alleviat-
ing some of the challenges our tutors have while coaching
a cohort of over 2,000 undergraduate engineering students
per year. These challenges revolve around correcting and
providing timely, high quality feedback on student assign-
ments, so students can learn from the feedback and itera-
tively improve their assignments throughout the duration of
the course. Unfortunately, the size of the student cohort and
the number of available tutors makes this a very difficult
task. Without a system like the one we are presenting here,
students rarely receive any feedback on their assignments
before their grade is final, leaving them with little incentive
to improve from the tutors’ feedback after the course is over.
Following this pedagogical mindset, the system’s objec-
tive is not to correct errors. Instead, our system was de-
signed to identify issues and provide constructive feedback
that prompts students to consider whether corrections are
needed. This allows students to have a more meaningful
participation in the error correction process, learning while
actively identifying errors and choosing from multiple ways
which are often available to correct different classes of prob-
lems. In other words, the goal of this system is to provide
immediate feedback to students on possible errors in syn-
tax, style and lexis, encouraging independent critical think-
ing and inviting students to explore and evaluate possible
solutions and decide on the best correction on their own.

4. Learner Corpora
Learner Corpora are made by the collection and analysis
of language learner data, especially the process of labelling
problems in written or spoken language (i.e. describing is-
sues with a set of tags) (Granger, 2003). Learner Corpora
are an essential component of multiple lines of research, in-
cluding Second Language Teaching and Learning, Applied
Linguistics and, perhaps not surprisingly, also to GED and
GEC. The types of errors language learners make, as well
as the frequency with which each error occur, are implicitly
encoded in the labeling process – which is the necessary
training data over which statistical GED and GEC systems
learn.
Even though our system did not require statistical learning
over labeled data, its development was profoundly inspired
by previous work done on English Learner Corpora. De-
serving notable mention are the NTU Corpus of Learner
English (Winder et al., 2017), the NUS Corpus of Learner
English (Dahlmeier et al., 2013) and the Cambridge Learner
Corpus (Nicholls, 2003).
The process of selecting which checks to include in our sys-
tem was a combination of firsthand experience of our tutors,
data driven analysis based on the Learner Corpora men-
tioned above, and ease of implementation given the avail-
able tools. Fortunately, as mentioned above, the ERG al-

ready had the ability to detect many classes of common er-
rors made by learners.

5. System Architecture
The system is fully developed on top of existing open-source
platforms. At its core, it is a web system developed using
Python and Flask, fully open-source, and scalable.

5.1. Submission
Submission to the system is done online, using any mod-
ern browser. Access to the system is done through a typical
sign-in method, and is currently only available to students at
our institution. After the signing in, upload instructions are
presented to the student. For the time being, only documents
with the type docx are accepted. This was a design decision
based on the lower quality of text extraction available for
other formats. Since sentence boundaries are extremely im-
portant in GED and GEC, extracting text from document
formats like PDF would hurt the system’s performance im-
mensely. docx type documents are open, non-proprietary,
and can be produced from most modern word processors
(including Microsoft Word, Pages, Google Documents, Li-
breOffice Writer, etc).
Before submission, students are prompted with a choice of
whether or not to release their assignments under a Creative
Commons 0 license.1 The way this prompt is shown and
phrased follows the approved IRB protocols for this project.
With this consent form, for each document uploaded, stu-
dents make an informed decision about releasing their as-
signments for further research. The preference for a liberal
license was to safeguard students’ privacy. Using a license
that required attribution would contradict students’ right to
anonymity, which was deemed more important. During this
process, students are also informed that choosing not to re-
lease their assignment will not adversely affect them in any
way.

5.2. Parsing and Checking
Once submitted, the docx files are converted to xml us-
ing Python’s Mammoth2 library. Sentence segmentation is
done using the Python Natural Language Toolkit (Bird et
al., 2009). Each sentence is then parsed using the ERG. This
process uses PyDelphin3 which presents an easy-to-use API
for, among other things, the efficient parser ACE.4 The cur-
rent design of the system uses two parsers in parallel: one
uses the standard ERG grammar which is designed to parse
only sentences considered ‘proper’ English; the other uses
a version of the ERG enhanced with mal-rules which is ca-
pable of parsing many kinds of ungrammatical sentences.
For each sentence, the system first uses the standard ERG
parser to try to produce an analysis. If this succeeds, then
the sentence is considered grammatical. When the stan-
dard ERG parser fails, the ERG enhanced with mal-rules
is used. If this second step is able to extract an analysis for
the sentence, this means that we can determine which mal-
rules were used to parse that sentence, and find out what

1https://creativecommons.org/public-domain/cc0/
2https://pypi.org/project/mammoth/
3https://github.com/delph-in/pydelphin
4http://moin.delph-in.net/AceTop
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was wrong with it. In the case more than one mal-rule was
necessary to parse the sentence, the system interprets it as
multiple errors in the same sentence (the discussion of (1),
above, provides an example of this).
For the time being, our system uses only the top parse pro-
duced by mal-rules – while, in fact, multiple parses with dif-
ferent combinations of mal-rules are often available. This
means that from the multiple available ways of correcting
an ungrammatical sentence, we are only using the one the
system considers most probable. We believe that, for our
pedagogical use, this was useful enough. Students are the
ones ultimately responsible for exploring and choosing the
best way to address the problem. Even if the suggested cor-
rection does not carry the desired meaning, the system is
still useful since it flags a likely problematic sentence that
needs to be reviewed.
For some sentences neither of the two parsers is able to
parse it, meaning that the sentence is likely ungrammati-
cal but that there are no mal-rules specifically available to
detect the errors the sentence contains. More rarely, it is a
grammatical sentence but the ERG cannot parse it. Our sys-
tem interprets this case as a generic unspecified error. This
generic error might sometimes be useful, if the error was
due to a typographical error, or if the student is able to de-
termine what it wrong with it on their own. Our main goal,
however, is to cluster these generic errors into meaningful
categories and develop more mal-rules that are able to iden-
tify these classes of errors currently beyond the reach of our
system.
After going through the parsing steps, all sentences also
go through a collection of other checks written in Python.
These include, for example, checking the sentence length,
repeated words, and proper capitalization of words. Each of
these checks is able to add to the number of problems iden-
tified in a given sentence, making it not at all unusual for a
sentence to have more than one problem associated with it.
In total, the system performs around 70 checks, using a mix
of mal-rules and stylistic checks written in Python.
However, the process of checking errors for each sentence
can be quite resource hungry, especially due to the pars-
ing step. Each parser uses up to 2Gb of RAM memory
per sentence (depending on sentence length and ambiguity).
Because of this, and in order to allow multiple concurrent
users, the system is currently designed to parse sentences
in a serial fashion. This, of course, means that the students
have to wait a couple of minutes before receiving feedback
on their assignment. This design choice could easily be
changed at a later stage, if the system were to be deployed
in a large scalable server.

5.3. Feedback
Each check our system performs is tied to a feedback mes-
sage, designed by our team of English Scientific Writing tu-
tors. The feedback was written to help students understand
the problem and to guide them through possible ways they
can resolve it. Here are some examples of these feedback
messages:

• This sentence may have a verb which does not agree in per-
son (e.g. ‘I’, ‘you’, ‘s/he’) and number (singular/plural) with

its subject: {{placeholder}}. Please check the sentence and
ensure that the verb agrees with its subject.

• You may be using ’a’ (an indefinite article) before some-
thing that cannot be counted and does not have a plural form
(an uncountable noun such as ‘research’): {{placeholder}}.
Please check your sentence for uncountable nouns and re-
move any ’a’ that comes before them.

• This sentence may contain subjective or informal words or
expressions: {{placeholder}}. You may want to replace these
words and expressions with more formal and objective alter-
natives.

• This sentence is much longer than the average sentence. It
may be difficult for readers to read the sentence and under-
stand it after reading it once. There is also a higher risk of
making grammar mistakes in such a long sentence. You may
want to consider breaking up the sentence to make it easier
for the reader to follow the text.

• You have used ‘there’ in this sentence. Please check if it
should be ‘their’ instead and make the change if necessary.

The feedback messages often include a placeholder that
points the students to the word or words in the vicinity of
the errors detected. These messages are also explicitly non-
committal, as there might be multiple ways to correct an
ungrammatical sentence, and because the system’s perfor-
mance is not perfect. As was mentioned above, we believe
that many of these potential problems require the judgment
of students as to whether they need to be addressed or not.
A good example for this is a sentence flagged to be ‘overly
long’. Such sentences should, in principle, be checked (and
possibly rewritten) but since the check is merely making a
decision based on the number of words in the sentence, this
may not be a serious problem for some sentences.
Finally, Figure 1 shows the end result produced by the sys-
tem. The student’s submitted document is converted to
HTML (preserving images and most of the original styling
of the document), and sentences that were considered prob-
lematic are highlighted in either red or yellow. These two
colors are used to mark different levels of confidence and
severity of the identified problems. For example, using
overly casual or overly formal words or expressions triggers
a yellow warning (since this is mostly a question of style
and, in most contexts, not a very serious problem). In con-
trast, the lack of agreement between subject and predicate
triggers a red level warning – most definitely requiring the
student to change the sentence in some way.

5.4. Automatically tagged corpus
A useful side-product of this system is an automatically-
tagged learner corpus, produced from users’ submissions.
As mentioned in Section 5.1, each user is invited to release
their submissions under a public domain license. From our
experience, between 40% and 50% of our students choose
to release their assignments – which are then automatically
tagged and stored by our system. And while we understand
that this learner corpus is biased by the ability of our sys-
tem to detect only certain classes of errors, we believe this
will be a useful dataset for the research community. We are
currently in the process of anonymizing these assignments,
and plan to release an automatically tagged learner corpus
from this data.
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Figure 1: Online Error Detection System - Feedback Example

Rank Label Freq.
1 No Parse (unspecified problem) 14,834
2 Use of instructions/commands 4,032
3 Overly long sentences 3,727
4 Singular nouns without specifiers (e.g. article or determiner) 3,443
5 Use of first or second person singular pronouns 2,485
6 Repeated words 1,238
7 Use of informal words or expressions 942
8 Use of verbs that do not agree with their subjects 909
9 Use of questions 894

10 Use of contractions 372
11 Omission of the definite article ‘the’ 169
12 Use of indefinite articles with uncountable nouns 150
13 Use of comma splicing 126
14 Incorrect use of the verb form ‘are’ 126
15 Missing, inappropriate or unnecessary modal 125
16 Use of singular nouns with plural determiners 118
17 Incorrect use of the verb form ‘is’ 71
18 Use of plural with mass nouns 61
19 Use of formal or archaic words or expressions 39
20 Use of the wrong form of the indefinite article ‘a/an’ 29

Table 1: Frequency of the top 20 classes of errors detected by the system

6. System Evaluation
The main goal of the system is to improve student writing.
We therefore tested it with a cohort of students attending a
course entitled Engineering Communication I, taught at our
university.
Since this system was not designed to compete with gen-
eralized GEC and GED systems, we decided it was not our
first priority to test its performance on the publicly available
datasets shared-tasks often use. In addition, (Flickinger and
Yu, 2013) have shown that at least some of these datasets
are biased towards certain classes of errors statistical sys-
tems are able to catch, and precision parsers such as the ERG
are able to find many instances of errors not included in the
original test-sets.
Our experiment was set up to measure if the system could

produce a positive impact on students’ language use. One
of the written assignments for this course invites students
to write a technical proposal that describes an engineering
solution to a real life problem, using a fixed document struc-
ture consisting of: background, problem, solution, benefits,
implementation, budget and conclusion. The assignment
was written in pairs, and had a limit of 800 words.
Students had a previously established deadline for submit-
ting this assignment and, until the date of submission, were
unaware of the existence of this system. After turning in
their assignments, the full cohort of 1,855 students received
an email informing them of the existence of a new system
designed to give them feedback on probable grammatical
and stylistic problems in their writing. Students were given
one extra week to use this system and edit their assignments.
There was no limit to the number of times an assignment
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could be uploaded, and students were encouraged to use the
system as much as they wanted, with the goal of improving
their assignments.
A second deadline was set up for exactly one week after
the first deadline, and even though using the system was op-
tional, all assignments needed to be turned in a second time.
This was done to encourage (though not force) the use of
the system. At the end of this extra week, the system had
received 2,581 submissions, from 798 pairs (i.e. roughly
86% participation). In this experiment, about 55% of the
submissions agreed to release their assignment for future
research.
In total, the system identified 34,141 problems spread
through all 2,581 submissions. Table 1 shows the top 20
classes of errors detected by the system, with their respec-
tive frequencies. It is, nevertheless, important to note that
the distribution was somewhat asymmetrical – both con-
cerning the number of submissions per pair, and the number
of errors detected in each assignment. Some pairs submitted
the same assignment as many as 36 times while the average
number of submissions was between 3 and 4. Also, even
though the average number of problems found in each as-
signment was just over 13, some submissions had over 100
problems identified. This asymmetry reflects a fairly mixed
sample of students enrolled in this course – many of them
with native or near-native levels of English proficiency, and
the rest distributed along lower levels of proficiency.
It is also important to note that Table 1 shows the sum fre-
quencies for all submissions, which may include some rep-
etition given that assignments could be submitted multiple
times. We made this decision for a simple reason: as stu-
dents were encouraged to correct their mistakes between
submissions, different submissions of the same assignment
were expected to include different errors. These might in-
clude failed attempts to correct a specific error, or new er-
rors introduced by solving certain problems relating to style
(e.g. long sentences, pronoun usage, etc.). The main goal of
Table 1 is to provide a broad comparison between different
classes of errors. The question concerning the best practices
when converting our data into a Learner Corpus (mentioned
in Section 5.4) is still under consideration.
Another aspect that needs to be addressed is the frequency
of the error class “No Parse (unspecified problem)” – as it
was, by far, the most frequent error label reported by our
system. After conducting a focused error analysis on this
label, we found that around 62% of these errors were false
positives. The first version of the our system (used in this ex-
periment) was unable to detect the document structure. As
such, the system was used in portions of the document that
it should have ignored: e.g., references, mid-sentence cita-
tions, section headings, legends (etc.). As the development
of the system continues, this will soon stop being a problem
as we are now working to properly ignore these structures.
Students were made aware of this problem, and were told
to ignore such errors when it happened in structures that
should not be considered full sentences. The remainder of
this category (≈38%) were errors our system was not yet
able to detect. As this first version of our system focused
only on errors known to be frequent among our students,
we were not expecting to be able to correctly diagnose all

errors. As we keep improving the system, this error label
will slowly decrease. Concerning the decision to highlight
this error to students, we believe that even though it might
not be very informative, it can still be helpful to students
who can identify and correct the error by themselves. In
case students are not able to figure out how to solve these
undiagnosed problems on their own, they can ask for the
help of a peer or a tutor.

6.1. Classroom Evaluation
In order to determine if the system had a positive impact on
student language use, we carried out a paired-blind review
of pre- and post-system submissions. We randomly chose
108 assignments from the pool of those where (i) the stu-
dents used the system and (ii) there were at least six fewer
errors in the final submission compared to the original sub-
mission. This allowed us to examine submissions where the
students had taken advantage of the system.
A group of four experienced tutors evaluated both pre- and
post-system submissions of these 108 assignments. Three
assignments were unanimously removed from this sample,
because the contents of the assignments differed too much,
and were not deemed comparable – all other 105 assign-
ments were deemed comparable, differing only in style or
sentence structure, but not in content. Each of the remain-
ing 105 assignments were given to two different tutors for
comparison. Each assignment had two unidentified ver-
sions – an original version (i.e., the first submission to the
system), and a post-system version of the same assignment
(i.e., the last submission to the system). As grading was too
subjective, tutors were asked, whenever possible, to choose
the best document, without knowing which document cor-
responded to which version. If choosing the best docu-
ment was not possible (i.e. both documents showed similar
amount of problems), this meant that using the system had
no measurable impact on the student’s writing. When the
post-system version of the document was selected, this was
interpreted as a positive impact on the student’s writing. Fi-
nally, the system was deemed to have a negative impact on
the student’s writing whenever the original document was
selected instead.
This experiment determined that using this system had pos-
itive impact on students’ language about 84% of the time
(the system showed negative results in less than 2% of cases,
and had no perceived impact about 14% of the time). These
numbers are promising, especially considering that the sys-
tem is still in an early proof-of-concept stage, and that much
can still be done to improve its performance.
However, we would like to make some notes on the way
our results can be interpreted. One could argue that just
by extending the deadline for a week would grant students
the ability to improve their assignments – whether the sys-
tem existed or not – and that’s not false. All students had
the opportunity to revise their assignments, and all students
had to turn-in their assignments a second time. However, as
mentioned above, our evaluation selected only assignments
from students who actively engaged the system during this
extra week. This was done by a quantifiable decrease in de-
tected errors between the first and the last submission to the
system. Because of this, we feel confident that the improve-
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ment on the quality of writing was at least in part due to the
use of our system.
Another important point to take into consideration is that
we do not claim our system will have a positive impact on
84% of all of its users. We are aware that our experiment
selected a subset between the cases where improvement was
possible (i.e., errors were detected by the system) and action
was taken (i.e., these errors were addressed by the students).
The numbers we report are, therefore, measuring only the
possible impact that our system can have in the right context.
As a pedagogical tool, it is expected that this system will be
more useful to struggling students – and this is what our
results seem to corroborate.
In addition to the quatitative results, a small survey included
as part of the end of the course survey revealed that the
majority of students were not only very aware of the ben-
efits that the system provided (see Fig. 2), but that students
were also interested in using this system in other courses
and assignments (see Fig. 3). In summary, this shows that
the system was well received by the students, in addition to
improving their language use. This survey also contained
a few other open ended questions concerning possible im-
provements to the system and a free comments section that
have not yet been analysed with methodological detail.

16.95%43.64%

22.88% 6.78%
3.39%

6.36%

strongly agree (16.95%)
agree (43.64%)
neither (22.88%)
disagree (6.78%)
strongly disagree (3.39%)
did not use (6.36%)

Figure 2: ‘I found the online error detection tool
useful.’ (n=236)

25%

44.92%

22.46%

5.08%
2.54%

strongly agree (25%)
agree (44.92%)
neither (22.46%)
disagree (5.08%)
strongly disagree (2.54%)

Figure 3: ‘I would like to use the online error
detection tool for other courses and

assignments.’ (n=236)

7. Discussion and Future Work
This paper describes the release of a system that bridges
English Grammatical Error Detection (GED) and course-
specific stylistic guidelines to automatically review and pro-

vide feedback on student assignments. This system is part
of a larger ongoing project that is exploring how computa-
tional parsers and mal-rules can be used in various pedagog-
ical settings. Even though this system is still very much in
development, it has already been tested in a classroom set-
ting, and proven to be useful in assisting students to improve
their Scientific Writing.

The next stages of development for this system include
adding support for other input formats, namely LATEX –
which is widely used in Academic Writing, specially in the
fields of engineering. There are multiple tools available for
extracting text from LATEX, and this addition would make
our system more valuable outside the classroom.

Another area that we would like to dedicate some effort to
is in the improvement of how we deal with the overall doc-
ument structure. Academic writing has some elements that
are distinct from other genres of writing (e.g. section head-
ers, mathematical expressions, citations, captions and refer-
ences). In order to provide the best possible feedback, it is
important to identify these different elements. It is not ap-
propriate, for example, to perform grammatical checks on
bibliographic references (although our prototype did). For
this reason, we would like to dedicate some time to improv-
ing this aspect of the system – providing only feedback that
is relevant to specific elements, and ignoring elements that
are outside the scope of our system.

Following the discussion introduced in Section 2, in paral-
lel with the development of more mal-rules to increase the
type of errors our system can detect, we would also like to
take more advantage of the ambiguity generated from mal-
rules to offer multiple options to correct the same sentence.
As mentioned above, it is often the case that multiple recon-
structed parses are available when we parse an ungrammat-
ical sentence. Thus far, we have chosen one of the avail-
able parses to be the source of the feedback (i.e. assuming
this parse was the intended meaning of the sentence). How-
ever, this is not strictly necessary. We would like to ex-
plore the ability to provide different sets of feedback for the
same sentence, allowing the users to see more than one way
of correcting the same problematic sentence. Towards this
end, we have started to build a treebank with the mal-rule
enhanced grammar, and will soon be able to train a parse
ranking model using mal-rules, and rank multiple possible
corrections of the same sentence in order of likelihood.

Finally, we are currently performing a detailed analysis of
the appropriateness of each error check and feedback mes-
sage elicited by it. Despite the fact that students showed
interest in using this system outside of class, many students
voiced their concerns about the clarity of the feedback mes-
sages. We are aware that some feedback messages currently
use linguistic terminology that might not be clear to every
student (especially when their native language is not En-
glish). Because of this, we would like to keep improving
the feedback provided by our system so that it is more ac-
cessible to all students.
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Release Notes
The first version of this system has been released on
GitHub5 under the MIT license.6 The automatically col-
lected corpus will also be released under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0).7
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