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Abstract
Lexical ambiguity is one of the many challenging linguistic phenomena involved in translation, i.e., translating an ambiguous word with
its correct sense. In this respect, previous work has shown that the translation quality of neural machine translation systems can be
improved by explicitly modelling the senses of ambiguous words. Recently, several evaluation test sets have been proposed to measure
the word sense disambiguation (WSD) capability of machine translation systems. However, to date, these evaluation test sets do not
include any training data that would provide a fair setup measuring the sense distributions present within the training data itself. In this
paper, we present an evaluation benchmark on WSD for machine translation for 10 language pairs, comprising training data with known
sense distributions. Our approach for the construction of the benchmark builds upon the wide-coverage multilingual sense inventory of
BabelNet, the multilingual neural parsing pipeline TurkuNLP, and the OPUS collection of translated texts from the web. The test suite
is available at http://github.com/Helsinki-NLP/MuCoW.
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1. Introduction

In recent years, several advances have been made in Word
Sense Disambiguation (WSD) (Raganato et al., 2017;
Loureiro and Jorge, 2019; Kumar et al., 2019). WSD mod-
els that tackle lexical ambiguity effectively bring numerous
benefits to a variety of downstream tasks and applications,
such as information retrieval and extraction (Zhong and
Ng, 2012; Delli Bovi et al., 2015) and text categorization
(Flekova and Gurevych, 2016; Pilehvar et al., 2017; Sinoara
et al., 2019; Shimura et al., 2019). Another downstream ap-
plication is machine translation (MT), where word sense
disambiguation plays a crucial role to select the correct
translation sense for each ambiguous word (Rios et al.,
2017; Pu et al., 2018; Liu et al., 2018).
To measure specific linguistic phenomena in machine trans-
lation, several test suites – or challenge sets – have emerged
(Popović and Castilho, 2019). They are evaluation bench-
marks that focus on particular linguistic phenomena and
provide specific evaluation criteria or metrics. For lexical
ambiguity of nouns, to our knowledge, two major test suites
exist: ContraWSD (Rios et al., 2017; Rios et al., 2018)
and MUCOW (Raganato et al., 2019). Both test suites are
available in two variants: scoring and translation. The first
variant relies on the ability of neural machine translation
systems to score given translations: a sentence containing
an ambiguous source word is paired with the correct ref-
erence translation and with a modified translation in which
the ambiguous word has been replaced by a word of a dif-
ferent sense. A contrast is considered successfully detected
if the reference translation obtains a higher score than the
artificially modified translation. The second variant relies
directly on the translation produced by the system. Af-
ter a system translates a sentence containing an ambiguous
source word, an evaluation script checks whether any of
the correct or incorrect target senses can be identified in the
translation output. While both variants have different pros

and cons, the translation one allows an evaluation directly
on the output of a system, avoiding the need for a function
for scoring a translation, which is typically not available for
online systems or unsupervised MT approaches.
Recent works suggest that the state-of-the-art Transformer
architecture (Vaswani et al., 2017) for neural MT (NMT)
is able to deal with lexical ambiguity quite well (Tang et
al., 2018; Tang et al., 2019), learning to distinguish be-
tween senses during translation with high precision. Prior
works have shown that NMT models based on Recurrent
Neural Networks (RNNs) struggle when dealing with rare
word senses (Rios et al., 2017), but it is not fully clear how
well the more recent Transformer architecture performs un-
der different sense frequencies, size of training corpora and
across different language pairs.
In earlier work (Raganato et al., 2019), we have pre-
sented MUCOW, a language-independent and fully auto-
matic method for building a test suite for lexically ambigu-
ous nouns. Here, we report on an extension of this work
that covers the following aspects:

• We use an improved selection of data sources for
building MUCOW to reduce noise and domain effects.

• The sense inference process is streamlined and relies
on lemmatization instead of word alignment, leading
to better coverage especially for morphologically rich
languages.

• We provide not only the test sets, but also training sets.
This guarantees that competing translation models are
evaluated on fair grounds.

• We additionally provide an evaluation on the result-
ing benchmark with the state-of-the-art Transformer
architecture.

We make available training and test sets for 10 language
pairs (English ↔ Czech, English ↔ German, English

http://github.com/Helsinki-NLP/MuCoW
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CS–EN DE–EN FI–EN FR–EN RU–EN

Books X X X X
GlobalVoices X X X X
Europarl X X X X
JW300 X X X X X
News-Comm. X X X X
Tatoeba X X X X X
TED Talks X X X

EU Bookshop X X X X
MultiUN X X X
Common Crawl X X X

Table 1: Corpora used to extract the MuCoW test suites.
The upper part defines the ”clean” corpus sources, the lower
part the ”noisy” sources. The same corpora are used for
both translation directions.

↔ Finnish, English ↔ French, and English ↔ Russian)
with a total of 206 395 test sentences. The data and
scoring scripts are available at https://github.com/
Helsinki-NLP/MuCoW.

2. Methodology: Building MUCOW
The gist of our approach lies in the combination of different
resources and tools: the wide-coverage multilingual sense
inventory of BabelNet (Navigli and Ponzetto, 2012) and
its associated sense embeddings (Mancini et al., 2017), the
OPUS collection of translated texts from the web (Tiede-
mann, 2012), and the multilingual neural parsing pipeline
TurkuNLP (Kanerva et al., 2018). In the following, we de-
scribe the three steps needed to create a MUCOW test suite.

2.1. Step 1: Identify ambiguous source words
and their translations

For each language pair, we determine a set of parallel text
sources mainly from the OPUS collection (see Table 1).1

Based on our previous experience, we do not include movie
subtitle data here to reduce the domain and genre variance.
All corpora are tagged and lemmatized using the TurkuNLP
neural parser pipeline with pre-trained models.2

Using the sentence-aligned corpora and the lexical resource
BabelNet, we create lists of ambiguous nouns in the fol-
lowing way: if the source sentence contains a noun that is
in BabelNet, and the target sentence contains a noun that
is one of the translations of the source noun provided by
BabelNet, we add the source noun together with the Babel-
Net sense id of the target noun to the list. We also keep
track of the sentence pair. Since BabelNet mainly contains
base forms, lemmatization is important to match as many
sentences as possible.

1We use the following corpora: Books v1, EU Bookshop Cor-
pus v2, Europarl v7 (Koehn, 2005), MultiUN v1 (Eisele and Chen,
2010), News-Commentary v11, Tatoeba v2, TED2013 v1.1 (Cet-
tolo et al., 2013), GlobalVoices v2017q3, JW300 (Agić and Vulić,
2019) and Common Crawl (web-crawled parallel corpus).

2All models are available online http://bionlp-www.
utu.fi/dep-parser-models/. We used models cs pdt
for Czech, models en ewt for English, models fi tdt for Finnish,
models fr gsd for French, models de gsd for German, and mod-
els ru syntagrus for Russian.

Source word BabelNet id Target words

Krebs bn:00023438n brachyura, crab

bn:00015180n cancer (disease)
bn:00015182n Cancer (zodiac sign)

Quelle bn:00080861n well, borewell
bn:00036077n spring, fountain

bn:00046702n source, informant

Table 2: Examples of sense cluster refinement for German–
English. In the first case (Krebs), the second and third clus-
ters are merged because of the common target word cancer.
In the second case (Quelle), the first and second clusters are
merged because their similarity is above the threshold.

Sense ids for which less than 20 examples were found are
discarded. Unambiguous source nouns, i.e., those associ-
ated with only one sense id, are discarded as well. We call
each pairing of a source noun with a sense id sense cluster.

2.2. Step 2: Refine sense clusters with sense
embeddings

It is known that lexical resources such as BabelNet tend to
suffer from overly fine granularity of their sense inventory
(Navigli, 2006; Palmer et al., 2007). We therefore introduce
two additional merging steps:

1. We merge those sense clusters that share at least one
common target word in BabelNet.

2. We merge sense clusters with similar meanings, as de-
fined by their sense embeddings (Mancini et al., 2017).
Concretely, following earlier work (Raganato et al.,
2019), we merge senses whose cosine similarity is
higher than 0.3.

Table 2 shows examples of both steps. Source nouns that
become unambiguous as a result of this merging are again
discarded.

2.3. Step 3: Selecting sentences for training and
test sets

The sense lexicon built in the previous steps guides the se-
lection of example sentences. We extract sentence pairs
from the parallel corpora, using prioritarily data sources
deemed as ”clean“ (see Table 1) and complementarily
”noisy“ data sources. Sentences in which the source or tar-
get item occurs more than once are skipped, and duplicates
removed. The sentences are dispatched to the training and
test sets as follows:

1. Add examples from the clean corpora to the test set
until it contains 100 examples or 50% of all available
examples.

2. Complete the test set with examples from the noisy
corpora until it reaches 100 examples or 50% of all
available examples.

3. Add the unused examples from the clean corpora to
the training set.

https://github.com/Helsinki-NLP/MuCoW
https://github.com/Helsinki-NLP/MuCoW
http://bionlp-www.utu.fi/dep-parser-models/
http://bionlp-www.utu.fi/dep-parser-models/
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Language Ambiguous Sense Avg. sense Test Training Extended training sets
pair words clusters similarity sentences sentences Small Big

CS–EN 27 54 0.185 4 465 150 710 0.6M 1.7M
DE–EN 135 281 0.245 24 688 414 499 1.4M 3.7M
FI–EN 60 122 0.174 10 260 263 890 1.4M 3.2M
FR–EN 219 457 0.250 38 609 995 002 1.8M 4.2M
RU–EN 50 103 0.203 8 657 88 351 1.1M 1.3M

EN–CS 87 178 0.242 13 229 211 260 0.4M 1.5M
EN–DE 206 429 0.351 35 315 688 499 1.2M 3.0M
EN–FI 128 261 0.369 21 481 582 755 1.0M 2.7M
EN–FR 231 473 0.380 39 860 993 723 1.6M 3.6M
EN–RU 58 120 0.374 9 831 98 483 0.6M 1.3M

Table 3: Sizes of the ambiguity lexicons and the training and test sets.

4. Complete the training set with examples from the
noisy corpora until it contains at most 1000 examples.

Additionally, we make sure that the examples in the test set
are at least 10 words long, and that the different corpora are
equally represented.
The training sets obtained with this procedure are rather
small, since they only contain sentences with ambiguous
words. In order to provide realistic data conditions, we
complete the training sets by adding sentence pairs that do
not contain any ambiguous word in the source language
from our lists. In the Small condition, we add all remaining
sentences from Europarl only,3 while in the Big condition,
we add all remaining sentences from all clean corpora.
Thanks to this procedure, we know precisely how often
each ambiguous word and sense is represented in the train-
ing data. Moreover, we can study the effect of increased
target-independent training data on disambiguation perfor-
mance.

2.4. Statistics
Table 3 shows the statistics of the sense lexicons and the
training and test sets. It can be seen that the overwhelm-
ing majority of ambiguous words has two senses, in all
language pairs. Furthermore, English as source language
produces higher numbers of ambiguous words compared to
English as target language. On the other hand, the extended
training sets tend to be larger in the language pairs with En-
glish as source language.

3. Evaluation protocol
Together with the training and test data, we provide an eval-
uation script. Thanks to the controlled construction of train-
ing sets, different models and architectures can be com-
pared fairly with each other. We suggest the following pro-
tocol:

1. Train the model exclusively with the provided training
data.

2. Tune the model parameters to optimize general trans-
lation quality, e.g. by using the Newstest development
sets provided by WMT.

3Except for Russian, where no Europarl data are available.

3. Translate the provided test sentences.

4. Lemmatize the translated test sentences using the
Turku neural parser pipeline.

5. Evaluate the translated test sentences with the pro-
vided evaluation script.4

The evaluation script identifies lemmas of the correct sense
and lemmas of incorrect senses. On this basis, precision
and recall are computed as shown below, with F1-score be-
ing computed in the usual way:5

Precision =
# examples with correct target lemmas

# examples with either correct
or incorrect target lemmas

Recall =
# examples with correct target lemmas

# total examples

These measures are broken down by source corpus, by rel-
ative frequency bucket of the sense, and by whether the
source or target word has been segmented by a subword
splitting method.
Furthermore, the script reports weighted precision based on
the cosine similarity sim between the sense embedding of
the correct sense and the embedding of the inferred sense.
sim equals to 1 if the prediction is correct, and to 0 if it is
maximally wrong:

WeightedPrecision =

∑
sim(correct sense, inferred sense)

# examples with either correct
or incorrect target lemmas

4. Baseline models
We have trained NMT models for all language pairs cov-
ered by MUCOW, using both extended training sets (Small
and Big) as described above. We trained a 6-layer Trans-
former model (Vaswani et al., 2017)6 for each language

4More details about the evaluation protocol and the use of the
evaluation script can be found on Github.

5Examples that contain both correct and incorrect target lem-
mas are counted as incorrect.

6As hyper-parameters we used the base version, with 100 000
training steps.
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Small Big

Newstest MUCOW Newstest MUCOW

Lang. pair BLEU BLEU Precision Recall F1-score BLEU BLEU Precision Recall F1-score

CS–EN 21.48 27.97 0.7746 0.8852 0.8262 27.21 33.33 0.8044 0.9059 0.8522
DE–EN 24.43 24.53 0.7690 0.8649 0.8141 28.53 27.56 0.7831 0.8908 0.8334
FI–EN 21.60 26.02 0.8032 0.7991 0.8012 26.16 29.47 0.8125 0.8223 0.8174
FR–EN 29.68 26.52 0.7577 0.8380 0.7958 32.35 28.60 0.7668 0.8421 0.8027
RU–EN 24.30 21.93 0.7884 0.8661 0.8254 26.43 22.98 0.7894 0.8615 0.8239

EN–CS 15.20 21.89 0.7493 0.7716 0.7603 20.61 26.71 0.7859 0.8057 0.7957
EN–DE 19.75 20.39 0.7711 0.8015 0.7860 23.06 22.58 0.7829 0.8059 0.7942
EN–FI 16.40 18.10 0.7878 0.7440 0.7653 20.89 21.09 0.8003 0.7749 0.7874
EN–FR 27.53 24.01 0.7381 0.8240 0.7787 29.58 25.51 0.7303 0.8318 0.7778
EN–RU 18.88 16.99 0.7850 0.7635 0.7741 26.46 20.69 0.7965 0.8113 0.8038

Table 4: Results of the baseline models.

Small Big

Lang. pair 0–20% 20–40% 40–60% 60–80% 80–100% 0–20% 20–40% 40–60% 60–80% 80–100%

CS–EN 0.7046 0.5233 0.7664 0.9464 0.9504 0.7078 0.8075 0.8472 0.9363 0.9525
DE–EN 0.5164 0.7293 0.8588 0.9129 0.9462 0.5604 0.7704 0.8680 0.9263 0.9547
FI–EN 0.6091 0.7162 0.7519 0.8949 0.9299 0.6156 0.7105 0.7733 0.9176 0.9498
FR–EN 0.4857 0.7407 0.8150 0.8647 0.9455 0.5091 0.7591 0.8118 0.8709 0.9474
RU–EN 0.5441 0.7280 0.8738 0.8575 0.9549 0.5512 0.7327 0.8667 0.8575 0.9505

EN–CS 0.4626 0.6752 0.7871 0.8054 0.9168 0.5437 0.7320 0.8202 0.8370 0.9296
EN–DE 0.4651 0.7047 0.8383 0.8352 0.9311 0.4701 0.7120 0.8525 0.8465 0.9364
EN–FI 0.5193 0.6977 0.7651 0.8315 0.8896 0.5444 0.7159 0.7984 0.8476 0.9099
EN–FR 0.4142 0.7070 0.8008 0.8704 0.9433 0.3888 0.6968 0.7998 0.8869 0.9480
EN–RU 0.4428 0.6982 0.8281 0.8811 0.9001 0.4947 0.7546 0.8516 0.8911 0.9239

Table 5: F1-scores of the baseline models, broken down by frequency bins. Bolded values indicate an improvement of at
least 0.03 absolute compared to the other (Small or Big) model.

pair. Sentences are encoded using Truecaser and Byte-Pair
Encoding (Sennrich et al., 2016), with 32 000 merge op-
erations for each language, learned on each training cor-
pus separately. Note that these models are not specifically
adapted towards good sense disambiguation performance.
They merely show how well off-the-shelf NMT architec-
tures perform on lexical ambiguities. It is expected that
architectures specifically adapted to WSD (Pu et al., 2018,
for instance) would show substantially higher scores.
Table 4 summarizes the results of our experiments. The
first column indicates general translation quality, as mea-
sured by BLEU7 score on the Newstest corpora.8 The Big
training corpus shows substantial increases for all language
pairs. Translating to English yields higher BLEU scores
than translating to most other languages – a common find-
ing in MT evaluations using BLEU.
Since MUCOW has been extracted from parallel corpora,
we can also evaluate the test set with BLEU score. This is
shown in the second column. Depending on the exact com-
position of the test set, its scores are lower or higher than

7We used sacreBLEU (Papineni et al., 2002; Post, 2018) with
signature BLEU+case.lc+#.1+smooth.exp+tok.13a+v.1.2.11

8Newstest 2017 for English↔Finnish, and Newstest 2014 for
the remaining language pairs.

those obtained on Newstest, but they are generally compa-
rable.
BLEU measures overall translation quality and does not
specifically focus on lexical ambiguity. This is measured
by the three remaining columns, using precision, recall and
F1-score (as defined in Section 3.). Overall, the absolute
numbers are relatively high, with F1-scores ranging be-
tween 75% and 86%, suggesting that neural MT models
can handle lexical ambiguity quite well out-of-the-box.
We see small, but consistent increases when moving from
the Small to the Big setup. This is surprising – recall that
the number of ambiguous words is identical in both train-
ing corpora – and suggests that the additional training data
helps the model create more abstract and robust representa-
tions of words.

4.1. Frequency effects
Rare senses often are more difficult to translate, resulting
in a dramatic drop in WSD capability (Rios et al., 2017).
In order to quantify this, we classify the test sentences ac-
cording to the frequency of the sense in the training corpus.
For example, the “cancer” sense of German Krebs occurs
in 98.1% of training examples, whereas the “crab” sense
occurs in 1.9% of examples. We compute precision, recall
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Figure 1: F1-scores for different relative frequency bins of sense clusters (to English on the left, from English on the right).
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Figure 2: Precision values for different modes of word seg-
mentation. Language pairs with unreliable figures (less
than 50 examples per category) are removed.

and F1-measure separately for five frequency bins. The re-
sults are listed in Table 5 and visualized in Figure 1 (Big
models only).
As expected, the models show poor performance (F1-scores
between 0.4 and 0.7) for minority senses (0–20%), but
excellent performance (F1-scores above 0.9) for major-
ity senses (80–100%). Table 5 also provides more de-
tails about the impact of the additional independent train-
ing data. The biggest improvements are observed for low-
frequency and medium-frequency senses and for language
pairs with small (<1M sentences) training sets in the Small
condition.

4.2. Segmentation effects
Most current NMT models use some word segmentation
scheme for open-vocabulary translation, which keeps fre-
quent word forms intact but splits rare word forms into
“subwords”. It could be argued that word segmentation –
on the source or on the target side – has an adverse effect on
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average

0.6

0.7

0.8

0.9

Data source Sense distinctiveness

F1
-s

co
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Figure 3: F1-scores broken down by provenience of test
sentences (left) and by distinctiveness of the sense (right).

sense disambiguation, as the model needs to compose the
meaning of a word from its subwords. Figure 2 visualizes
the effects of word segmentation on sense disambiguation.
Note that we report precision values here, since the target
segmentation is unknown when no relevant target word can
be found, making it impossible to compute recall.
Except for one language pair (EN–FR), segmenting the
source word does not have any effect on translation; on av-
erage, source word splitting even slightly increases preci-
sion. On the target side, results are less clear-cut, but show
the same overall tendency. Therefore, word segmentation
does not seem to affect the disambiguation capabilities of
an MT model.

4.3. Corpus effects
When building the training and test sets, we have split the
data sources into “clean” and “noisy” ones and strived to
use as many examples as possible of the former. Figure 3
(left) shows indeed that test sentences from noisy sources
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Lang. pair Precision Weighted Prec.

CS–EN 0.8044 0.8414
DE–EN 0.7831 0.8389
FI–EN 0.8125 0.8441
FR–EN 0.7668 0.8294
RU–EN 0.7894 0.8386

EN–CS 0.7859 0.8394
EN–DE 0.7829 0.8582
EN–FI 0.8003 0.8747
EN–FR 0.7303 0.8312
EN–RU 0.7965 0.8684

Table 6: Weighted and unweighted precision values ob-
tained with the Big models. Differences of at least 0.06
absolute are highlighted in bold.

are much harder to translate correctly than those from clean
ones, with both precision and recall being affected likewise.
The negative impact of noisy data sources may just be
due to a disproportionately high amount of rare senses for
which few examples were available in the first place. The
noisy subset indeed generally consists of higher proportions
of rare senses than the clean subset, but there does not seem
to be a direct interaction between the two phenomena. For
instance, although FI–EN, EN–FI and RU–EN have much
more balanced distributions of rare senses than the other
language pairs, they show similar patterns in Figure 3.

4.4. Effects of sense distinctiveness
Another factor that may influence disambiguation perfor-
mance is the semantic similarity between the correct and
incorrect senses: if it is hard for humans (and for specially
developed models like sense embeddings) to distinguish be-
tween two senses, it might also be hard to do so for an NMT
model. We test this hypothesis by splitting the test sen-
tences in two bins, depending on whether the distance be-
tween the correct and all incorrect senses is lower or higher
than the average distance value between senses observed
for that language pair.
Figure 3 (right) shows that the expected effect holds for
some language pairs (typically with English as target lan-
guage), whereas the contrary effect is observed for other
pairs (typically with English as source language). Exper-
iments with a larger number of bins have shown similarly
inconclusive outcomes.
This outcome could hint at shortcomings of the sense em-
beddings used in this work (Mancini et al., 2017). In future
work, we plan to evaluate more recent sense embedding ap-
proaches, for instance an approach based on big pre-trained
language models like BERT (Devlin et al., 2019; Scarlini et
al., 2020).
Another way to assess sense distinctiveness is by includ-
ing it directly in the evaluation metric, as proposed with
the weighted precision score in Section 3. A comparison
between the standard and the weighted precision scores is
shown in Table 6. The weighted precision scores are gener-
ally higher, and the difference is proportional to the average
similarity between senses (see Table 3).

5. Conclusion
In this paper, we presented an extended version of MU-
COW, an automatically built evaluation benchmark for
measuring WSD capabilities of machine translation sys-
tems, available for 10 language pairs. The construction of
the benchmark was performed by exploiting large parallel
corpora, the multilingual TurkuNLP neural parsing pipeline
and the multilingual dictionary BabelNet with its language-
independent sense embeddings. We provide training and
test sets with known sense distributions, together with base-
line scores from a recent NMT system.
We find that rare senses are still an open challenge also
for the state-of-the-art Transformer model, but that adding
more training data, not necessarily containing the ambigu-
ous words of interest, may mitigate this problem. We show
that word segmentation does not affect the disambiguation
ability much, whereas the performance drops consistently
across languages when evaluating on sentences from noisy
sources.
In future work, we plan to further refine the evaluation
benchmark by using more recent sense embeddings (Scar-
lini et al., 2020). We also plan to extend the analysis and
the evaluation by including character-based NMT models
and additional language pairs.
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