
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 3560–3565
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

3560

Dirichlet-Smoothed Word Embeddings for Low-Resource Settings

Jakob Jungmaier, Nora Kassner, Benjamin Roth
Center for Information and Language Processing, Ludwig-Maximilians-Universität München

jakob.jungmaier@campus.lmu.de, {kassner, beroth}@cis.uni-muenchen.de

Abstract
Nowadays, classical count-based word embeddings using positive pointwise mutual information (PPMI) weighted co-occurrence
matrices have been widely superseded by machine-learning-based methods like word2vec and GloVe. But these methods are usually
applied using very large amounts of text data. In many cases, however, there is not much text data available, for example for specific
domains or low-resource languages. This paper revisits PPMI by adding Dirichlet smoothing to correct its bias towards rare words. We
evaluate on standard word similarity data sets and compare to word2vec and the recent state of the art for low-resource settings: Positive
and Unlabeled (PU) Learning for word embeddings. The proposed method outperforms PU-Learning for low-resource settings and
obtains competitive results for Maltese and Luxembourgish.

Keywords: Statistical and Machine Learning Methods, Language Modelling, Neural Language Representation Models, Seman-
tics, Less-Resourced/Endangered Languages

1. Introduction
Word embeddings that capture the meaning of words as
vectors are the basis of much of the recent progress in nat-
ural language processing. Nowadays, the classical count-
based way to obtain such word embeddings from a cor-
pus by using positive pointwise mutual information (PPMI)
weighted co-occurrence matrices has been widely super-
seded by machine-learning-based methods like word2vec
(Mikolov et al., 2013a; Mikolov et al., 2013b) and GloVe
(Pennington et al., 2014). These methods are usually ap-
plied using very large amounts of text data. But in many
settings there is not much text data available, for example
for specific domains or low-resource languages.
Recent investigations by Konovalov and Tumunbayarova
(2018) and Jiang et al. (2018) give rise to the conjecture
that variants of the classical method to compute word em-
beddings might be more suitable for smaller corpora than
the machine-learning-based methods. Additionally, Levy
et al. (2015) suggest that certain choices of system design
and hyperparameters for computing word embeddings can
even be more impactful than the choice of the underlying
model architecture itself.
In the spirit of these results, we propose to use a variant
of the classical method for low-resource languages which
tries to address a well-known problem of the PMI mea-
sure: its bias towards rare words (Turney and Pantel, 2010;
Levy et al., 2015; Jurafsky and Martin, 2018). Following
an idea mentioned by Turney and Pantel (2010) and Juraf-
sky and Martin (2018), we apply Dirichlet smoothing to
weaken PMI’s bias towards rare words and compare it to
the word2vec skip-gram with negative sampling (SGNS)
and Positive and Unlabeled (PU) Learning for word em-
beddings by Jiang et al. (2018).
Models are trained on the English enwik9 corpus and eval-
uated using standard word similarity data sets. We investi-
gate the models’ performance for varying corpus size. In
a case study, to demonstrate their practicability for low-
resource languages, the three methods are used to train
word embeddings for Maltese and Luxembourgish using
respective Wikipedia dumps.

We show that our method i) outperforms strong base-
line methods trained on enwik9 with biggest advantage on
smaller corpora ii) scores best on the RW (Rare Word) sim-
ilarity data set (Luong et al., 2013) and iii) obtains outper-
forming and competitive results in the low-resource setting
for Maltese and Luxembourgish.
We make our code publicly available.1

2. Method
Our proposed method adds Dirichlet smoothing to PPMI
embeddings. To compute the standard PPMI embeddings,
first, the corpus is scanned in windows consisting of a mid-
dle word and its surrounding context words and a word co-
occurrence matrix is computed. Words that are frequent in
the corpus cause high co-occurrence counts while more in-
frequent words (that might even be more informative) only
result in very low counts. To prevent the overestimation
of frequent words, the raw co-occurrence counts are substi-
tuted by pointwise mutual information (PMI) (Church and
Hanks, 1990). The PMI of a middle word w and a context
word c is calculated as follows:

PMI(w, c) = log

(
P (w, c)

P (w)P (c)

)
(1)

where P (w, c) is the probability that w and c occur in the
same context (window) and P (w) and P (c) are the proba-
bilities of the independent occurrences of the single words
w and c. These probabilities are estimated from the co-
occurrence matrix by maximum likelihood estimation.
The numerator in equation (1) is the probability of a co-
occurrence of the words given their actual distribution in
the corpus (and some fixed window size), while the de-
nominator is the expected probability that the two words
co-occur given they were distributed independently across
the corpus.
PMI faces a problem if two words do not co-occur at
all. Then, the fraction will be zero and consequently

1https://github.com/jungmaier/
dirichlet-smoothed-word-embeddings

https://github.com/jungmaier/dirichlet-smoothed-word-embeddings
https://github.com/jungmaier/dirichlet-smoothed-word-embeddings


3561

PMI(w, c) = log(0) = −∞. A rather pragmatic solution is
to simply leave these entries out and let them stay implicit
zeros. But this results in an inconsistent matrix since it at-
tributes higher correlation (namely zero) to word pairs that
never appeared than it does to word pairs that merely ap-
peared less often than expected (negative values). However,
it is still a convenient way of weighting a co-occurrence
matrix that has proven to work well in practice (Levy and
Goldberg, 2014).
Bullinaria and Levy (2007) demonstrated that the perfor-
mance of the resulting vectors for word similarity tasks is
better if all negatively correlated values are excised from
the matrix. The result is called positive pointwise mutual
information:

PPMI(w, c) = max (PMI(w, c), 0) . (2)

The reason why PPMI performs better than PMI with re-
spect to word similarity might be that usually the fact that
two words appear less often together than expected does
not convey much information. After all, even for humans
it is very hard to name words that are negatively correlated,
while it is relatively easy to name words that are positively
correlated (Levy and Goldberg, 2014).
(P)PMI suffers from a bias towards rare words (Turney and
Pantel, 2010; Levy et al., 2015; Jurafsky and Martin, 2018).
The original intention to use PMI is to reduce the influence
of the absolute frequency of words in the corpus, which also
means to lower the weight of a co-occurrence with a more
frequent word in comparison to the co-occurrence with a
less frequent word. But one effect of this weighting proce-
dure is that co-occurrences with rare words result in very
high PMI values, which in turn overestimates the influence
of co-occurrences with rare words.
Turney and Pantel (2010) mention the following case: sup-
pose that two words w and c are strongly statistically de-
pendent, i.e., P (w, c) ≈ P (w) ≈ P (c). For example, this
could be the case for a collocation like “San Francisco”.
Then, the PMI value of w and c is log(1/P (w)) and con-
sequently this value increases when the probability of the
word w decreases. Now, supposed that “San Francisco”
only appears, say, once in the corpus, the PMI value will be
very high. But that in turn will skew the relation to the PMI
values of other co-occurrences. As Levy et al. (2015) point
out, this even creates a situation in which the top “distribu-
tional features” of a word, i.e., its context words, are often
extremely rare words. But these do not necessarily appear
in the respective representations of words that are seman-
tically similar to that word. Moreover, the chance for the
co-occurrence with a very rare word to be rather accidental
than systematic is certainly higher than for co-occurrences
with more frequent words. This means that (P)PMI might
give very high weights to words that are in fact not signifi-
cantly connected.
We approach the problem of rare words for PMI building
on an idea mentioned by (Turney and Pantel, 2010) and (Ju-
rafsky and Martin, 2018), which is to use Dirichlet smooth-
ing. Usually, Dirichlet smoothing is used to obtain non-zero
probabilities for unseen events by adding a small pseudo
count λ in each likelihood estimation. For the present pur-
pose, the idea is to add a small pseudo count to every entry

in the co-occurrence matrix. Since the same λwill be added
to every entry, the probability of frequent co-occurrences
will be lowered a bit while that of rare co-occurrences will
be raised. The same will happen to the probabilities of sin-
gle words.
To maintain the sparsity of the matrix, a smoothed version
of PMI is computed for the non-zero entries only. After all,
it is not the aim here to get probabilities for co-occurrences
that did not appear in the training corpus.
Following this idea, the smoothed PMIλ will be computed
as follows:

PMIλ(w, c) = log

(
Pλ(w, c)

Pλ(w)Pλ(c)

)
(3)

where

Pλ(w, c) =
f(w, c) + λ∑

(w′,c′)∈Vw×Vc
f(w′, c′) + λ|Vw × Vc|

(4)

where f(w, c) denotes the frequency of the co-occurrence
of w and c, Vw the vocabulary of all middle words, and Vc
the vocabulary of all context words. To preserve a probabil-
ity distribution, the counts also have to be adjusted for the
probability calculations of the single words w and c:

Pλ(w) =

∑
c∈Vc

f(w, c) + λ|Vc|∑
(w′,c′)∈Vw×Vc

f(w′, c′) + λ|Vw × Vc|
(5)

Pλ(c) =

∑
w∈Vw

f(w, c) + λ|Vw|∑
(w′,c′)∈Vw×Vc

f(w′, c′) + λ|Vw × Vc|
. (6)

Here, the λ’s in the nominators have to be multiplied
by |Vw| (respectively |Vc|) since adding λ to every co-
occurrence count in the matrix will raise the count of the
single words by λ|Vw| (respectively λ|Vc|). Using these
formulas it is now possible to “pretend” to add λ to ev-
ery count while in fact only computing PMIλ for the exist-
ing counts. For the actual weighting of the co-occurrence
matrix, only the positive PMIλ-values will be used, which
yields PPMIλ.
The PPMIλ matrix is still a very large but sparse matrix. To
obtain dense word embeddings with only few dimensions,
we follow the usual way of using truncated singular value
decomposition (SVD) for dimensionality reduction:

X′ = UkΣkV
T
k (7)

where the original matrix X is decomposed into orthogonal
unit-length column matrices U, V, and the diagonal matrix
Σ of ordered singular values of X (Deerwester et al., 1990;
Levy and Goldberg, 2014). For the reduced matrix X′ only
the largest k singular values in Σ and the corresponding
columns of U and V are considered. We follow Levy et al.
(2015) and use Uk as our final word embedding matrix and
dismiss Σk.
We refer to the full approach from corpus to word embed-
dings as SVD-PPMIλ in this paper.

3. Experimental Setup
We compared the proposed method SVD-PPMIλ to two
baseline methods: word2vec SGNS (Mikolov et al., 2013a;
Mikolov et al., 2013b) and PU-Learning for word embed-
dings (Jiang et al., 2018).



3562

3.1. Corpora
First, we train SVD-PPMIλ, word2vec SGNS, and PU-
Learning on enwik9 which consists of the first 109 bytes
of an English Wikipedia dump from 2006, provided for
download by Matt Mahoney.2 Removal of the markup lan-
guage and further preprocessing was done by a Perl script
by Mahoney to be found on the same web page. Punctua-
tion marks were removed completely, all letters were low-
ercased and words tokenized by whitespace. The resulting
text file contains 124,301,827 tokens in total with a vocab-
ulary of 833,185 words.
To see the influence of the corpus size on the quality of the
trained word embeddings, we used differently sized subsets
of the enwik9 corpus. For the following experiments, we
used the first 1, 2, 4, 8, 16, 32, and 64 million words.
Experiments for Luxembourgish and Maltese were con-
ducted using dumps of the Luxembourgish and Maltese
Wikipedias from 2019. The complete dumps were prepro-
cessed in the same manner as for the enwik9 corpus. The
resulting corpus for Luxembourgish contains 6,268,907 to-
kens with a vocabulary size of 283,168. The resulting cor-
pus for Maltese contains 1,617,402 tokens with a vocabu-
lary size of 87,902.

3.2. Evaluation
The final word embeddings are evaluated on five word
similarity data sets: RG-65 (Rubenstein and Goodenough,
1965), WordSim-353 (Finkelstein et al., 2002), SimLex-999
(Hill et al., 2015), MEN (Bruni et al., 2014), and the RW
(Rare Word) data set by Luong et al. (2013). Each of these
data sets contains a number of word pairs with a corre-
sponding gold standard similarity score assigned by human
annotators. For every word pair in a data set, the cosine
similarity of the corresponding word embeddings is com-
puted. For the case that some word occurs in a word pair
for which no corresponding word embedding was trained,
the similarity for the pair will be set to zero. The final score
is Spearman’s rank correlation coefficient (Spearman’s ρ)
of the scores assigned by humans and the cosine similari-
ties of the corresponding word embeddings.
In a similar manner as Jiang et al. (2018) obtain data sets
for languages other than English, data sets for Luxembour-
gish and Maltese were obtained for RG-65, WordSim-353,
SimLex-999, and MEN via the Google translation API.3

Word pairs containing multi-word expressions after trans-
lation were removed. Occasionally, pairs with very similar
words in the original English data sets resulted in translated
pairs of twice the same word. Respective pairs were dis-
carded as well. Manual inspection of the final word pairs
indicates that a small proportion of terms seem to remain
English after translation, but this is not considered to be a
problem since, after all, the conditions are equal for each
approach tested here.4 Table 1 shows the used data sets and
their respective sizes.

2www.cs.fit.edu/˜mmahoney/compression/
textdata.html

3https://cloud.google.com/translate
4However, since this effect seemed to be particularly pro-

nounced for the RW data set, no translations of this data set were
used here.

Data set English Luxembourgish Maltese
RG-65 65 61 62
WordSim-353 353 342 338
SimLex-999 999 937 960
MEN 3000 2904 2852
RW 2034 — —

Table 1: Overview of the used word similarity data sets and
their sizes (number of word pairs).

3.3. Implementation and Hyperparameter
Choices

For the comparison with the two baseline methods, the
original implementations by the authors were used, i.e.,
for word2vec SGNS the original C-implementation by
Mikolov et al.5 and for PU-Learning for word embeddings
the original code provided by Jiang et al.6

For all compared methods the window size was set to 5, and
the minimum count for words was set to 1, i.e., representa-
tions were trained for all words in the corpora. The length
of all word embeddings was set to the default word2vec di-
mension of 100.
For the model-specific hyperparameters of the baseline
methods the respective default values of the provided im-
plementations were used. The λ-parameter of our own
model was selected based on the comparison of different
values described in section 4.1.

4. Results and Discussion
Table 2 summarizes Spearman’s rank correlation coeffi-
cient for all similarity test sets. Trained on enwik9, our
proposed method outperforms the two baseline methods on
all similarity test sets.
In the low-resource setting, SVD-PPMIλ outperforms base-
lines for Maltese and shows competitive performance for
Luxembourgish embeddings.

4.1. λ-Parameter
The influence of the λ-parameter on the performance of
SVD-PPMIλ is shown by a comparison of the average per-
formance on all five word similarity data sets. λ is increased
from 10−6 to 1. To see the influence of the corpus size and
to select the best λ’s for the following experiments, this
comparison was made for the last 1, 2, 4, 8, 16, 32, and 60
million tokens of enwik9. The results can be seen in figure
1. It shows that a good choice for λ can increase the perfor-
mance by around 10 % (for the last 8M tokens) to 16 % (for
the last 2M tokens). A λ chosen too high on the other hand
can drop the performance considerably, as can be seen in
the case of λ ≈ 0.3 for the last 2M tokens, which decreases
the score by around 27 %. However, in most cases it seems
that a λ chosen too low does not cause a notable drop in
performance. This yields that, if in doubt, it might be ad-
visable to stick to a smaller λ. For increasing corpus size,
the optimal λ-value also has the tendency to increase.

5https://github.com/tmikolov/word2vec
6https://github.com/uclanlp/

PU-Learning-for-Word-Embedding

www.cs.fit.edu/~mmahoney/compression/textdata.html
www.cs.fit.edu/~mmahoney/compression/textdata.html
https://cloud.google.com/translate
https://github.com/tmikolov/word2vec
https://github.com/uclanlp/PU-Learning-for-Word-Embedding
https://github.com/uclanlp/PU-Learning-for-Word-Embedding


3563

Language Method RG-65 WordSim-353 SimLex-999 MEN RW
English SGNS .718 .674 .306 .690 .294

PU-Learning .700 .689 .267 .718 .217
SVD-PPMIλ .744 .738 .314 .726 .308

Luxembourgish SGNS .146 .133 .069 .186 —
PU-Learning .267 .239 .075 .337 —
SVD-PPMIλ .302 .193 .054 .351 —

Maltese SGNS .063 .047 .074 .168 —
PU-Learning .059 .191 .068 .320 —
SVD-PPMIλ .141 .208 .106 .351 —

Table 2: Comparison of SGNS (word2vec), PU-Learning, and SVD-PPMIλ (ours) concerning word similarity tasks for
English, Luxembourgish, and Maltese. Spearman’s ρ between the human annotated gold standard and the cosine similarity
scores are shown. Embeddings are trained on enwik9 and 2019 dumps of the Luxembourgish and Maltese Wikipedias
respectively.

10−6 10−5 10−4 10−3 10−2 10−1 100

Lambda

−25

−20

−15

−10

−5

0

5

10

15

Ch
an

ge
 o

f A
ve

 a
ge

 S
pe

a 
m

an
's 
ρ 

(%
)

Last 1M tokens of enwik9
Last 2M tokens of enwik9
Last 4M tokens of enwik9
Last 8M tokens of enwik9
Last 16M tokens of enwik9
Last 32M tokens of enwik9
Last 60M tokens of enwik9

Figure 1: Influence of the λ-parameter on the average score (Spearman’s ρ) of all five used word similarity data sets (RG-65,
WordSim-353, SimLex-999, MEN, RW) for different corpus sizes comparing 43 values of λ from 10−6 to 1.

For the experiments in the present paper, the best λ-values
of the last 1M tokens were used for training word embed-
dings for the first 1M tokens of enwik9, the best λ-values of
the last 2M tokens were used for training word embeddings
for the first 2M tokens of enwik9 and so on. The best λ for
the last 60 million tokens was used for word embeddings
for both, the first 64 million tokens of enwik9 as well as the
complete enwik9 corpus.
In the case of Maltese and Luxembourgish, the best λ-
values were chosen conservatively according to the best
values for the next smaller tested corpora, i.e., the best λ
for the last 1M tokens of enwik9 for Maltese and that for
the last 4M tokens of enwik9 for Luxembourgish.

4.2. Corpus Size
The results of the comparison of SGNS, PU-Learning for
word embeddings, and the present approach SVD-PPMIλ
for different corpus sizes are shown in figure 2.
It can be seen that SVD-PPMIλ outperforms the base-
line approaches for most corpus sizes. Especially for the
smaller sized corpora consisting of the first 1 and 2 mil-

lion tokens of enwik9, SVD-PPMIλ yields better results.
For bigger corpora it performs very similarly to the PU-
Learning approach. Taking a look at the performance on the
RW (Rare Word) data set reveals that SVD-PPMIλ seems
to work particularly well for representing rare words.

5. Related Work
5.1. Word Embeddings for Low-Resource

Languages
Only few explicit approaches have been made to learn word
embeddings for low-resource languages from scratch, i.e.,
without trying to project existing embeddings from other
languages into the source language. Konovalov and Tu-
munbayarova (2018) investigated the training of word em-
beddings for the mongolic language of Buryat using the
classical way of factorizing a PPMI matrix by truncated
SVD. Jiang et al. (2018) proposed to learn word embed-
dings for low-resource languages from PPMI matrices by
applying PU-Learning to overcome the sparsity of matrices
caused by the lack of data. Neither of these methods used
Dirichlet smoothing for PPMI.



3564

1M 2M 4M 8M 16M 32M 64M 124M
0.1

0.2

0.3

0.4

0.5
Sp
ea
rm

an
's 
ρ

Average

SGNS
PU-Learning
SVD-PPMIλ

1M 2M 4M 8M 16M 32M 64M 124M
0.0

0.2

0.4

0.6

Sp
ea
rm

an
's 
ρ

RG-65

SGNS
PU-Learning
SVD-PPMIλ

1M 2M 4M 8M 16M 32M 64M 124M

0.3

0.4

0.5

0.6

0.7

Sp
ea
rm

an
's 
ρ

WordSim-353

SGNS
PU-Learning
SVD-PPMIλ

1M 2M 4M 8M 16M 32M 64M 124M

0.15

0.20

0.25

0.30

Sp
ea
rm

an
's 
ρ

SimLex-999

SGNS
PU-Learning
SVD-PPMIλ

1M 2M 4M 8M 16M 32M 64M 124M
Corpus Size

0.2

0.4

0.6

Sp
ea
rm

an
's 
ρ

MEN

SGNS
PU-Learning
SVD-PPMIλ

1M 2M 4M 8M 16M 32M 64M 124M
Corpus Size

0.0

0.1

0.2

0.3
Sp
ea
rm

an
's 
ρ

RW

SGNS
PU-Learning
SVD-PPMIλ

Figure 2: Performance of the methods on word similarity tasks as a function of the corpus size (for differently sized slices
of enwik9). The top left graph shows the macro average of all five used word similarity data sets.

5.2. Smoothing the PMI Matrix
Levy et al. (2015) approach PMI’s bias towards rare words
by a method called context distribution smoothing, which
is inspired by the choice of the noise distribution used by
word2vec SGNS to generate negative samples. The idea is
to substitute PMI by

PMIα(w, c) = log

(
P̂ (w, c)

P̂ (w)P̂α(c)

)
(8)

where P̂α(c) is the smoothed context probability

P̂α(c) =
f(c)α∑

c′∈Vc
f(c′)α

. (9)

The effect of this smoothing technique is that, given c is
rare, the probability of the context word will be higher than
before, i.e., P̂α(c) > P̂ (c). This, in turn, reduces the PMI
of co-occurrences with rare words.
Another possibility, proposed by Pantel and Lin (2002), is
to multiply the PMI value by the following discount factor:

δw,c =
f(w, c)

f(w, c) + 1
· min (f(w), f(c))

min (f(w), f(c)) + 1
. (10)

This causes that, the less frequent one of w or c gets, the
more the final weight PMIδ(w, c) will be reduced. The left

factor in the equation causes a similar reduction if the co-
occurrence count of the word pair is low. All in all, δ pushes
the PMI values towards zero, more for rare words and less
for frequent words or co-occurrences.

Turney and Pantel (2010) and Jurafsky and Martin (2018)
mention the idea to use Dirichlet smoothing to weaken
PMI’s bias towards rare words. Turney and Littman (2003)
used additive smoothing in the context of calculating asso-
ciation strength in order to avoid division by zero in their
specific setting. But, to the best of our knowledge, the
idea of factorizing Dirichlet-smoothed count matrices for
obtaining word embeddings has not been carried out nor
evaluated in previous work.

6. Conclusion

This work investigates classical PPMI embeddings with
Dirichlet smoothing to correct its bias towards rare words.
We show that classical PPMI based word embeddings
can outperform machine-learning-based methods in a low-
resource setting.

In a case study we demonstrated this on the low-resource
languages Maltese and Luxembourgish. Further work
should investigate its performance in domain-specific low-
resource settings.



3565

7. Acknowledgements
This work has been funded by the German Federal Min-
istry of Education and Research (BMBF) under Grant No.
01IS18036A. The authors of this work take full responsi-
bilities for its content.

8. Bibliographical References
Bruni, E., Tran, N. K., and Baroni, M. (2014). Multimodal

distributional semantics. J. Artif. Int. Res., 49(1):1–47,
January.

Bullinaria, J. A. and Levy, J. P. (2007). Extracting se-
mantic representations from word co-occurrence statis-
tics: A computational study. Behavior research methods,
39(3):510–526.

Church, K. W. and Hanks, P. (1990). Word association
norms, mutual information, and lexicography. Compu-
tational linguistics, 16(1):22–29.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., and Harshman, R. (1990). Indexing by latent se-
mantic analysis. Journal of the American society for in-
formation science, 41(6):391–407.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E.,
Solan, Z., Wolfman, G., and Ruppin, E. (2002). Placing
search in context: The concept revisited. ACM Transac-
tions on information systems, 20(1):116–131.

Hill, F., Reichart, R., and Korhonen, A. (2015). Simlex-
999: Evaluating semantic models with (genuine) simi-
larity estimation. Computational Linguistics, 41(4):665–
695.

Jiang, C., Yu, H.-F., Hsieh, C.-J., and Chang, K.-W. (2018).
Learning word embeddings for low-resource languages
by PU learning. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 1024–1034, New
Orleans, Louisiana, June. Association for Computational
Linguistics.

Jurafsky, D. and Martin, J. H. (2018). Speech and language
processing (3rd edition draft).

Konovalov, V. P. and Tumunbayarova, Z. B. (2018). Learn-
ing word embeddings for low resource languages: The
case of buryat. In Computational Linguistics and Intel-
lectual Technologies: Proceedings of the International
Conference “Dialogue 2018”, pages 331–341.

Levy, O. and Goldberg, Y. (2014). Neural word embedding
as implicit matrix factorization. In Advances in neural
information processing systems, pages 2177–2185.

Levy, O., Goldberg, Y., and Dagan, I. (2015). Improving
distributional similarity with lessons learned from word
embeddings. Transactions of the Association for Com-
putational Linguistics, 3:211–225.

Luong, M.-T., Socher, R., and Manning, C. D. (2013). Bet-
ter word representations with recursive neural networks
for morphology. In Proceedings of the Seventeenth Con-
ference on Computational Natural Language Learning,
pages 104–113, Sofia, Bulgaria, 08.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a).
Efficient estimation of word representations in vector
space. CoRR, abs/1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013b). Distributed representations of words
and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–
3119.

Pantel, P. and Lin, D. (2002). Discovering word senses
from text. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 613–619. ACM.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In Pro-
ceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1532–
1543, Doha, Qatar, October. Association for Computa-
tional Linguistics.

Rubenstein, H. and Goodenough, J. B. (1965). Contextual
correlates of synonymy. Communications of the ACM,
8(10):627–633.

Turney, P. D. and Littman, M. L. (2003). Measuring praise
and criticism: Inference of semantic orientation from
association. ACM Transactions on Information Systems
(TOIS), 21(4):315–346.

Turney, P. D. and Pantel, P. (2010). From frequency to
meaning: Vector space models of semantics. Journal of
artificial intelligence research, 37:141–188.


	Introduction
	Method
	Experimental Setup
	Corpora
	Evaluation
	Implementation and Hyperparameter Choices

	Results and Discussion
	 -Parameter
	Corpus Size

	Related Work
	Word Embeddings for Low-Resource Languages
	Smoothing the PMI Matrix

	Conclusion
	Acknowledgements
	Bibliographical References

