
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 3710–3718
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

3710

An Analysis of Massively Multilingual Neural Machine Translation for
Low-Resource Languages

Aaron Mueller, Garrett Nicolai, Arya D. McCarthy, Dylan Lewis, Winston Wu,
and David Yarowsky

Center for Language and Speech Processing
Johns Hopkins University

(amueller, gnicola2, arya, dlewis77, wswu, yarowsky)@jhu.edu

Abstract
In this work, we explore massively multilingual low-resource neural machine translation. Using translations of the Bible (which have
parallel structure across languages), we train models with up to 1,107 source languages. We create various multilingual corpora,
varying the number and relatedness of source languages. Using these, we investigate the best ways to use this many-way aligned
resource for multilingual machine translation. Our experiments employ a grammatically and phylogenetically diverse set of source
languages during testing for more representative evaluations. We find that best practices in this domain are highly language-specific:
adding more languages to a training set is often better, but too many harms performance—the best number depends on the source
language. Furthermore, training on related languages can improve or degrade performance, depending on the language. As there is no
one-size-fits-most answer, we find that it is critical to tailor one’s approach to the source language and its typology.
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1. Introduction
Recently, machine translation (MT) has made significant
progress in many language pairs by employing recurrent
sequence-to-sequence neural networks (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014) in combination with
attention (Bahdanau et al., 2015; Luong et al., 2015); even
better performance has been achieved using self-attention
(Vaswani et al., 2017). The neural approach has been effec-
tive because of the high fluency and adequacy of its output,
as well as its language-agnostic methods. Indeed, given
enough data, one need not know any linguistic features of
one’s source and target languages to effectively translate.1

With the success of multilingual training (Johnson et al.,
2017; Aharoni et al., 2019), the trend seems clear: more
data generally results in better models for neural machine
translation, regardless of the languages (or combinations
thereof) used.
These results, however, have primarily been found for lan-
guages possessing large amounts of aligned data, and few
such languages exist among the world’s 7,000+ languages
(Lewis et al., 2015). While high neural machine transla-
tion performance has been observed in some bilingual low-
resource2 contexts (Sennrich and Zhang, 2019), we have
access to a multi-way aligned corpus of Bibles that allow
us to perform a more in-depth analysis of the performance
of multilingual low-resource NMT. This parallel corpus of
Bible texts (McCarthy et al., 2020) contains a set of “mono-

1This is not to say that we no longer need linguistics; there
are many cases in which knowing properties of one’s evaluation
language(s) can help one translate better (e.g., when working with
morphologically complex languages). This statement simply im-
plies that knowing properties of one’s specific language pair is no
longer necessary to achieve high performance, as it would be with
rule-based and sometimes statistical methods.

2Sennrich and Zhang (2019) achieved higher scores with an
NMT system than a phrase-based system on a training corpus con-
taining only 100,000 tokens. This is comparable in size to the New
Testament of the Bible, the most frequently translated section.
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Figure 1: Our process for constructing training sets from
a multi-parallel corpus. We select some n − 1 languages
that share either phylogeny or script or randomly sample
n− 1 languages to augment the source–target pair. Using a
multi-parallel corpus controls for variations in data quality
or domain; this lets us more cleanly assess our scientific
questions, but it is not an engineering requirement for MT
systems that use several helper languages. More details on
sampling are given in Figure 2.

lingual” Bibles in 1,108 languages, all aligned by verse.
In this paper, we leverage the massively multilingual multi-
way verse-aligned Bible corpus to investigate two ques-
tions:

1. Does the performance of multilingual neural machine
translation in low-resource settings scale with the
number of languages in the training corpus? Relat-
edly, when do we start to see diminishing returns or
decreased performance, if ever?

2. Does the similarity of the languages in the multilin-
gual training corpora matter, or does performance sim-
ply scale with the amount of data present?

We present the construction of 18 multilingual parallel cor-
pora to evaluate various low-resource multilingual settings
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in neural machine translation. We translate from Arabic,
German, Tagalog, Turkish, and Xhosa into English, using
up to 1,106 helper languages. We also present the results
of training translation models on these corpora using estab-
lished low-resource hyperparameters, finding that the best
approach depends to a large extent on the language pair.
We hope that these results will help elucidate best practices
for leveraging massively multilingual low-resource parallel
datasets in future MT work.

2. Related Work
Neural machine translation (NMT) (Kalchbrenner and
Blunsom, 2013) has become the state-of-the-art approach
to MT in recent years, employing new innovations in ma-
chine learning to achieve high performance in many lan-
guage pairs. This approach was first shown to be effective
with respect to the previously state-of-the-art phrase-based
statistical approach (Koehn et al., 2003) in Sutskever et al.
(2014) and Bahdanau et al. (2015). Its success was due
to the combination of the sequence-to-sequence neural net-
work, the use of the LSTM (Hochreiter and Schmidhuber,
1997), and the introduction and refinement of the attention
mechanism (Luong et al., 2015).
Although the main focus of investigation and improvement
in NMT has been high-resource settings with millions of
sentences, NMT has made great strides in low-resource
settings as well. Initially considered ineffective without
very large parallel corpora (Koehn and Knowles, 2017;
Lample et al., 2018), NMT has achieved performance ex-
ceeding phrase-based MT in such settings by exploiting
the same neural architectures as high-resource systems—
primarily LSTMs (Hochreiter and Schmidhuber, 1997) and
Transformers (Vaswani et al., 2017)—and by performing
fine-grained hyperparameter tuning (Sennrich and Zhang,
2019). Another proposed strategy in for low-resource NMT
is learning a latent variable NMT model with variational in-
ference (McCarthy et al., 2019), though this has not been
tried in a low-resource setting similar to ours. Unsuper-
vised NMT (Artetxe et al., 2018) was suggested as a so-
lution to the scarcity of parallel data for many languages,
though this was found to be generally ineffective for low-
resource and morphologically rich languages (Guzmán et
al., 2019). Unsupervised phrase-based and neural models
have also been proposed (Lample et al., 2018) and are rea-
sonably effective when parallel data does not exist, though
this is perhaps unrealistic given that the Bible exists in over
1,000 languages. Consequently, we aim to translate in a
more supervised fashion.
One surprisingly effective approach in high-resource set-
tings has been to train translation models on multiple lan-
guage pairs at once (Johnson et al., 2017). This is done
by concatenating the bitexts for multiple language pairs to-
gether into one large parallel corpus. Such approaches have
enabled zero-shot translation into low- and no-resource lan-
guages, though the performance is understandably quite
variable depending on the languages involved. Aharoni
et al. (2019) have experimented with adding increasingly
large numbers of languages to the multilingual parallel cor-
pus, up 103 languages. These approaches have used ex-
clusively high-resource or a mix of high-resource and low-

resource languages. By comparison, we do not include aux-
iliary data to perform a controlled study in a limited setting;
we just use the Bible, which is the same size and domain
across all of our experiments. Of note, Arivazhagan et al.
(2019) point to the difficulty of balancing data, which is
less of an issue in our multi-parallel low-resource setting.
Recent studies have investigated transfer learning in the
low-resource multilingual setting using multiple unrelated
languages (Gu et al., 2018; Zoph et al., 2016), and some
have done the similar work using multiple related lan-
guages (Nguyen and Chiang, 2017). These approaches em-
ployed a small number of helper languages during train-
ing, but no more than 5 to 10 at once. Prior work suggests
that this could either result in transfer learning across lan-
guages, leading to increased performance (as in the above-
cited works), or perhaps it could result in a bottleneck
where there are too few parameters for too many languages
(Sachan and Neubig, 2018; Wang et al., 2018). These lat-
ter works suggest that using more closely related languages
will reduce the bottleneck effect and increase BLEU com-
pared to using more unrelated languages. We aim to inves-
tigate this effect for our particular context in a more large-
scale manner; we perform multilingual NMT by concate-
nating many low-resource corpora derived from the Bible,
up to over 1,000 languages.

3. Data Preparation
The monolingual Bibles used in this study are from the
Bible corpus of McCarthy et al. (2020), which contains
over 4,000 translations (of varying lengths) in over 1,000
languages. This corpus is an aggregation of prior Bible
corpora (Mayer and Cysouw, 2014; Asgari and Schütze,
2017; Black, 2019) and web-scraped Bible data, all post-
processed to be in the same format. Namely, these mono-
lingual corpora are all verse-aligned,3 normalized to Uni-
code NFKC, modified such that archaic English forms are
replaced with their contemporary equivalents (e.g., “thou”
is changed to “you”, and “-est” and “-eth” verb inflections
are replaced with their modern “-es” or “-s” forms), tok-
enized,4 and deduplicated. The Old Testament (OT) con-
tains approximately 31,000 verses, and the New Testament
(NT) contains approximately 8,000 verses. Some transla-
tions have the entire OT and NT, while others might have
all of one or fragments of either.

3.1. Multilingual Many-Way Bible Corpora
We selectively concatenate subsets of the aforementioned
set of 1,100+ monolingual verse-aligned corpora to form
multilingual parallel corpora. These are aligned in such
a way that one verse appears per line. We wish to
evaluate whether adding more languages to the train-
ing/development sets results in monotonic performance in-
creases, as well as whether using similar source languages

3A specific line number represents the same verse across all
Bible translations for any given language. When a verse is absent
from a particular translation, the line is blank.

4All Bibles from Mayer and Cysouw (2014) were already tok-
enized except Chinese, which we segment into individual charac-
ters. All other Bibles are tokenized using spaCy
(https://spacy.io/).

https://spacy.io/
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Figure 2: Visualization of the process of creating the 50-
language multilingual corpus. Dotted lines connect paral-
lel corpora. We use the list of languages (top-left) to de-
termine which languages to add. For each specified lan-
guage, we iterate over the verse-aligned Language and
English corpora in parallel. If neither line is blank, we add
to Languages 11-50 and its respective English corpus.
Once the loop is complete, we concatenate Languages
1-10 to Languages 11-50; we also concatenate their re-
spective English corpora. This makes the Languages
1-10 corpus a subset of Languages 1-50.

is better than using unrelated source languages. Thus, we
create a series of training datasets of varying sizes and lin-
guistic compositions.
Our evaluation source languages of focus are Arabic (arb),
German (deu), Xhosa (xho), Tagalog (tgl), and Turkish
(tur). These were chosen to represent a variety of mor-
phological complexities, syntaxes, and genealogical ori-
gins. Each of these languages has at least one Bible trans-
lation containing the Old and New Testaments; we select
the translation with the most verses. We begin by creat-
ing bitexts for each of these languages, wherein the source
language is one of the above-listed evaluation languages
and the target language is always English. These are the
datasets on which we will train our bilingual baselines. We
then create a 5-language parallel corpus by concatenating
each of these bitexts.
To create the 10-, 50-, 100-, 500-, and 1000+-language
parallel corpora, we begin by randomly shuffling the re-
maining languages in the monolingual Bible datasets. We
want each of the smaller corpora to be subsets of the
larger corpora such that we are essentially comparing ex-
panded versions of the same corpus. To ensure that the
smaller corpora are a subset of the larger corpora, we sam-
ple (sizen − sizen−1) languages from the shuffled set of
Bible languages, where sizen is the intended number of lan-
guages in the multilingual corpus and sizen−1 is the num-
ber of languages included in the next-largest corpus. (This
amounts to sampling languages uniformly without replace-

No. Languages Verses Tokens

5 0.152 M 4.209 M
10 0.190 M 5.705 M
50 0.537 M 21.107 M

100 0.974 M 41.792 M
500 4.891 M 249.252 M
All 10.407 M 561.938 M

Table 1: The number of verses and tokens (in millions) for
the source side of all multilingual corpora. For compari-
son, the number of verses in the German bilingual corpus
is 0.031M, and the number of tokens in the source side is
0.831M. Note that the increase in size from 5 to 10 lan-
guages is not quite double because of the relatively small
size of the monolingual corpora for languages 6–10; 4 of
these languages have only the New Testament or Old Tes-
tament, but not both.

ment.) Because we often have multiple Bible versions per
language, we select the Bible version for which we have
the most verses. These Bibles are then extracted in paral-
lel with English using the same method as the bitexts and
5-language Bible sets. Finally, the sizen−1 corpus and the
new (sizen−sizen−1)-language corpus are concatenated to
yield the final sizen corpus. See Figure 2 for a visual rep-
resentation of this process. Table 1 gives the size (in verses
and tokens) of all multilingual corpora.

3.2. Similar-Language and Similar-Script
Multilingual Corpora

To evaluate whether low-resource multilingual models ben-
efit from training on similar languages (as opposed to un-
related languages), we create a separate parallel corpus for
each of our evaluation languages. Each corpus contains 5
languages total: the evaluation language and 4 typologi-
cally and grammatically similar languages to the evaluation
language. These are created for comparison with the 5-
language corpus consisting of just the evaluation languages
(i.e., the 5-language multilingual corpus from §3.1). For
German, Xhosa, and Tagalog, we expect there to exist some
subword vocabulary overlaps in their respective similar lan-
guages. See Table 2 for the list of languages included in
their similar-language corpora.
Turkish and Arabic, however, are written in different scripts
than most languages that are typologically similar to them,
so we do not see much subword overlap between similar
languages. Thus, we create two similar corpora each for
Arabic and Turkish: one containing 4 other languages that
are typologically and grammatically similar to the evalua-
tion language (a similar-language corpus, as above), and
one containing 4 other languages written in the same script
as the evaluation language (a similar-script corpus). For the
latter, we aim to include languages which are still typologi-
cally close to the evaluation language given the same-script
constraint, though this is not always possible. See Table 2
for the list of languages included in Arabic’s and Turkish’s
similar-language and similar-script corpora.
In total, we have 5 bilingual baseline corpora, 6 multi-
lingual corpora of varying sizes featuring not-necessarily-
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Language Similar Languages Similar Scripts

Arabic Hebrew, Syriac,
Amharic, Maltese

Azeri, Urdu, Farsi,
Uyghur

German Swedish, Danish,
Dutch, Icelandic

Tagalog Javanese,
Indonesian,
Cebuano, Ilocano

Turkish Azeri, Gagauz,
Uyghur, Kazakh

Zapotec, German,
Hungarian, Spanish

Xhosa Zulu, Swahili,
North Ndebele,
Kinyarwanda

Table 2: The languages included in the similar-language
and similar-script corpora for each evaluation language.

related languages (from §3.1), 5 similar-language corpora,
and 2 similar-script corpora. This yields 18 distinct corpora
for training and thus 18 distinct neural translation models
for comparison.
We wish to evaluate how the models generalize at test time
to text from an unseen context in the same general domain
as the training data; thus, rather than shuffle the corpus and
randomly sample, we use a temporal train/development/test
split. For each of our aforementioned corpora—bilingual
and multilingual—we use all of the available Bible data ex-
cept for the Book of Revelations for the training set. The
first 100 lines of Revelations are the development set; for
any given multilingual corpus, the development set includes
all languages in its associated training set. The test sets
are all bilingual; we simply create separate bitexts using
the remaining lines from Revelations for each evaluation
language, where the source language is the evaluation lan-
guage and the target language is English.

4. Experiments

This study aims to discover the relationship between the
number of languages in a multilingual dataset and the per-
formance of NMT into English in a low-resource setting.
We observe whether the performance increase is mono-
tonic with respect to the number of languages, as well as
at what point we begin to see diminishing returns. To do
so, we compare the performance of neural models trained
on our various multilingual corpora when translating from
our evaluation languages to English. This is essentially the
same as the many-to-one approach of Johnson et al. (2017).
All corpora have their tokens split into subwords using BPE
(Sennrich et al., 2016). This is run jointly on all languages
in the dataset, so each multilingual corpus will have dif-
ferent subword splits. We use 32,000 merge operations for
all corpora despite their varying sizes; this results in more
aggressive word splitting for larger corpora.
We use fairseq (Ott et al., 2019) to run both training and
inference. Separate Transformer-based models are trained
for each of our multilingual corpora using the low-resource

No. Languages arb deu tgl tur xho

Bilingual 9.5 14.6 15.4 7.1 7.8
5 10.6 13.4 13.9 8.3 10.4

10 10.1 13.5 12.9 8.8 9.4
50 1.8 2.0 1.6 1.2 2.1

100 0.5 0.5 0.7 0.4 0.4
500 0.6 0.5 0.6 0.4 0.4
All 0.5 0.4 0.6 0.3 0.4

Table 3: BLEU scores for all n-language multilingual cor-
pora, where n refers to the number of languages in the
source side of a given corpus. “All” contains 1107 lan-
guages (everything except English). The BLEU scores for
the bilingual and 5-language corpora are similar to those in
(Sennrich and Zhang, 2019), but because we use a different
dataset and training setup, these are not directly compara-
ble.

hyperparameters from Sennrich and Zhang (2019).5 Train-
ing is performed for a maximum of 100 epochs with early
stopping after 10 epochs with no improvement in validation
loss. All models were trained on one GTX 1080Ti each.
The bilingual models converged in approximately one day,
the 5-language and 10-language models in 1–2 days, the
50-language model in 4 days, and the 500-language and
1,107-language models required over a week. Inference is
performed using a beam size of 5.
We also investigate whether the improved performance
of NMT in multilingual settings is due to the similarity
of the languages in the multilingual training set, or sim-
ply because the model observes more data during train-
ing.6 We do so by comparing the performance of MT sys-
tems trained on the 5-language multilingual corpus and the
similar-language and similar-script corpora for each evalu-
ation language (all containing 5 source languages for com-
parability). These corpora and models are preprocessed and
trained, respectively, according to the same procedure as in
the previous experiment.

5. Results
Table 3 contains BLEU scores for the translation task for
all models trained on varying numbers of source languages.
All scores are for translations from the given evaluation lan-
guage into English. We score on detokenized output trans-
lations using SacreBLEU (Post, 2018).
We first note that the BLEU increase/decrease with respect
to the number of training languages is not uniform across
evaluation languages. Indeed, for the 5-language model, we
see notable gains over bilingual models for Arabic, Turkish,

51-layer encoder, 1-layer decoder, hidden size 1024, embed-
ding size 512, tied decoder embeddings, hidden and embedding
dropout 0.5, source and target word dropout 0.3, label smoothing
0.2, batch size 1000, initial learning rate 0.0005, Adam optimizer.

6More data in general may help for a variety of reasons that are
not well understood, especially in low-resource settings. Potential
causes include that more data may improve the target-language
language model, reduce the extent of overparameterization in low-
resouce settings, help the model understand language in general
instead of one specific language, among others.
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Similarity arb deu tgl tur xho

Unrelated 10.6 13.4 13.9 8.3 10.4
Similar Language 7.4 17.1 15.7 6.0 10.9

Similar Script 9.3 - - 8.0 -

Table 4: BLEU scores for all similar-language and similar-
script corpora. “Unrelated” refers to the 5-language multi-
lingual corpus of Table 3.

and Xhosa, but we also observe decreases for German and
Tagalog. The gains for Arabic are surprising, as no other
language in the 5-language corpus uses the same script—
hence, we expect no shared vocabulary cross-lingually. In-
versely, the decreased performance for German is surpris-
ing, given that three other languages use the same script and
should thus have some shared subword vocabulary.
The trends are further muddled when observing the per-
formance of the 10-language model, for Turkish sees im-
proved performance while Arabic, Tagalog, and Xhosa see
decreased performance. German has relatively unchanged
performance compared to the 5-language model. So far,
all we may say is that the performance when adding more
languages is language-specific.
Performance in general drops quickly once we reach 50
languages, however, and all multilingual models trained
on larger and larger multilingual corpora from this point
achieve lower and lower scores. The potential reasons for
this are many: interference across languages, underparame-
terized models, the evaluation languages forming too small
a fraction of the overall corpus, among others.7 The similar-
language multilingual models should allow us to partially
investigate the first possibility.
Table 4 contains BLEU scores for models trained on the
similar-language and similar-script corpora. As expected,
for languages whose similar languages do not share a script
(i.e., Arabic and Turkish), we see that training on multi-
lingual corpora consisting of languages sharing the same
script is more effective than training on corpora consisting
of languages sharing similar linguistic properties. How-
ever, for both of these languages, we see even better perfor-
mance by simply training on a set of unrelated languages.
For German and Tagalog, however, we see notable gains
when training on similar languages than on unrelated lan-
guages. These models outperform the bilingual models
from Table 3 as well (and recall that the bilingual models
outperformed the 5-language models for German and Taga-
log therein). The similar-language Xhosa model obtains
more modest gains over the unrelated-language model, es-
pecially considering the extent of the BLEU gains on Ger-
man and Tagalog. Once again, it seems that the effec-
tiveness of any particular multilingual approach is highly
language-dependent.

6. Qualitative Analysis
Metrics do not fully encapsulate translation performance.
They may not capture critical phenomena, and may not

7We go into further detail on these possibilities and suggest
improvements for future work in §7.

align with human judgments (Wang et al., 2019). Further,
they do not give a clear understanding of patterns of errors.
Thus, this section focuses on the analysis of system out-
puts.8 We provide examples of translations from the mul-
tilingual experiments and the similar-language and similar-
script experiments in Table 5.
First, we note that fluency is strongly preferred over ad-
equacy, especially for the models that do not degenerate.
That is, taking the perspective of the decoder as a condi-
tional language model, in some settings we have developed
strong English language models which largely ignore their
source text. This effect is clearer for smaller corpora than
larger ones, where translations seem to be more semanti-
cally similar to their respective references. There seems
to exist a negative correlation between the number of lan-
guages in a multilingual corpus and the translation fluency
starting at 10 languages, and this effect becomes quite obvi-
ous starting at 50 languages. At 100 languages or more, we
reach a maximal point of degeneration, where translations
no longer change significantly as we add more languages.
However, this effect only seems to apply in certain cases:
the 100-language output of the second Tagalog example in
Table 5 seems fluent, but is nonetheless semantically distant
from the reference.
Using similar languages rather than random languages
seems to help most source languages, but not Arabic or
Turkish. Thus, we investigate how these translations differ
for the latter language. In Table 5, we see that the similar-
language model uses very simple and repetitive sentence
structures, and that these sentences are not very fluent or ad-
equate. The similar-script model exhibits more subtle rep-
etition, and it seems slightly more adequate. Nonetheless,
using unrelated languages leads to the best performance:
while the last two sentences are repeated, we have the great-
est n-gram overlap with the reference and the greatest flu-
ency (despite that the second clause of the first sentence
has no verb). These trends are representative of what was
found when investigating the output translations for Turk-
ish: using similar languages greatly harms performance,
while using similar scripts worsens performance in more
subtle ways. Note, however, that we see the opposite trend
for German, Tagalog, and Xhosa, where using similar lan-
guages improves performance: those languages tend to see
more repetition when using the unrelated-language mod-
els, and more fluency and adequacy when using the similar-
language models.
A shared theme among these translations is neural text de-
generation. As explained by Holtzman et al. (2020), text
generated by neural models in many domains tends to re-
peat itself “at the token, phrase, and sentence levels.” While
these problems might be mitigated by using better decod-
ing methods or the likelihood function of Holtzman et al.
(2020), it is clear that the models as-is are learning some-
thing fundamentally incorrect in the sequence modeling
task; however, it is unclear why this is more prominent
for the more multilingual corpora. Note, for example, the

8The examples we provide here are not representative; with
such low BLEU scores, it is natural that in many cases, trans-
lations are incorrect in unrelated ways. Our examples represent
specific instances of the broader trends we recognize.
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Xhosa–English

Source Akusayi kuba sabakho nasinye isiqalekiso ; yaye itrone kaThixo neyeMvana iya kubakho kuwo ; abakhonzi bakhe
bamkhonze ,

Reference There will be no curse . The throne of God and of the Lamb will be in the city . His servants will serve him .
Bilingual » ‘ You will not make a curse on the throne of God . It will be a descendant of God . They will serve him .
5 » There will no longer be a curse . The throne of God and the throne of God and his servants will serve them .
10 » There will be no longer be no longer a sign of God . His servants will serve them .
50 » The Son of God is the Son of God , the God of God , the God of God .
100 » If any man does not know that he does not know that he does not know that he does not know that he does not know him .

Source Waza lowo uhleli phezu kwetrone wathi , Uyabona , izinto zonke ndizenza ntsha . Athi kum , Bhala ; ngokuba lawo
ngamazwi ayinyaniso , athembekileyo .

Reference He who sat on the throne said : " Behold , I make all things new . Then he told me to write : for these words are faithful
and true . "

Bilingual He who sits on the throne and said : » I will answer you . « He said to me : » Be careful to me . «
5 Then he sat on the throne and said : » See , I will do everything I have done . « They said to me : » These are the truth . «
10 Then he sat on the throne . He said : » Behold , I have done all these things . « He said to me : » This is the truth . «
50 » He said to them : ‘ I am going to tell you , ‘ I am going to you . ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ «
100 Jesus said : » I tell you , « he said : » If you do not know me . «

Tagalog–English

Source At humihip ang ikaanim na anghel , at narinig ko ang isang tinig mula sa mga sungay ng dambanang ginto na nasa harapan
ng Dios ,

Reference The sixth angel blew his trumpet . I heard a voice from the golden altar that is before God .
Bilingual The sixth angel blew the sixth voice , and heard a voice from the horns of gold altar .
5 The sixth angel blew the sixth horn and heard a voice from the horns of the altar in front of God .
10 The sixth hour came from the sixth hour and heard a voice from the horns of the altar of God .
50 The next day the next day he said to them : » The blood of the blood of the blood of God . «
100 The next day of the day of God has been taken away from the altar .

Source Sila’y may pinakahari na anghel ng kalaliman : ang kaniyang pangalan sa wikang Hebreo ay Abaddon , at sa Griego ay
may pangalan siyang Apolyon .

Reference The angel of the bottomless pit was their king . His name in the Hebrew language is Abaddon , and in Greek , Apollyon .
Bilingual » They are aX king of the deep tongue . His name is a Hebrew Hebrew tongue , and Greeks .
5 They were the king of the deep sea . His name was the Hebrew : » They were a Jew , and Greeks .
10 They were the king of the depths of the sea . His name was the Hebrews . They were called Apollos ; and there were three

name .
50 The king of Judah went to the king of Judah . He went to Jerusalem . He went to Jerusalem . He went to Jerusalem .
100 The king of Israel said : » This is the son of David . «

Turkish–English

Source ‹ ‹ Kaftanlarını yıkayan , böylelikle yaşam ağacından yemeye hak kazanarak kapılardan geçip kente girenlere ne mutlu !
Reference " ' Blessed are those who obey his commandments . They have the right to the tree of life , and may enter in through the

gates of the city .
Sim. Scripts » ‘ Those who touch their clothes are not able to eat their food . Those who go into the city will enter the city . ’
Sim. Langs » Blessed are those who live in the city of life . Blessed is the gate of the city .
Unrelated » Blessed are those who go into the city of acacia wood and walk through the city .

Source Kuzu altıncı mührü açınca , büyük bir deprem olduğunu gördüm . Güneş keçi kılından yapılmış siyah bir çul gibi karardı .
Ay baştan aşağı kan rengine döndü .

Reference When he opened the sixth seal I saw a great earthquake . The sun became black as sackcloth of hair and the moon became
like blood .

Sim. Scripts When I saw that the sixth hour came to the sixth hour . I saw that the sun was covered with sackcloth . The sun was covered
with sackcloth and ashes .

Sim. Langs » I saw a great earthquake . I saw a great earthquake . I saw a great fire . I saw a great fire . The sun was covered with fire .
Unrelated When I saw that there was a great earthquake , a great crowd of goats’ hair . The sun was covered with sackcloth . The sun

was covered with sackcloth .

Table 5: Example translations from multilingual Xhosa–English and Tagalog–English models, as well as similar-language/-
script Turkish–English models. Prediction colors are from VizSeq (Wang et al., 2019); blue represents matched tokens, teal
represents tokens that few models matched correctly, and red represents unmatched tokens.

Xhosa–English translations: we do not observe degenera-
tion for multilingual corpora under 50 languages, but this
effect quickly begins to compound as the data grows to
that point. None of the output translations hit the maxi-
mum sequence length (a hyperparameter) of 200 tokens for
models using fewer than 50 languages, but at 50 languages,

11 translations hit the sequence length limit. At 100 lan-
guages, 15 of them do. A similar trend appears for Taga-
log: 14 translations hit the maximum sequence length at 50
languages; 19 sentences do at 100 languages.

To quantify the growing divergence in translation lengths,
we calculate the Wasserstein distances between the empir-
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Figure 3: Wasserstein distance between the distributions of
the reference translation lengths and predicted translation
lengths, as a function of the number of source languages
during training. All references and outputs are in English.
Each line represents a different evaluation source language
during testing. Note that the x-axis has a logarithmic scale.

ical length distributions of the reference translations and
predicted translations. See Figure 3. There is a visi-
ble correlation between the number of source languages
and the divergence between reference and output transla-
tion length. For every language–English pair, Pearson’s
r > 0.88 (p < .05); for Tagalog and Xhosa, r > 0.95
(p < .01), and Spearman’s ρ = 0.9 (p < .05). Perhaps
this indicates that we have increasing destructive interfer-
ence as we increase the number of languages, or that the
models are learning some unhelpful heuristics that apply
to all languages. Perhaps these models would be able to
tolerate more languages in more high-resource settings, as
has been demonstrated in Aharoni et al. (2019). Further
investigations will be necessary to determine the source of
degeneration, though Holtzman et al. (2020) suggests that
it is likely from a variety of sources.
One explanation for our too-powerful language model that
ignores the source text is the amount of repetition in the
training data: regardless of the number of training lan-
guages, only the English Bible is used as a target. Perhaps
source language tags can alleviate this, because they con-
dition the target language model on the source language’s
identity, at least partially. That might help explain why the
“similar languages" group of Turkish maintains adequacy,
but the "similar scripts" is not: with one alphabet on the
source, it learns to produce the most-frequent LM predic-
tion. BLEU is higher for similar scripts because common
words are common, not because of any better-learned trans-
lation ability; BLEU does not convey the entire story.

7. Conclusions
We have constructed massively multilingual aligned
datasets containing varying numbers of languages for train-
ing machine translation models. We have also performed
some initial investigations into how to use these datasets
for neural machine translation. These will hopefully give
future researchers a starting point in performing much more

large-scale experiments than were previously possible in
the low-resource setting.
Our results suggest that low-resource multilingual NMT
is highly variable in performance cross-lingually. In gen-
eral, the best performance is achieved using either bilingual
models, 5-language models, or 10-language models. More-
over, the relatedness of the multiple languages certainly has
an effect on performance, though whether this effect is pos-
itive or negative is language-dependent. This implies that
the idea of simply adding more data to a training corpus
regardless of language will not always result in the best
performance—though it sometimes does when done care-
fully. This highlights the need for multiple evaluation lan-
guages when working in the multilingual setting, for meth-
ods that work in one language may not generalize to others
(Bender, 2009; Bender, 2011). If one is pursuing the best
model for a specific low-resource language pair, it is imper-
ative to try a variety of source language sets when training
multilingually and to train a good bilingual baseline.
This variable cross-lingual performance could be due to the
bottleneck effect mentioned in §2 or the destructive inter-
ference described in §6. Future work could treat the many-
language corpora as high-resource datasets and use more
typical high-resource hyperparameters instead of the low-
resource hyperparameters used here. One could also inves-
tigate a larger variety of source language combinations in
order to find some principled method to create multilingual
corpora which improve NMT performance for a given lan-
guage pair.
We encourage future researchers working with this mas-
sively multilingual aligned corpus to experiment with its
many possible language subsets to discover the best settings
for future NMT experiments. It is not infeasible that one
could achieve an effective massively multilingual transla-
tion model using some hyperparameter tuning, a many-to-
many setup instead of many-to-one, or some updated neural
architecture that enables more effective parameter sharing
cross-lingually.
Copyright restrictions limit our ability to publicly dissemi-
nate the data. The datasets used here are available by con-
tacting the authors.
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