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Abstract
Hindi-English Machine Translation is a challenging problem, owing to multiple factors including the morphological
complexity and relatively free word order of Hindi, in addition to the lack of sufficient parallel training data. Neural
Machine Translation (NMT) is a rapidly advancing MT paradigm and has shown promising results for many language
pairs, especially in large training data scenarios. To overcome the data sparsity issue caused by the lack of large
parallel corpora for Hindi-English, we propose a method to employ additional linguistic knowledge which is encoded by
different phenomena depicted by Hindi. We generalize the embedding layer of the state-of-the-art Transformer model
to incorporate linguistic features like POS tag, lemma and morph features to improve the translation performance. We
compare the results obtained on incorporating this knowledge with the baseline systems and demonstrate significant
performance improvements. Although, the Transformer NMT models have a strong efficacy to learn language constructs,
we show that the usage of specific features further help in improving the translation performance.
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1. Introduction
In recent years, Neural Machine Translation (Luong
et al., 2015; Bahdanau et al., 2014; Johnson et al.,
2017; Wu et al., 2017; Vaswani et al., 2017) (NMT)
has become the most prominent approach to Machine
Translation (MT) due to its simplicity, generality
and effectiveness. In NMT, a single neural network
often consisting of an encoder and a decoder is used
to directly maximize the conditional probabilities
of target sentences given the source sentences in an
end-to-end paradigm. NMT models have been shown
to surpass the performance of previously dominant
statistical machine translation (SMT) (Koehn, 2009)
on many well-established translation tasks. Unlike
SMT, NMT does not rely on sub-modules and explicit
linguistic features in crafting the translation . Instead,
it learns the translation knowledge directly from
parallel sentences without resorting to additional
linguistic analysis.

Although NMT is a promising approach, it still lacks
the ability of modeling deeper semantic and syntactic
aspects of the language. In machine translation with
a low-resource setting, resolving data sparseness and
semantic ambiguity problems can help improve its
performance. Addition of explicit linguistic knowledge
may be of great benefits to NMT models, potentially
reducing language ambiguity and alleviating data
sparseness further. Some recent studies have shown
that incorporating linguistic features in the NMT
model can improve the translation performance
(Sennrich and Haddow, 2016; Niehues and Cho, 2017;
Li et al., 2018). But most of the previous works have
shown the effectiveness of usage of linguistic features
with the RNN models. However, it is essential to
verify whether the strong learning capability of the

current state-of-the-art Transformer models make the
explicit linguistic features redundant or if they can be
easily incorporated to provide further improvements
in translation performance.

Also, there is an immense scope in the development of
translation systems which cater to the specific char-
acteristics of languages under consideration. Indian
languages are not an exception to this, however, they
add certain specifications which need to be considered
carefully for effective translation. English and Hindi
are respectively reported to be the 3rd and 4th largest
spoken languages in the world 1 and this fact makes
Hindi-English as an ideal language pair for translation
studies. But Hindi-English MT is a challenging task
because it’s a low resource language pair and both
the languages belongs to different language families.
Hindi is a morphologically rich language and depict
unique characteristics, which are significantly different
from languages such as English. Some of these
characteristics are the relatively free word-order with
a tendency towards the Subject-Object-Verb (SOV)
construction, a high degree of inflection and usage of
reduplication.

Also, when translating between morphologically rich
and free word order languages like Hindi and the other
end of morphologically less complicated and word
order specific languages like English, the well-known
issues of missing words and data sparsity arise; and
hence affect the accuracy of translation and leads to
more out-of-vocabulary (OOV) words.

In this paper, we present our efforts towards building

1http://en.wikipedia.org/wiki/List_of_languages_by
_number_of_native_speakers
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a Hindi to English Neural Machine Translation sys-
tem using the state-of-the-art Transformer models via
exploiting the explicit linguistic features on the source
side. We generalize the embedding layer of the encoder
in the standard Transformer architecture to support
the inclusion of arbitrary features, in addition to the
baseline token feature, where the token can either be
a word or a subword. We add morphological features,
part-of-speech (POS) tags and lemma as input features
to Hindi-English NMT model.

2. Neural Machine Translation
2.1. Encoder-Decoder Framework
Given a bilingual sentence pair (x, y), an NMT
model learns its parameters θ by maximizing the log-
likelihood P (y|x; θ), which is usually decomposed into
the product of the conditional probability of each tar-
get word: P (y|x; θ) =

∏m
t=1 Pθ(yt|y1, y2, .., yt−1, x; θ),

where m is the length of sentence y.

An encoder-decoder framework (Bahdanau et al.,
2014; Luong et al., 2015; Gehring et al., 2017; Vaswani
et al., 2017) is usually adopted to model the condi-
tional probability P (y|x; θ). The encoder maps the in-
put sentence x into a set of hidden representations h,
and the decoder generates the target token yt at posi-
tion t using the previously generated target tokens y<t

and the source representations h. Both the encoder
and decoder can be implemented by different struc-
ture of neural models, such as RNN (LSTM/GRU)
(Bahdanau et al., 2014; Luong et al., 2015), CNN
(Gehring et al., 2017) and self-attention (Vaswani et
al., 2017). Besides the basic component of the en-
coder and decoder, a source-target attention mecha-
nism (Bahdanau et al., 2014) is usually adopted to
selectively focus on the source representations when
generating a target token.

2.2. The Transformer Architecture
The Transformer (Vaswani et al., 2017) model is the
first NMT model relying completely on self-attention
mechanism to compute representations of its input
and output without using recurrent neural networks
(RNN) or convolutional neural networks (CNN).

RNNs read one word at a time, having to perform
multiple steps before generating an output that
depends on words that are far away. But it has been
shown that the more steps required, the harder it
is for the network to learn to make these decisions
(Bahdanau et al., 2014). RNNs being sequential in na-
ture, do not effectively exploit the modern computing
devices such as GPUs which rely on parallel processing.

The Transformer is also an encoder-decoder model that
was conceived to solve these problems. Without using
any recurrent layer, the model takes advantage of the
positional embedding as a mechanism to encode or-
der within a sentence. The encoder, typically stacks
6 identical layers, in which each of them makes use

Figure 1: Transformer model architecture from
(Vaswani et al., 2017)

of the so called multi-head attention and of a 2 sub-
layers feed-forward network, coupled with layer nor-
malization and residual connection (see Figure1). The
multi-head attention mechanism computes attention
weights, i.e., a softmax distribution, for each word
within a sentence, including the word itself. Specifi-
cally:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where the input consists of queries Q and keys K of
dimension dk, and values V of dimension dv. The
queries, keys and values are linearly projected h times,
to allow the model to jointly attend to information
from different representation, concatenating the result,

Multihead(Q,K, V ) = Concat(head1, ..., headh)W
o

(2)
where,

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (3)

with parameter matrices WQ
i ∈ Rdmodel×dk ,

WK
i ∈ Rdmodel×dk , WV

i ∈ Rdmodel×dv and
W o

i ∈ Rhdv×dmodel .

On top of the multi-head attention there is a feed-
forward network that consists of two layers with a
ReLU activation in between. Each encoder layer takes
as input the output of the previous layer, allowing it
to attend to all positions of the previous layer.
The decoder has the same architecture as the encoder,
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stacking 6 identical layers of multi-head attention
with feed-forward networks. However, here there are
two multi-head attention sub-layers: i) a decoder
self-attention and ii) a encoder-decoder attention.
The decoder self-attention attends on the previous
predictions made step by step, masked by one posi-
tion. The second multi-head attention performs an
attention between the final encoder representation
and the decoder representation.

To summarize, the Transformer model consists of three
different attentions: i) the encoder self-attention, in
which each position attends to all positions in the
previous layer, including the position itself, ii) the
encoder-decoder attention, in which each position of
the decoder attends to all positions in the last encoder
layer, and iii) the decoder self-attention, in which each
position attends to all previous positions including
the current position.

2.3. Adding Input Linguistic Features
Our main innovation over the standard Transformer
encoder-decoder architecture is that we represent its
encoder input as a combination of features (Alexan-
drescu and Kirchhoff, 2006).

Let E ∈ Rm×K be the word embedding matrix for the
standard Transformer encoder with no input features
where m is the word embedding size and K is the vo-
cabulary size of the source language. Therefore, the
m-dimensional word embedding e(xi) of the token xi

(one-hot encoded representation i.e. 1-of-K vector) in
the input sequence x = (x1, x2, ..., xn) can be written
as:

e(xi) = Exi (4)

We generalize this embedding layer to some arbitrary
number of features |F |:

ē(xi) = merge
|F |
j=1(Ejxij) (5)

where Ej ∈ Rmj×Kj are the feature embedding ma-
trices with mj as the feature embedding size and Kj

as the vocabulary size of the jth feature. Basically we
look up separate embeddings for each feature, which
are then merged by some merge function. In this work,
we experiment with concatenation of separate embed-
dings (each with some different embedding sizes) for
each feature as the merge operation similar to what
was done by (Sennrich and Haddow, 2016) in a RNN
based attentional NMT system. The length of the final
merged vector matches the total embedding size, that
is

∑|F |
j=1 mj = m and the rest of the model remains

unchanged.

3. Linguistic Input Features
Our generalized model described in the the previous
section supports an arbitrary number of input fea-
tures, where each of the feature embeddings can also

be merged with some merge function other than con-
catenation. In this paper, we focused on a number
of well known linguistic features. The main empiri-
cal question that we address in this paper is if pro-
viding linguistic input features to the state-of-the art
Transformer model improves the translation quality
of Hindi-English neural machine translation systems,
or if the information emerges from training encoder-
decoder models on raw text, making its inclusion via
explicit features redundant. All linguistic features are
predicted automatically; we use Hindi Shallow Parser
2 to annotate Hindi raw text with the linguistic fea-
tures. We here discuss the individual features in more
detail.

3.1. Lemma
In a normal NMT model each word form is treated as a
token in itself. This means that the translation model
treats, say, the Hindi word pustak (book) completely
independent of the word pustakein (books). Any in-
stance of pustak in the training data does not add
any knowledge to the translation of pustakein. In the
extreme case, while the translation of pustak may be
known to the model, the word pustakein may be un-
known and the system will not be able to translate it.
While this problem does not show up as strongly in En-
glish due to the very limited morphological inflection
in English, it does constitute a significant problem for
morphologically rich languages such as Hindi, Telugu,
Tamil etc. Lemmatization can reduce data sparseness,
and allow inflectional variants of the same word to ex-
plicitly share a representation in the model. In princi-
ple, neural models can learn that inflectional variants
are semantically related, and represent them as simi-
lar points in the continuous vector space (Mikolov et
al., 2013). However, while this has been demonstrated
for high-frequency words, we expect that a lemmatized
representation increases data efficiency. We verify the
use of lemmas in both word based model and also in a
subword model.

3.2. POS Tags
Linguistic resources such as part-of-speech (POS) tags
have been extensively used in statistical machine trans-
lation (SMT) frameworks and have yielded better per-
formances. POS tags provide the linguistic knowledge
and the syntactic role of each token in the context,
which helps in information extraction and reducing
data ambiguity. However, usage of such linguistic an-
notations has not been explored much in neural ma-
chine translation (NMT) systems.

3.3. Morphological Features
Machine Translation suffers data sparseness problem
when translating to/from morphologically rich and
complex languages such as Hindi. Thus morphologi-
cal analysis may help to handle data sparseness and
improve translation quality. Different word types in

2http://ltrc.iiit.ac.in/showfile.php?filename=downloads
/shallow_parser.php
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Hindi have different sets of morph features. For exam-
ple, verbs have person, number, gender, tense, aspect
and nouns have case, number, gender. For some words
the features may also be underspecified. Therefore, we
treat the concatenation of all morphological features of
the word as a string and treat this string as a separate
feature value for each word along with other linguistic
features.

3.4. Using Word-level Features in the
Subword Model

Neural Machine Translation relies on first mapping
each word into the vector space, and traditionally
we have a word vector corresponding to each word
in a fixed vocabulary. Addressing the problem of
data scarcity and the hardness of the system to learn
high quality representations for rare words, (Sennrich
et al., 2015) proposed to learn subword units and
perform translation at a subword level. Subword
segmentation of words is achieved using Byte Pair
Encoding (BPE) which has been shown to work better
than UNK replacement techniques. In this work, we
also experiment with subword models. With the help
of BPE, the vocabulary size is reduced drastically,
thereby decreasing the OOV (out of vocabulary words)
rate and we no longer need to prune the vocabularies.
After the translation, we do an extra post processing
step to convert the target language subword units
back to normal words. We find this approach to be
very helpful in handling rare word representations
when translating from Hindi to English.

But we note that in BPE segmentation, some sub-
word units are potentially ambiguous, and can either
be a separate word, or a subword segment of a larger
word. Also, text is represented as a sequence of sub-
word units with no explicit word boundaries. Explicit
word boundaries are potentially helpful to learn which
symbols to attend to, and when to forget information
in the Transformer layers. We use an annotation of
subword structure similar to popular IOB format for
chunking and named entity recognition, marking if a
subword unit in the text forms the beginning (B), in-
side (I), or end (E) of a word. A separate tag (O) is
used if a subword unit corresponds to the full word.
To incorporate the word-level linguistic features in a
subword model, we copy the word’s feature values to
all of its subword units.

4. Experimental Settings
4.1. Dataset
In our experiments, we use IIT-Bombay (Kunchukut-
tan et al., 2017) Hindi-English parallel data. The
training corpus consists of data from mixed domains.
There are roughly 1.5M samples in the training data
from diverse sources, while the development and test
sets are from news domains.

Table 1: Statistics of our processed parallel data.
Dataset Sentences Tokens

IITB Train 1,528,631 21.5M / 20.3M
IITB Test 2,507 62.3k / 55.8k
IITB Dev 520 9.7k / 10.3k

4.2. Data Processing
We use Moses (Koehn et al., 2007) toolkit for tok-
enization and cleaning the English side of the data.
Hindi side of the data is first normalized with Indic
NLP library3 followed by tokenization with the same
library. As our preprocessing step, we remove all the
sentences of length greater than 80 from our training
corpus and lowercase the English side of the data. We
use BPE segmentation with 32k merge operations. We
use Hindi Shallow Parser 4 to extract all the linguistic
features (i.e POS tags, morph features, lemma) and
annotate Hindi text with the same. We also remove
all punctuations from both Hindi and English data to
avoid any possible errors thrown by the shallow parser.
All the linguistic features are joined with the original
word or a subword using the pipe (“|”) symbol.

4.3. Training Details
For all of our experiments, we use OpenNMT-py (Klein
et al., 2018) toolkit. We use Transformer model with 6
layers in both encoder and decoder each with 512 hid-
den units. The word embedding size is set to 512 with
8 heads. The training is done in batches of maximum
4096 tokens at a time with dropout set to 0.3. We use
Adam optimizer to optimize model parameters. We
validate the model every 5,000 steps via BLEU (Pap-
ineni et al., 2002) and perplexity on the development
set.

Table 2: Size of embedding layer of linguistic features,
in a system that includes all features and contrastive
experiments that add a single feature over the baseline.

Features Embedding size
all single

subword tags 6 5
POS tags 10 10

Morph Features 20 20
Lemma 100 150

Word or subword * *

The embedding layer size of the all the linguistic fea-
tures used varies, and is set to bring the total embed-
ding layer size to 512 so as to ensure that the perfor-
mance improvements are not simply due to an increase
in the number of model parameters. All the features
have different vocabulary sizes and after performing
various experiments we found the optimum embedding

3https://anoopkunchukuttan.github.io/indic_nlp_library/
4http://ltrc.iiit.ac.in/showfile.php?filename=downloads

/shallow_parser.php
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size for each of the features listed in table 2, which is
basically a hyperparameter in our setting.

5. Results
We report the results of usage of linguistic features
both in a normal word based model and also in a sub-
word model. We also perform contrastive experiments
in which only a single feature is added to the base-
line. Table 3 shows our main results for Hindi-English
word based model. All the linguistic features added in
isolation proved to be effective in improving the trans-
lation performance of the word based model. But the
combination of all linguistic features together gave us
the lowest improvement of 0.19 BLEU. Experiments
demonstrates that the gain from the different features
is not fully cumulative and the information encoded in
different features overlaps.

Table 3: Contrastive experiments for a word based
Hindi-English Transformer model with individual lin-
guistic features.

System BLEU
Word baseline 17.13

POS tags 17.51 (+0.38)
Lemma 17.65 (+0.52)

Morph features 17.44 (+0.31)
All features 17.32 (+0.19)

Table 4 shows our results for a subword Hindi-English
model. Except the lemma feature, all other features
used independently in the subword model shows sig-
nificant BLEU improvements. The reason behind
the lemma feature not being helpful in improving the
translation performance can be the nature of subword
model itself. Translation at subword level inherently
captures the linguistic information at the root level.
The best performance is achieved when using IOB tags,
POS tags and morph features in a subword model.

Table 4: Contrastive experiments for a subword Hindi-
English Transformer model with individual linguistic
features.

System BLEU
Subword baseline 18.47

IOB tags 18.64 (+0.17)
POS tags 19.11 (+0.64)
Lemma 17.99 (-0.48)

Morph features 19.02 (+0.55)
IOB, POS tags and Morph features 19.21 (+0.74)

All features 18.34 (-0.13)

6. Related Work
Factored translation models are often used in phrase-
based SMT (Koehn and Hoang, 2007) as a means to in-
corporate extra linguistic information. However, neu-
ral MT can provide a much more flexible mechanism

for adding such information. Because phrase-based
models cannot easily generalize to new feature com-
binations, the individual models either treat each fea-
ture combination as an atomic unit, resulting in data
sparsity, or assume independence between features, for
instance by having separate language models for words
and POS tags. In contrast, we exploit the strong gen-
eralization ability of neural networks, and expect that
even new feature combinations, e.g. a word that ap-
pears in a novel syntactic function, are handled grace-
fully. Linguistic features have also been used in Neu-
ral MT but all of them have shown the effectiveness of
usage of linguistic features with the RNN model (Sen-
nrich and Haddow, 2016; Niehues and Cho, 2017; Li
et al., 2018). However, it is essential to verify whether
the strong learning capability of the current state-of-
the-art Transformer models make the explicit linguis-
tic features redundant or if they can be easily incorpo-
rated to provide further improvements in performance.
Also, the effectiveness of linguistic features in build-
ing NMT models for a low resource language pair like
Hindi-English where Hindi is a Morphologically rich
language has not been shown earlier.

7. Conclusion and Future Work
In this paper, we investigate whether the linguistic
input features are helpful in improving the translation
performance of the state-of-the-art Transformer based
NMT model, and our empirical results show that this
is the case. We show our results on Hindi-English,
a low resource language pair where Hindi is a mor-
phologically rich and a free word order language
whereas on the other end we have English which
is morphologically less complicated and word order
specific language. We empirically test the inclusion
of various linguistic features, including lemmas, part-
of-speech tags, morphological features and IOB tags
for a (sub)word model. Our experiments show that
linguistic input features improve both word-based and
subword baselines. The subword NMT model with
IOB tags, POS tags and morph features outperforms
the simple word based NMT baseline by more than 2
BLEU points.

In the future, we expect several developments on the
usefulness of linguistic input features in neural machine
translation. The machine learning capability of neural
architectures is likely to increase, decreasing the ben-
efit provided by the features we tested. Therefore in
future, to overcome the data sparsity issue, we will
will work on better methods to incorporate linguistic
information in such neural architectures.
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