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Abstract
In the context of under-resourced neural machine translation (NMT), transfer learning from an NMT model trained on a high resource
language pair, or from a multilingual NMT (M-NMT) model, has been shown to boost performance to a large extent. In this paper, we
focus on so-called cold start transfer learning from an M-NMT model, which means that the parent model is not trained on any of the
child data. Such a set-up enables quick adaptation of M-NMT models to new languages. We investigate the effectiveness of cold start
transfer  learning  from a  many-to-many M-NMT model  to  an  under-resourced  child.  We show that  sufficiently  large  sub-word
vocabularies  should  be  used  for  transfer  learning  to  be  effective in  such  a  scenario.  When  adopting  relatively  large  sub-word
vocabularies we observe increases in performance thanks to transfer learning from a parent M-NMT model, both when translating to
and from the under-resourced language. Our proposed approach involving dynamic vocabularies is both practical and effective. We
report results on two under-resourced language pairs, i.e. Icelandic-English and Irish-English.
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1. Introduction
 In recent years,  the performance of machine translation
systems has  been  improving  significantly  thanks  to  the
shift  from  statistical  to  neural  machine  translation
(Bahdanau et al., 2014; Sutskever et al., 2014; Vaswani et
al., 2017). However, for under-resourced language pairs,
the performance of MT systems can still be disappointing,
as pointed out for instance by Koehn et al. (2017). 
 To improve MT quality for under-resourced languages, a
potential  strategy  consists  of  involving  other  language
pairs during MT training than the one under scrutiny. In
such  a  multilingual  scenario,  different  language  pairs,
often  belonging  to  closely  related  languages,  are
combined into a single translation model (Ha et al., 2016;
Johnson  et  al.,  2017).  Recently,  first  efforts  towards
training  massively  multilingual  (or  ‘universal’)  models
have been undertaken (Aharoni et al., 2019; Arivazhagan
et  al.,  2019),  by  extending  systems  towards  dozens  or
even  hundreds  of  language  directions,  which  obviously
introduces various bottlenecks. 
 An  alternative,  although  related,  strategy  to  improve
NMT  performance  in  an  under-resourced  scenario  is
transfer learning (Zoph et al., 2016). It is a concept that
has  been  applied  to  various  subfields  of  AI,  such  as
computer  vision  and  NLP.  In  NMT,  transfer  learning
consists of training a (multilingual) parent MT model on
one or more language pairs, in order to initialize a  child
MT  model  that  continues  training  with  data  from  a
(different) set of (under-resourced) language pairs. 
 Transfer  learning to  an under-resourced language pair,
either  from  a  parent model  trained  on  a  high  resource
language pair (Zoph et al. 2016; Kocmi and Bojar, 2018;
Lakew et  al.  2018) or  from a  large  multilingual  parent
model (Neubig and Hu, 2018), has been shown to increase
translation performance. 
 While previous work on transfer learning has focused on
a scenario in which the parent and child pairs share their
target  language  (English),  this  paper  investigates  the
effectiveness  of  transfer  learning  from a  many-to-many
multilingual parent model to a bilingual child model able
to translate from an under-resourced language (Icelandic
or Irish) into English and vice versa.
 The focus of this work is on cold start transfer learning.
This means that the parent model is not trained on any of

the child data, which avoids the need of training a large
multilingual  model  including  all  the  language  pairs  at
once.  Such  a  set-up  opens  up  various  challenges.  We
show that, in order for transfer learning to be effective in
such a scenario, sufficiently large sub-word vocabularies
should be used. 
 The effect of sub-word vocabulary size in the context of
(multilingual)  transfer  learning  has  only  been  scarcely
investigated. Most related to our work are the papers by
Nguyen  and  Chiang  (2017)  and  Lakew  et  al.  (2018).
Nguyen and Chiang (2017) show that increasing sub-word
vocabulary  size  increases  translation  performance  when
transferring between two under-resourced language pairs.
From  Lakew  et  al.  (2018)  we  borrow  the  concept  of
dynamic vocabulary  which means that the vocabulary of
the parent model  will  be  updated  with  the  child
vocabulary (see section 2.3.3). 
 Finally,  we  note  that  in  related  work  (Nguyen  and
Chiang, 2017; Neubig and Hu, 2018; Lakew et al. 2018),
under-resourced  language  pairs  contain  around  50-100k
sentence  pairs or less.  In  such an extreme low-resource
scenario, improvements in translation quality are easier to
obtain via transfer learning than in a mid-resource setting
(Zoph et al. 2016; Kocmi and Bojar, 2018). In this paper,
we focus on language pairs that can be considered low to
mid-resourced (~1M sentence pairs) and present a simple,
yet  effective strategy for  cold start  multilingual transfer
learning.

2. Data and Methods

2.1 Data
 Our  experiments  involve  5 Germanic  languages,  i.e.  3
West-Germanic languages (English, German, Dutch) and
two North-Germanic languages (Swedish and Icelandic).1

We will refer to these five languages using the ISO-693-1
language  codes  EN,  DE,  NL,  SV  and  IS.  Another
experiment  involves  Irish  (Gaeilge,  GA)  instead  of
Icelandic; in this case, none of the other four languages is
closely related to the under-resourced language, as Irish is
a Celtic language.

1 Another potential candidate for inclusion in the set of 
North-Germanic languages is Norwegian.
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 In Table 1 we give an overview of the parallel data used
for training the NMT systems.  We only made use of EN-
XX parallel  data,  although for  training our multilingual
systems  (see  2.3)  we  could  have  added  data  for  other
language pairs (e.g. DE-SV, NL-SV,...). 

Language
pair

Corpus2 #unique
sent. pairs 

#tokens
(EN)

DE-EN 
 
 

DGT  1,683k 40,215k

DCEP  1,957k 49,511k

Tatoeba 130k 961k

Total 3,725k 89,756k

NL-EN DGT 1,698k 40,201k

DCEP 2,017k 50,310k

Tatoeba 16k 115k

Total 3,684k 89,664k

SV-EN DGT 1,697k 40,503k

DCEP 1,941k 46,955k

Tatoeba 8k 51k

Total 3,601k 86,569k

IS-EN EUbookshop 8k 169k

Tatoeba  7k 53k

JW300 451k 8,940k

TildeModel 363k 6,138k

ELRC 53k 977k

Total 878k 16,237k

GA-EN DGT 39k 948k

DCEP 7k 158k

EUbookshop 96k 2,183k

Irish legislation 172k 4,286k

EU constitution 7k 140k

Crawled data 131k 3,475k

ParaCrawl data 785k 17,646k

Total 1,195k 27,861k

Table 1: Overview of the parallel data used for training
our multilingual and bilingual NMT systems.

 
 For  more  details  concerning  the  GA-EN parallel  data,
especially the web-crawled data and the processing of the
GA-EN  portion  of  the  ParaCrawl  Corpus,  we  refer  to
Defauw et al. (2019a,b).
 We will report NMT performance on 3 language pairs in
both  translation  directions:  SV↔EN,  IS↔EN  and
GA↔EN. For the SV-EN language pair we held out a test
set of 3k unique sentence pairs from the training data. For
IS-EN we  held  out  2k  unique  sentence  pairs  from the
EUbookshop, Tatoeba  and ELRC corpus.  For GA-EN a
test set of 3k unique sentence pairs was held out from the
DGT and DCEP corpus.

2 DGT: http://opus.nlpl.eu/DGT-v2019.php; DCEP: https://
wt-public.emm4u.eu/Resources/DCEP-2013/DCEP-Down-
load-Page.html; Tatoeba: http://opus.nlpl.eu/Tatoeba-
v20190709.php; EUbookshop: http://opus.nlpl.eu/Eubook-
shop-v2.php; JW300: http://opus.nlpl.eu/JW300-v1.php; 
TildeModel: http://opus.nlpl.eu/TildeMODEL-v2018.php; 
ELRC: financial-economic corpora from www.elrc-
share.eu;  Irish legislation: www.gaois.ie/en; EU constitu-
tion: http://opus.nlpl.eu/Euconst.php; Crawled data: 
www.education.ie and www.courts.ie; ParaCrawl data: 
https://paracrawl.eu.   

 All occurrences of test sentences were removed from the
training data: e.g. if an English sentence in the IS-EN test
set  was  also  found in  the  DE-EN training  data,  it  was
removed from the latter. This was done to prevent a bias
in  favor  of  the  systems involving a multilingual  parent
engine.

2.2 MT Architecture
 MT  engines  were  trained  with  OpenNMT-tensorflow3

using  the  Transformer  architecture  and  default  training
settings.  This  configuration  is  the  same  as  the  ‘base
model’  in  the  original  paper  on  the  Transformer
architecture by Vaswani et al. (2017). 
 In terms of preprocessing, we tokenize the data and train
a shared byte pair encoding (BPE) model (Sennrich et al.
2016) on the concatenation of the source and target data.
The  maximal  sub-word  vocabulary  size  of  our  NMT
models is equal to the number of BPE merge operations.
For more details we refer to section 2.3.3.
 We report BLEU, TER and METEOR scores (the latter
only  for  the  XX→EN translation  direction).  Scores  are
obtained using the multeval library (Clark et al. 2011).

2.3 Experimental set-up
 In this section we provide more details with regard to the
followed methodology. As mentioned in the introduction,
this paper investigates the impact of sub-word vocabulary
size  on  the  effectiveness  of  transfer  learning  from  a
multilingual NMT model in an under-resourced scenario.
We  first  introduce  the  concept  of  multilingual  NMT,
followed  by  an  overview  of  our  multilingual  transfer
learning  experiments  and  of  our  dealing  with  the  sub-
word vocabularies of our models.

2.3.1 Multilingual NMT

 For  building  multilingual  NMT models  (M-NMT),  we
follow the  strategy  proposed  by  Johnson  et  al.  (2017).
This  strategy  consists  of  adding  language  codes  to  the
source side of the training corpus,  and has shown to be
very effective,  especially in the context of low-resource
NMT. We prepend special tokens to the source sentence
of a pair: for instance when a Swedish source is paired
with an English target we prepend the tokens <_src_sv>
and <_tgt_en> to the Swedish source sentence.
 In this paper, we focus on so-called  many-to-many M-
NMT  models  that  can  translate  to  and  from  multiple
languages.  NMT models  that  can  only  translate  to  and
from two languages (e.g. IS↔EN) will be referred to as
bilingual NMT models (B-NMT). 
 For training our M-NMT systems we concatenated the
XX→EN  data  with  the  EN→XX  training  data  for  the
various languages. Data for language pairs not involving
English were not included. This means that our M-NMT
systems are able to translate to and from English, and, via
zero  shot  translation,  between  other  pairs  of  languages
(e.g. SV↔DE). 

2.3.2 Transfer Learning
 Transfer  learning  across  two NMT models  involves  a
parent model, typically trained on a large amount of data,
the  encoder-decoder  components  of  which  are  then
transferred to initialize the parameters of a low-resourced
child  model.  In  this  paper,  we  use  a  large  M-NMT  model

3 https://github.com/OpenNMT/OpenNMT-tf
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as a  parent and an B-NMT system involving an under-
resourced language combination as a child. This approach
is similar to the one followed by Neubig and Hu (2018),
although they only investigated M-NMT transfer learning
in the context of many-to-one M-NMT models, i.e. multi-
source models with a single target (EN).

  Figure 1: Overview of two M-NMT systems and two
cold start transfer learning scenarios: M-NMT

(DE,NL,SV,EN)  B-NMT (IS,EN) and M-NMT⟹
(DE,NL,SV,EN)  B-NMT (GA,EN). ⟹

 As we focus on  cold start transfer  learning, the parent
model of our transfer learning systems is not trained on
the child data, in contrast to warm start transfer learning,
in which the data of the under-resourced language pair of
the child system is available during training of the parent
system. Although it adds another layer of complexity, we
chose to focus on a cold start scenario: from a practical
point of view, it is more interesting to avoid the need of
training a large multilingual model including all language
pairs at once. 
 In Figure 1 we give an overview of the various transfer
learning experiments we present in this paper. Our parent
models will always be trained on DE, NL, SV and EN,
and will be referred to as M-NMT(DE,NL,SV,EN). Our
child systems will either be trained on IS and EN or on
GA  and  EN,  and  will  be  referred  to  as  M-NMT
(DE,NL,SV,EN)   ⟹ B-NMT(IS,EN)  and  M-NMT
(DE,NL,SV,EN)   ⟹ B-NMT(GA,EN).  M-NMT systems
trained  on  DE,  NL,  SV,  IS  and  EN will  be  used  as  a
benchmark for the systems involving IS. 

2.3.3 Dynamic Vocabulary
 For our transfer learning experiments, we used a dynamic
vocabulary,  in  line  with  Lakew  et  al.  (2018).  This
approach  avoids  the  need  to  have  all  training  data,
including the training set that will be used for continued
training, available when creating the parent model, and is
thus suited for a cold start scenario.
 In order  to create a dynamic vocabulary,  the sub-word
(BPE)  vocabulary  of  the  parent NMT  system  (Vp)  is
updated with the sub-word vocabulary of the child system
(Vc). This leads the entries Vc that are also present in Vp

(Vp∩Vc) to  inherit  the  embedding  space  of  the  parent
NMT model, while the entries in Vc that were not present

in  Vp  (Vc\Vp)  will  be  initialized  randomly  in  the  child
NMT  model.  Entries  in  Vp  absent  in  Vc (Vp\Vc)  are
discarded.  This  corresponds  to  the  progAdapt
methodology proposed by Lakew et al. (2018).
 As mentioned in 2.2, our BPE models are trained on the
concatenation  of  both  source  and  target  data.  In  the
context of M-NMT and B-NMT (see 2.3.1), this implies
that we trained our BPE models on the concatenation of
all  training  data:  e.g.  for  our M-NMT model  involving
DE, NL, SV and EN, we trained the BPE model on the
concatenation of the DE-EN, NL-EN and SV-EN training
data.  For each NMT model (either parent or child) a new
BPE model is trained, and for each NMT model one sub-
word  (BPE)  vocabulary  is  extracted  from  the  training
data,  with a  maximal size equal  to the number of  BPE
merge  operations.  We  refer  to  Figure  2,  where  we
schematically  explain  the  relation  between  the  BPE
models  and  extracted  vocabularies  for  the  cold  start
transfer learning scenario M-NMT (DE,NL,SV,EN)  B-⟹
NMT (IS,EN).

Figure 2: Overview of the relation between the BPE
models and vocabularies for the transfer learning scenario
M-NMT (DE,NL,SV,EN)  B-NMT (IS,EN). Maximal⟹
size of the sub-word vocabularies is equal to the number
of BPE merge operations of the underlying BPE model.

 We note that it is also possible to train a BPE model or
SentencePiece model (Kudo and Richardson 2018) on the
different  languages  separately,  as  in  Neubig  and  Hu
(2018).  However,  we chose  to  use a  shared  vocabulary
created through BPE as  this was shown to improve the
alignment  of  embedding  spaces  across  languages  that
share the same alphabet (Smith et al. 2017; Lample et al.
2018).
 In our experiments we varied the sizes of the sub-word
vocabularies, both of the parent M-NMT and the child B-
NMT models. This is achieved by varying the number of
merge operations of the BPE model  used for  extracting
the  sub-word  vocabulary.  The  maximal  sub-word
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vocabulary  size  is  taken  equal  to  the  number  of  BPE
merge  operations.  Numbers  of  BPE  merge  operations
considered are 10k, 32k and 64k. In the following we will,
for  convenience,  refer  to  sub-word  vocabulary  sizes  as
10k, 32k and 64k,  while  in  reality  they can be slightly
smaller than these numbers.
 Previous  publications  on  transfer  learning  applied
vocabulary sizes  of 8k (Lakew et  al. 2018; Neubig and
Hu,  2018)4 and 15k-32k (Zoph et  al.  2016;  Kocmi and
Bojar, 2018).

3. Results
 As mentioned in section 2.3.2, we trained parent M-NMT
models on the four Germanic languages DE, NL, SV and
EN. In a first set of experiments, we varied the sub-word
vocabulary sizes of the M-NMT(DE,NL,SV,EN) models,
and  evaluated  translation  performance  EN↔SV.  We
observe an increase in performance when using a larger
sub-word  vocabulary  (Figure  3).  This  is  in  line  with
previous work on this subject (Arivazhagan et al. 2019),
where  it  was  shown that  M-NMT models  with  smaller
vocabulary  perform  noticeably  worse  on  high-resource
languages. 

Figure  3:  BLEU  scores  EN↔SV  for  the  M-
NMT(DE,NL,SV,EN)  models  when  varying  vocabulary
sizes. 

 However,  it  is  unclear  how this increase  in  translation
performance of a parent M-NMT model thanks to a larger
vocabulary can be transferred to an under-resourced child
language pair. For instance, it has been argued that using a
smaller sub-word vocabulary (and thus shorter sub-word
BPE tokens) leads to better performance due to improved
generalization  for  under-resourced  languages  (Cherry  et
al. 2018; Kreutzer and Sokolov, 2018).
 To answer the above question we performed a variety of
experiments on two under-resourced language pairs:  IS-
EN and GA-EN. We trained B-NMT models for IS-EN
and GA-EN with a sub-word vocabulary size of 10k, 32k
and 64k. Next, we performed transfer learning from the
parent  model  M-NMT(DE,NL,SV,EN)  trained  with
varying  vocabulary  size  (10k,  32k,  64k)  to  B-
NMT(IS,EN) and B-NMT(GA,EN) child models with the
same vocabulary  size  using  a  dynamic  vocabulary  (see
2.3.3 for more details). We did not use larger vocabulary

4 Neubig  and  Hu  (2018)  trained  SentencePiece  models  on
each language separately and used a sub-word vocabulary
of 8k for each language.

sizes  than 64k because these may lead to a long training
and decoding time.

Figure 4: BLEU scores IS↔ EN. Results for the IS→EN
translation direction are shown in blue and those for

EN→IS in red. 

Figure 5: BLEU scores GA↔EN.

 We  refer  to  Figure  4  for  the  results  on  the  IS-EN
language pair. We observe that when no transfer learning
is used, the performance of our B-NMT model improves
when increasing the sub-word vocabulary sizes (light blue
and  light  red  colors).  However,  more  interestingly,  the
BLEU  scores  of  the  B-NMT  models  obtained  after
transfer learning (i.e. the M-NMT (DE,NL,SV,EN)  B-⟹
NMT (IS,EN) models, dark blue and red colors) largely
improve when increasing the sub-word vocabulary sizes
of  the  M-NMT  and  B-NMT  models.  In  order  for
multilingual transfer learning to be effective, a parent and
child M-NMT model  with a  sufficient  large  vocabulary
are needed. Especially in the EN→IS translation direction
the  difference  in  BLEU/METEOR  score  between  the
transfer  learning  systems  using  a  large  and  small
vocabulary is clear  (see Table 2).  We also compare our
results to the performance of an M-NMT system including
IS, i.e. M-NMT (DE,NL,SV,IS,EN), (see last two rows of
Table 2). We observe that our transfer  learning systems
perform  better  than  this  system,  although  increasing
vocabulary sizes in the latter also leads to an increase in
BLEU and METEOR score,  in  line  with the  results  on
EN↔SV (Figure 3).
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Model

type

Voc

size

Metric IS→EN EN→IS 

B-NMT 10k BLEU 22.3 (0.5/0.1) 16.9 (0.5/0.1)

METEOR 24.3 (0.3/0.0) /

TER 65.5 (0.8/0.3) 70.6 (0.6/0.2)

B-NMT 32k BLEU 23.2 (0.6/0.1) 18.7 (0.5/0.2)

METEOR 24.7 (0.3/0.1) /

TER 65.1 (0.8/0.4) 69.6 (0.7/0.1)

B-NMT 64k  BLEU 23.5 (0.6/0.1) 19.2 (0.6/0.1)

METEOR 24.6 (0.3/0.0) /

TER 64.7 (0.7/0.1) 69.6 (0.7/0.2)

M-NMT

⟹

B-NMT

10k

⟹

10k

BLEU 22.3 (0.5/0.2) 17.0 (0.5/0.1)

METEOR 24.4 (0.3/0.1) /

TER 64.9 (0.6/0.2) 70.5 (0.6/0.3)

M-NMT

⟹

B-NMT

32k

⟹

32k

BLEU 24.0 (0.6/0.1) 19.1 (0.5/0.2)

METEOR 25.4 (0.3/0.0) /

TER 63.2 (0.7/0.1) 68.8 (0.7/0.2)

M-NMT

⟹

B-NMT

64k

⟹

64k

BLEU 24.9 (0.6/0.1) 20.8 (0.6/0.1)

METEOR 25.8 (0.3/0.1) /

TER 63.0 (0.7/0.1) 67.7 (0.7/0.3)

M-NMT

+IS  

10k BLEU 21.1 (0.5/0.1) 14.7 (0.5/0.1)

METEOR 23.7 (0.3/0.1) /

TER 66.6 (0.6/0.2) 72.9 (0.7/0.1)

M-NMT

+IS

32k BLEU 22.7 (0.6/0.1) 16.8 (0.5/0.1)

METEOR 24.7 (0.3/0.1) /

TER 65.1 (0.7/0.1) 70.7 (0.6/0.2)

M-NMT

+IS

64k BLEU 24.9 (0.6/0.2) 20.3 (0.6/0.2)

METEOR 25.1 (0.3/0.1) /

TER 64.1 (0.7/0.3) 68.4 (0.7/0.2)

Table 2: Results IS↔EN. Model types: baseline (B-
NMT), transfer (M-NMT  B-NMT), ⟹ multilingual

including IS (M-NMT+IS). In brackets: variance due to
test set selection and optimizer instability (last 5 epochs).

 We performed a similar set of experiments on the GA-EN
language pair,  see  Figure  5  and  Table  3.  We observed
similar  results  as  for  IS-EN:  increasing  the  sub-word
vocabulary  sizes  of  both  parent  and  child  results  in
increases  in translation quality that  are not observed on
the  baseline  B-NMT  models.  Although  results  on
EN→GA  are  similar,  the  effect  of  transfer  learning  is
smaller than for the other translation directions reported.
This  may  be  caused  by  the  larger  linguistic  distance
between  GA  and  the  languages  of  the  parent  M-NMT
model, which is trained on SV, DE, NL and EN.
 The  results  reported  above  demonstrate  that  increased
performance  of  a  parent  M-NMT  model  caused  by
increased  sub-word  vocabulary  size  (Figure  3)  can  be
successfully  transferred  to  a  child  B-NMT  system.  To
obtain more insight into this mechanism we calculated the
overlap in sub-word vocabulary between parent and child
models  for  varying  vocabulary  sizes.  When  the
vocabulary overlap is high, we expect a lot of information
reuse  between  the  parent  and  the  child  (see  Figure  6).
Both  for  IS-EN  and  GA-EN  we  see  that  the  absolute
number of overlapping sub-word tokens increases and the
relative amount decreases as vocabulary size grows: for a
size  of  10k  more  than  one  third  of  the  tokens  overlap
between parent and child, for 64k only a quarter.

Model
type

Voc
size

Metric GA→EN EN→GA

B-NMT 10k BLEU 58.0 (0.5/0.1) 47.1 (0.5/0.1)

METEOR 44.3 (0.3/0.0) /

TER 31.7 (0.5/0.1) 39.8 (0.5/0.2)

B-NMT 32k BLEU 60.3 (0.5/0.1) 48.9 (0.5/0.1)

METEOR 45.5 (0.3/0.1) /

TER 29.6 (0.5/0.1) 38.4 (0.5/0.0)

B-NMT 64k  BLEU 60.3 (0.5/0.1) 49.0 (0.5/0.2)

METEOR 45.5 (0.3/0.0) /

TER 29.6 (0.5/0.0) 38.6 (0.5/0.2)

M-NMT

⟹

B-NMT

10k

⟹

10k

BLEU 58.7 (0.5/0.0) 46.8 (0.5/0.0)

METEOR 44.7 (0.3/0.0) /

TER 31.1 (0.5/0.0) 40.0 (0.5/0.0)

M-NMT

⟹

B-NMT

32k

⟹

32k

BLEU 61.2 (0.5/0.1) 48.7 (0.5/0.1/)

METEOR 45.9 (0.3/0.0) /

TER 29.1 (0.5/0.1) 38.5 (0.5/0.1)

M-NMT

⟹

B-NMT

64k

⟹

64k

BLEU 61.9 (0.5/0.1) 49.6 (0.5/0.1)

METEOR 46.3 (0.3/0.0) /

TER 28.3 (0.5/0.1) 37.9 (0.5/0.1)

Table 3: Results GA↔EN. 

Figure 6: Vocabulary overlap between parent and child
NMT models for varying vocabulary sizes. Absolute
numbers are shown in blue (left y-axis), and relative

numbers in red (right y-axis).

 In terms of translation performance, the relative decrease
of overlapping sub-word tokens between parent and child
is  compensated  by the absolute increase  of  overlapping
tokens and the increased performance of the parent model
on  a  related  language  pair  (SV↔EN).  It  would  be
interesting  to  further  investigate  if  a  minimum overlap
percentage is needed for multilingual transfer learning to
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be effective,  and  how this  is  related  to  the  size  of  the
parent and child’s sub-word vocabulary. 

4. Conclusion and Future Work
 In this paper, we have investigated the effect of sub-word
vocabulary  size  in  the  context  of  cold  start  transfer
learning  from  a  many-to-many  M-NMT  model  to  an
under-resourced language pair. We showed that cold start
transfer  learning  from  a  parent  M-NMT  to  an  under-
resourced child model only results in increased translation
performance of the child when a sufficiently large sub-
word vocabulary is used. 
 Our  proposed  multilingual  cold  start  transfer  learning
approach using dynamic vocabularies is both practical, as
it only requires training one ‘large’ M-NMT model, and
effective,  resulting  in  increased  performance  on  under-
resourced language pairs. 
 In  future  work  we  want  to  investigate  whether  it  is
possible to follow the same approach when transferring
from a many-to-many M-NMT model trained on a larger
amount  of  language  pairs.  For  instance,  when  more
languages  belonging  to  different  language  families  are
involved,  re-grouping languages before  training BPE or
SentencePiece models may have a positive effect.  Also,
the  effect  of  sampling  temperature  (Arivazhagan  et  al.
2019)  to  prevent  BPE  or  SentencePiece  models  to  be
overwhelmed by certain languages (e.g.  English) should
be investigated. Regrouping languages before generating
sub-word  vocabularies  and  tuning  the  sampling
temperature to its optimal value may both have a positive
effect  on  vocabulary  overlap  between parent  and  child,
resulting in more information reuse.
 Finally, it should be investigated whether increasing the
number of parameters of the parent M-NMT model (apart
from vocabulary size) leads to increased performance on
the  downstream  task  in  a  cold  start  transfer  learning
scenario, in a similar way as observed in ‘universal’ M-
NMT (Aharoni et al. 2019; Arivazhagan et al. 2019). 
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