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Abstract
Recent advances in Optical Character Recognition (OCR) and Handwritten Text Recognition (HTR) have led to more accurate text
recognition of historical documents. The Digital Humanities heavily profit from these developments, but they still struggle when
choosing from the plethora of OCR systems available on the one hand and when defining workflows for their projects on the other hand.
In this work, we present our approach to build a ground truth for a historical German-language newspaper published in black letter. We
also report how we used it to systematically evaluate the performance of different OCR engines. Additionally, we used this ground truth
to make an informed estimate as to how much data is necessary to achieve high-quality OCR results. The outcomes of our experiments
show that HTR architectures can successfully recognise black letter text and that a ground truth size of 50 newspaper pages suffices to
achieve good OCR accuracy. Moreover, our models perform equally well on data they have not seen during training, which means that
additional manual correction for diverging data is superfluous.
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1. Introduction
For non-digital-born textual data, we need Optical
Character Recognition (OCR) to extract the text from
scanned images. Although OCR systems have improved in
recent years, they still result in a certain error rate. It is first
and foremost texts in black letter fonts (also called Gothic
fonts) which suffer from limited recognition accuracy. The
quality of the OCRed material depends on several factors
(we provide examples in Figure 1):

• Low distinctiveness of characters, e.g., the “long s”
and “f” in older German texts.

• Change over time regarding vocabulary and spelling,
e.g., Commando (en. command) versus Kommando,
both of which have the same meaning, but come
in different forms, thereby enlarging the diversity of
possible character sequences.

• Use of small font sizes (and changes in the fonts
themselves).

• Mixing of Antiqua and black letter on the same page.

• Distortions of the image due to digitisation from
bound newspaper collections or imprecise digitisation
workflows.

• Poor paper quality (e.g., smears, smudges, sometimes
due to conservation issues, text from the backside
shining through, etc.).

Historical documents which have undergone digitisation a
few years ago are likely to suffer from low-quality OCR.
The possibility of OCR systems to return a confidence score
might give an idea about the quality of the extracted text,
but such scores are not always available, and even if they
are, they are often unreliable. Additionally, libraries and
archives often downscale scanned images when distributing
them over the web. For the Digital Humanities, this means

dealing with low- to medium-resolution images. In case
a researcher wishes to re-run OCR in order to produce a
better textual basis, she will be forced to work with this
inferior material.

Figure 1: Different factors influencing OCR quality
for newspapers: (a) distinctiveness of characters,
e.g., an OCR system outputs *Eidgenoffenschast,
*Eidgenossenfchast, etc., for the German word
Eidgenossenschaft (en. confederation) (b) spelling
variations of a word (en. command), (c) small (and
different) font sizes, different fonts, and small margins
between lines, (d) black letter and Antiqua on the same
page, (e) smears and smudges, (f) text shining through
from the backside, (g) distorted image.
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Figure 2: Example OCR from 2005 as produced by the
Frauenhofer Institute of a page from 1793.

Having an idea about the quality of the extracted text
is not only important for indexing, but also for applying
text mining techniques to digitised material. Working
with OCRed material means that researchers might base
their discoveries on results which contain a certain bias
introduced by the OCR (Traub et al., 2015). Often, such
errors only become noticeable during the actual work with
the digitised corpora. The study by Chiron et al. (2017)
took up this point and predicted the risk of missing relevant
documents due to OCR errors given a user query in the
OCRed Gallica collection. By using the search logs of
four months of user queries, they found that 7% of the most
common search terms potentially miss relevant documents
due to OCR errors. As such, insufficient OCR impedes
advances in Digital Scholarship (Smith and Cordell, 2018)
due to erroneous text.
Such low-quality OCR is also present in the search portal
of the Neue Zürcher Zeitung1 (NZZ), a major German-
language newspaper in Switzerland. The Frauenhofer
Institute (FI) digitised the stock of the NZZ as early as
2005. Jacob (2005) summarised the process and mentioned
that no manual corrections were possible due to monetary
restrictions, the wealth of data, and the limited time frame.
The FI digitised from microfilm and noticed back then
already that the quality of the microfilms differed. This
is due to the fact that the NZZ started to microfilm
their archives in the 1950s and since then there have
been enormous technological advances. The FI tried first
and foremost to correct the distortion of images and to
enhance unfocused images. These issues were not resolved
completely and thus had severe impacts on the quality of
the OCR (as Figure 2 shows). Moreover, there was no
designated quality control process to evaluate the output of
the OCR system.
The need for high-quality OCR is evident and recent
advances in machine learning resulted in increasing
performance, even on difficult training material. The
elaborate deep learning models created new standards in
OCR. However, like any machine learning method, deep
learning models also need training material. Creating
a ground truth (i.e., a set of manually corrected texts)
for OCR can be costly and time-consuming. Once a
ground truth is ready, the question is which OCR system
to use. In this paper, we compare the performance of

1https://zeitungsarchiv.nzz.ch

five different systems. Knowing which system performs
best, however, does not directly tell us how much training
material is necessary. We, therefore, investigated how
the amount of training material affects the performance
of OCR. Additionally, we analyse the transferability of
OCR models to high-quality images, as well as to other
newspapers in order to check whether it is necessary to have
several ground truths when we wish to extract the text from
different sources.

2. Related Work
The problems accompanying the recognition of text
from images of historical documents are manifold and
complex, but recent progress in neural OCR techniques
has led to significant improvements. Springmann and
Lüdeling (2016) analysed the performance of the OCRopy2

system on a diachronic book corpus ranging from 1487
to 1914 (all in black letter fonts). They stated that
OCRopy was the only OCR system that achieved character
accuracies consistently over 94% and that their models
generalised well enough so that they performed equally
well on a variety of books. They further claimed that,
based on a recommendation by Springmann et al. (2016),
a training set of 100 to 200 lines suffices in order to
produce comparable results to models which have seen a
considerably larger training set.
The READ project3 focuses on the recognition of
handwriting. Its core is the Transkribus4 framework.
Transkribus is a tool that helps researchers to transcribe
manuscripts in the first place. It performs layout analysis
which dissects a page into text regions, lines, baselines,
and words. Moreover, it offers the possibility to run the
ABBYY FineReader Server 115 OCR software on images
uploaded to Transkribus. With the transcriptions made
within Transkribus, it is possible to train Handwritten
Text Recognition (HTR) models (Weidemann et al., 2018).
These models are elaborate neural network architectures,
which manage to recognise handwriting with only a limited
amount of training data. However, we found that HTR
models can also be applied successfully for the recognition
of printed documents, with character error rates (CER) of
1.1% or better (Ströbel and Clematide, 2019).
As concerns the amount of training data, Martı́nek et
al. (2019) showed that for German-language black letter
newspapers, a ground truth of 10 pages is sufficient to
achieve a CER of 1.4%. They used a convolutional
and recurrent neural network (in a similar, but much
simpler fashion than Weidemann et al. (2018)) and different
training strategies like, e.g., binarisation of the images,
padding, and the use of synthetically generated training
data for black letter recognition.
Wick et al. (2018) investigated both the performance of
different systems (OCRopy and Calamari6) on medieval
printed books in German and Latin, as well as the amount

2https://github.com/tmbdev/ocropy
3https://read.transkribus.eu/
4https://transkribus.eu/Transkribus/
5https://www.abbyy.com/de-de/finereader-s

erver/
6https://github.com/Calamari-OCR/calamari

https://zeitungsarchiv.nzz.ch
https://github.com/tmbdev/ocropy
https://read.transkribus.eu/
https://transkribus.eu/Transkribus/
https://www.abbyy.com/de-de/finereader-server/
https://www.abbyy.com/de-de/finereader-server/
https://github.com/Calamari-OCR/calamari
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of training data needed. They found that with increasing
number of lines in the training set (starting from only
60) the CER for both systems drastically improved. For
example, for data from 1488, their Calamari system
managed to lower the CER from 4.9% when using 60 lines
to train to 0.43% when using 3,000 lines. However, they do
not indicate an optimal number of lines for a training set.
These recent studies show that researchers in Digital
Humanities are using a number of different OCR systems
to extract text from historical documents. Many systems
are freely available. However, it demands a lot of effort
from the researchers to understand the different processing
steps (Klein et al., 2016), since there is no standardised
workflow. OCR-D (Neudecker et al., 2019) attempts to
facilitate the training of OCR models for collections via
creating standards for training and testing a variety of
OCR systems instead of limiting users to only one system.
Comparisons between different systems are thus simplified
and more transparent.

3. Ground Truth Creation
The NZZ was published in black letter from its beginnings
in 1780 until 19477. We selected one title page per
year from this period at random for manual transcription.
By restricting ourselves to title pages we made sure that
the main content on the page is textual material. This
heuristic guaranteed the exclusion of pages loaded with
advertisements of all sorts, stock reports, etc. However,
it should be noted that the amount of text on the title
page from 1780 (3,180 characters) is much smaller than
on a title page from 1939 (23,316 characters), as Figure 3
shows. The more recent data in the ground truth is thus
overrepresented, a fact we will take up again in Section
5.2.2.

Figure 3: The number of characters per year of the ground
truth from 1780 until 1947.

We extracted the images from the PDFs8 with PDFlib
TET9 and loaded them into Transkribus. We applied the
Transkribus internal ABBYY FineReader Server 11 to the

7We find newspaper pages in Antiqua before 1947, and some
black letter text has been published even after 1947.

8PDF was the output format in which the result of the
digitisation process from 2005 was saved.

9https://www.pdflib.com/de/produkte/tet/

Figure 4: Example outputs from five OCR systems for a
line from the NZZ from 1850 (red: FRXIX, blue: FRS11,
green: HTR+, purple: kraken, orange: Tesseract).

collection and used the output text as a basis from which we
started the manual correction. We also corrected regions
and added baselines, which are required in order to train
an HTR model. The resulting ground truth of 167 pages
contains 304,286 words and 43,151 lines. Depending on
the amount of text on a page, the manual correction of
a page takes between 1.5 and 3 hours. We published
the ground truth on Zenodo and GitHub (Ströbel and
Clematide, 2019).

4. OCR Systems
In our experiments, we evaluate five OCR systems:

1. ABBYY FineReader XIX10 (FRXIX) results from the
Frauenhofer Institute provided in 2005,

2. ABBYY FineReader Server 11 (FRS11) results,
available from within Transkribus,

3. a Transkribus HTR+ model (Weidemann et al., 2018),

4. kraken11, and

5. Tesseract12.

Figure 4 shows an example output from these five OCR
systems. ABBYY’s OCR systems are commercial. We
extend the category of non-commercial OCR software with
HTR+, kraken, and Tesseract, each of which we present
here briefly.

HTR+ models are part of the Transkribus framework,
where users have the possibility to train such models
given a ground truth. The model proposed by Weidemann
et al. (2018) is a deep neural network which combines
Bidirectional Long-Short Term Memory (Schuster and

10https://www.frakturschrift.com/de:produc
ts:finereaderxix

11http://kraken.re/
12https://github.com/tesseract-ocr/

https://www.pdflib.com/de/produkte/tet/
https://www.frakturschrift.com/de:products:finereaderxix
https://www.frakturschrift.com/de:products:finereaderxix
http://kraken.re/
https://github.com/tesseract-ocr/
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Figure 5: The HTR+ model architecture as presented in
Weidemann et al. (2018).

Paliwal, 1997) (BLSTM) layers with convolutional
(Krizhevsky et al., 2012) layers. Figure 5 (taken from
Weidemann et al. (2018)) summarises the HTR+ model.
We used Transkribus version 1.8.0.

kraken is a forked version from OCRopy and supports
the training of OCR models with neural networks. In
contrast to an HTR+ model, kraken allows the user to
determine the architecture of the neural network with the
help of the Variable-size Graph Specification Language13

(VGSL). This means a user has more control over the
structure which allows for tuning a model until it delivers
good enough results. kraken runs on GPUs, which speeds
up training time. We used version 2.0.5.

Tesseract is Google’s solution of a neural OCR system.
Like kraken, it allows the user to specify the structure of the
neural network with VGSL. In contrast to kraken, Tesseract
is not GPU-enabled. We used version 4.00.

5. Experiments and Results
In our experiments, we examine the OCR quality of the
black letter era of the NZZ. We investigate to what extent
different OCR systems improve the OCR quality. Firstly,
we are interested in the quality of the OCR provided by the
NZZ (produced in 2005). Secondly, we want to scrutinise
the amount of training data needed for good OCR quality.
Thirdly, the last experiment focuses on the impact of high-
quality images on the OCR results in order to judge the
transferability of the OCR models.

5.1. Evaluation
We use the bag-of-words F1-measure metric of PRImA
TextEval 1.4 (Clausner et al., 2016) for the evaluation
the OCR systems’ performances. By applying a bag-of-
words approach, possible differences in layout recognition
or word order of the different systems cannot distort the
results.

13https://github.com/mldbai/tensorflow-mod
els/blob/master/street/g3doc/vgslspecs.md

If we consider the example in Figure 6, we first determine
the bag-of-words for each page in the ground truth as well
as for the output of the OCR system, which is kraken in
this case. We build the bag of unique words from the
respective bags-of-words. This bag determines the number
of words the OCR system identified correctly, i.e., true
positives (TP). We can now compute Recall, which is the
percentage of words the system should have identified, as
true positives divided by the sum of true positives and false
negatives (FN):

R =
TP

TP + FN
→ 4

8
= 0.5. (1)

Precision, on the other hand, gives us the percentage of
correctly identified words, which is the difference between
true positives and the sum of true positives and false
positives (FP):

P =
TP

TP + FP
→ 4

9
= 0.44. (2)

The F1-measure is the harmonic mean between Precision
and Recall, as given in Equation 3:

F1 =
2 ∗R ∗ P
R+ P

→ 2 ∗ 0.5 ∗ 0.44
0.5 + 0.44

= 0.46. (3)

Figure 6: Example for bag-of-words evaluation with one
line from which the kraken system extracted the text.

The numbers reported in this paper correspond to the
average F1 score of all pages in the test set.

5.2. Experiment 1 — Comparison
The first experiment compares the performance of five
different OCR outputs in order to get a quality estimate on
the NZZ’s original OCR and to investigate how well state-
of-the-art methods perform on NZZ material.

https://github.com/mldbai/tensorflow-models/blob/master/street/g3doc/vgslspecs.md
https://github.com/mldbai/tensorflow-models/blob/master/street/g3doc/vgslspecs.md
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Figure 7: Line image-text pair used as training data.

5.2.1. Setup
We extracted the text of the original OCR dating back to
2005 from the PDFs provided by the NZZ. To test FRS11
we applied OCR to the NZZ from within Transkribus. For
the models which we train ourselves, i.e., HTR+, kraken,
and Tesseract, we used a 90/1014 split for training and
testing, i.e., 150 pages for training, and 17 pages for testing.
The test set contains a page from roughly every decade in
order to get an apt representation of the diachronicity of
the ground truth, and we use this test set throughout our
experiments to evaluate the performances of the different
systems. The training set of 150 pages comprises a total
of 273,440 lines which translates to 38,756 lines. We use
the medium-resolution images extracted from the PDFs
produced in 2005. These images stem from scanned
microfilms of the NZZ. Tesseract and kraken needed more
preprocessing. We used the layout information of line
regions from FRS11 generated within Transkribus and
extracted corresponding line image-text pairs (see Figure
7). These pairs served as input data for training kraken as
well as Tesseract.
The set-up of the training process is much simpler for
kraken than for Tesseract, since Tesseract expects the
transformation of the data into an adequate input format.
kraken, on the other hand, works with corresponding .png
and .txt files directly.
The HTR+ model trained for 200 epochs with a batch size
of 16 and Dropout of 0.5 between the layers. It normalises
the input height of the images to 64 pixels. Weidemann et
al. (2018) stated that deep neural networks usually need a
lot of data to generalise well. Since ground truth creation
for handwritten documents is a labourious process, they
employed data augmentation to synthetically enlarge the
training set. These transformations comprise translation,
scaling, rotation, shear mapping and compositions of these
methods. We did not apply such methods to the input data
for Tesseract and kraken.
For Tesseract and kraken we used the standard settings. The
network specifications were:
Tesseract = [1,36,0,1 Ct3,3,16 Mp3,3 Lfys48 Lfx96 Lrx96

Lfx256 O1c]

kraken = [1,48,0,1 Cr3,3,32 Do0.1,2 Mp2,2 Cr3,3,64

Do0.1,2 Mp2,2 S1(1x12)1,3 Lbx100 Do 01c]

In their essence, both systems work in a similar way.
Differences lie in the normalisation of the input (48 pixels
for kraken and 36 pixels for Tesseract), the addition of
Dropout Do for regularisation purposes in kraken, and the
use of bidirectional layers Lb in kraken. Tesseract, on
the other hand, uses two forward LSTMs Lf and two
reverse LSTMs Lr as default setting. Mp stands for max

14Typically, these systems use 10% of the training data as
validation set during training.

pooling and S reshapes the output of the previous layer. As
concerns hyper-parameters settings Tesseract uses a default
learning rate of 0.002, while kraken uses 0.001. The default
optimisers for both systems is Adam.
Additionally, we tried to imitate the HTR+ model from
Figure 5 in VGSL in kraken (we call the rebuild kraken+)
in the following way:
kraken+ = [256,64,0,1 Cr4,2,8,4,2 Cr4,2,32,1,1 Mp4,2,4,2

Cr3,3,64,1,1 Mp1,2,1,2 S1(1x0)1,3 Lbx256 Do0.5 Lbx256

Do0.5 Lbx256 Do0.5 Cr255,1,85,1,1]

We used kraken because of the much easier handling as
compared to Tesseract. We applied Dropout after every
BLSTM layer to prevent overfitting. The number of filters
in the last convolutional layer of the HTR+ depends on the
number of different characters. Since we cannot control
for this number in VGSL, and since we could not find
this information in Weidemann et al. (2018), we examined
the frequency distribution of the characters in the training
set. We determined that limiting the number of filters to
85 (out of 144 different characters, among which we find
also symbols) is a reasonable threshold. We used a batch
size of 256 and the same normalisation of the input height.
We reduced the learning rate to 0.0001. Moreover, we
used a cyclical learning rate (Smith, 2017), which should
result in faster convergence of the model and lead to better
results than a fixed learning rate or a learning rate schedule
without having to optimise for the best learning rate. With
the cyclical learning rate, the kraken model did not show
any significant improvements on the validation set after 18
epochs.
We evaluated the output of the six different systems with
the bag-of-words F1-measure presented in Section 5.1.

5.2.2. Results of Experiment 1
Table 1 summarises the performance of the five OCR
systems as the average of all F1 scores over the test set.
Unsurprisingly, the results of the 2005 FRXIX system are
far worse than those of the new systems. For the page from
1820, the F1-measure of the FRXIX output is at only 38.2%
and thus totally illegible. A closer look at the page shows
that it indeed poses a problem due to the very bad image
quality and large portions of the text from the backside
shining through. FRS11, i.e., a pure re-OCRing using
ABBYY’s most recent version, achieves an improvement
of almost 13 percentage points. The result of HTR+,
however, leads to an additional improvement of more than
16 percentage points. That the F1 scores for kraken and
Tesseract are almost the same was to be expected since
they use comparable (although not identical) architectures.
Tesseract’s results are slightly more consistent though, but
kraken’s use of a BLSTM layer seems to be beneficial. If
we look at the HTR+ rebuilt model using kraken, we find
that it performs only 2.24 percentage points short of the
HTR+ model. As such, kraken is an important candidate
to consider for building an OCR system. Last but not least,
and referring back to the imbalanced word distribution over
the years mentioned in Section 3, the overrepresented data
from later periods of the time span for which we have
constructed a ground truth does not pose a problem for the
recognition of text from pages belonging to the part of the
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underrepresented early data.

FRXIX FRS11 HTR+ kraken Tesseract kraken+

F1 0.678 0.811 0.978 0.865 0.861 0.954
SD 0.111 0.073 0.013 0.064 0.055 0.024

Table 1: Average mean and standard deviation of the
performance of six OCR systems on the test set.

5.3. Experiment 2 — Ablation
The ablation experiment aims at determining the number
of pages needed during training an OCR system to achieve
the best results possible. The results from subsection 5.2.2
indicate to focus on HTR+ and kraken+ for the ablation
experiment.

5.3.1. Setup
For this experiment, we split the corpus in different training
set sizes, while the test set remains the same. Table 2
provides an overview of the different training test sizes.
We decided to test training set sizes of 12, 25, 50, 100,
and 150 pages, where bigger training sets always contain
the pages from smaller training sets. One exception is
HTR+ 200L, where we sampled 200 lines at random from
training set pages15. We chose to train a model on 200 lines,
because Springmann and Lüdeling (2016) reported from
their experiments that the character accuracy ranges from
95% to sometimes even 99%. We then trained an HTR+
model within Transkribus for each training set size for 200
epochs and again compared the performance of each model
on the test set using the bag-of-words F1-measure. We
carried out the same ablation with training set sizes from
12 to 150 pages with kraken. From the learning curve
of the HTR+ model in Section 5.2.2 (see also Figure 8)
we determined 50 epochs as sufficient to train the kraken+
models. While for the biggest training set size the HTR+
model takes about 8 hours, kraken took more than two days
to run on the same training set on our infrastructure.

Figure 8: Learning curve over 200 epochs for HTR+ model.

15We used the sampler integrated into the Transkribus tool.

Training set size # words # lines

150 pages 273,440 38,756
100 pages 183,246 25,904
50 pages 89,705 12,740
25 pages 45,134 6,404
12 pages 22,081 3,157
200 lines 1407 200

Table 2: Summary of all training sets used for the training
of different models divided in number of words and number
of lines (we used the 200 lines for HTR+ only).

5.3.2. Results of Experiment 2

We first notice from Table 3 that a training set of only 200
lines is not sufficient. We also point to the fact that as
soon as character accuracy drops below a certain threshold,
word accuracy suffers significantly. As such, we deem the
bag-of-words F1-measure to be more telling than character
accuracies, but we nevertheless include the character error
rate (CER) of the HTR+ models for informative purposes.
The HTR+ 200L model, with a CER of 5.04%, achieves
an average bag-of-words F1-score of 0.808, which is only
slightly worse than FRS11 (see Table 1). In general, we
note an upwards trend, i.e., the more training lines we
include, the better the models perform, both in terms of
CER and bag-of-words F1-measure. Also, the SDs are so
low that we can conclude that the models output consistent
results over all periods.

Models

HTR+ 150 HTR+ 100 HTR+ 50 HTR+ 25 HTR+ 12 HTR+ 200L

CER in % 0.48 0.50 0.56 0.68 1.10 5.04
F1 0.978 0.977 0.972 0.965 0.954 0.808
SD 0.013 0.012 0.014 0.017 0.022 0.066

Table 3: Performance of HTR+ using different training set
sizes (200 lines, as well as 12, 25, 50, 100, and 150 pages).

Table 4 makes a reference to the number of pages needed
for a ground truth in order to produce high-quality OCR,
since we were interested in whether there is a significant
difference in the performance of the models when trained
on differently sized training sets. In order to be able to
make a statement about these differences, we performed
a One-Way ANOVA on the 17 bag-of-words F1 scores of
the test set. We excluded results of the HTR+ 200L model
since its scores differed too much from those of the other
systems (the results would remain the same). We see a
significant performance drop between HTR+ 50 and HTR+
25 at a significance level of p = 0.0001, which is highly
significant. We conclude from this result that a training
set size of 50 is sufficient for high-quality OCR, and that
adding pages for training (e.g., 50 or even 100 more) does
not lead to significant performance boosts.
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Models

kraken+ 150 kraken+ 100 kraken+ 50 kraken+ 25 kraken+ 12

CER in % 0.89 0.99 1.40 1.62 3.61
F1 0.953 0.946 0.924 0.905 0.821
SD 0.024 0.029 0.041 0.047 0.072

Table 5: Performance of kraken+ using different training
set sizes (12, 25, 50, 100, and 150 pages).

SUMMARY

Groups Count Sum Average Variance

HTR+ 150 17 16.6196 0.9776 0.0002
HTR+ 100 17 16.6111 0.9771 0.0001
HTR+ 50 17 16.5307 0.9724 0.0002

HTR+ 25 17 16.4028 0.9649 0.0003
HTR+ 12 17 16.2148 0.9538 0.0005

Table 4: Significance testing in order to determine the
optimal number of pages in the training set. The red line
indicates where the difference between groups becomes
significant.

The results for the kraken+ models show a similar
picture. Although the overall scores in terms of bag-
of-words F1-measure for the kraken+ models are lower
than those for HTR+, Table 5 shows the same trends,
namely that the performance of the models improves
with increasing training set size. We hypothesise that
the data preprocessing and augmentation, i.e., contrast
normalisation, skew correction, slant normaliser, affine
transformation, dilation, erosion, as well as elastic and grid-
like distortions, as mentioned in Weidemann et al. (2018),
lead to an enhanced performance.
We applied the same One-Way ANOVA statistics to the
kraken+ models and found the same division as for the
HTR+ models at a significance level of even p < 0.0001,
hereby confirming that a training set size of 50 pages
produces accurate OCR results. This is convenient,
especially if we take into account the training times of the
kraken+ models (see Table 6). As such, it is possible to train
reliable OCR systems within 13.5 hours. We should also
point out that training times for HTR+ models with 8 hours
on the biggest training set size is much lower (our kraken+
model took roughly 43 hours to complete training on the
biggest training set). Nevertheless, our results also indicate
that it is still possible to achieve better results by adding
more material, since the F1 scores are higher for models
trained with more data. However, the results also tell us
that in terms of time and cost optimisation for ground truth
annotation, 50 pages are sufficient. We could have saved
between 200 and 300 hours of work, if we had known this
beforehand.

Models

kraken+ 150 kraken+ 100 kraken+ 50 kraken+ 25 kraken+ 12

Training time 43h 09min 28h 02min 13h 31min 9h 31min 3h 12min

Table 6: Training times for different training set sizes over
50 epochs on GeForce GTX TITAN X.

5.4. Experiment 3 — Transfer

This experiment tests whether the application of the models
we have trained on medium-quality NZZ images remains
stable when we apply them to high-quality images on the
one hand, and to pages printed in black letter from other
newspapers on the other hand.

5.4.1. Setup

In order to test the former case, we take high-quality scans
digitised directly from paper for four pages from the NZZ
test set (1780, 1830, 1880, 1929). We then extracted
the text from these pages using the HTR+ models 12 to
150 and also compared these results to OCR results from
FRS11. We tested the transfer to other German-language
and black letter publications by taking five high-quality
scans each from the Bundesblatt and the Neue Zuger
Zeitung16 covering the last 50 years of the 19th century and
extracted the text using the same systems. Again we used
the bag-of-words F1-measure to evaluate the performance
on the slightly different data.

5.4.2. Results of Experiment 3

First, we looked at the average of each model on a reduced
4-pages test set (all of which are from the original test set).
The overall picture (see Table 7) is that the performance
stays about the same. For the recognition of text in high-
quality images, there are slight deteriorations of 0.03 and
0.01 for the HTR+ 150 model and the HTR+ 50 model,
respectively. FRS11 profited the most from the better image
quality and improved almost 5 percentage points. The
results in Table 7 suggest that the models are transferable
and that the performance will not suffer, although we have
trained the models on medium-quality images.

As concerns the transferability to other publications, we see
average F1 scores of above 95% for all HTR+ models (see
Table 8). Moreover, FRS11 scores over 90% for the first
time on the Bundesblatt. It is, however, still 5 percentage
points away from the best performing HTR+ model for
the same data. The results show that a transfer between
publications is possible and that the OCR at times is even
better than on the data the systems saw during training. We
should mention, though, that the standard deviation (SD) is
a little higher in these evaluations, which stems from the
smaller test set size.

16The Bundesblatt is a collection of announcements by the
Swiss government. The Neue Zuger Zeitung is another German-
language Swiss newspaper, not to be confused with the NZZ.
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Paper scans Microfilm

Models F1 SD F1 SD

HTR+ 150 0.982 0.002 0.985 0.005
HTR+ 100 0.983 0.004 0.983 0.005
HTR+ 50 0.977 0.004 0.978 0.006
HTR+ 25 0.972 0.009 0.969 0.008
HTR+ 12 0.969 0.005 0.956 0.011
FRS11 0.891 0.031 0.847 0.024

Table 7: Mean F1 and standard deviation (SD) of the HTR+
models and FRS11 on four high-quality images (1780,
1830, 1880, 1929) of the NZZ, compared to performance
on scans from microfilm.

Bundesblatt Neue Zuger Zeitung

F1 SD F1 SD

HTR+ 150 0.986 0.015 0.990 0.007
HTR+ 100 0.986 0.013 0.991 0.006
HTR+ 50 0.982 0.01 0.989 0.007
HTR+ 25 0.982 0.015 0.985 0.009
HTR+ 12 0.976 0.018 0.982 0.010
FRS11 0.924 0.027 0.884 0.037

Table 8: Average performance on five pages each from
other publications.

6. Conclusion
It became evident during our work that character error rates
(CER) are a good indicator about the models’ ability to
identifying characters correctly. However, for any further
data processing which may include indexing or applying
text mining techniques, the bag-of-words F1-measure
provides a better picture of the systems’ performances.

6.1. Experiment 1
We were able to show that state-of-the-art neural OCR
systems like HTR+, kraken, and Tesseract trained on
in-domain data perform better than standard commercial
systems. The kraken results are on par with Transkribus
but kraken provides more freedom when training an OCR
model.
With Transkribus, there are still restrictions, e.g., it
is not possible to download the model in order to
apply it independently from the Transkribus infrastructure.
Moreover, although the creation of a ground truth within
Transkribus is simple, annotators need to add baselines in
order for an HTR+ model to work. This is obsolete for
kraken17 (and Tesseract), which only require line images
without baseline information.
The difference between e.g., HTR+ 150 and the kraken+
is likely to originate in Transkribus’ usage of baseline
information, as well as the various preprocessing and data
augmentation steps.
Finally, it is also possible to do ground truth annotation with
kraken, as well as image segmentation. Future work should

17more recent versions of kraken offer the possibility to train
with baseline information, though

analyse the impact of using kraken’s line segmentation
tools. First trials did not show the expected quality,
however.

6.2. Experiment 2
We furthermore provided an estimate of the amount of
training pages necessary to provide solid OCR results using
HTR+ and kraken+. Our experiments show that for both
systems a ground truth of 50 pages is sufficient to provide
good OCR results. This insight significantly reduces the
time needed to create a ground truth.

6.3. Experiment 3
We have shown that the models are transferable to
other periodicals or newspapers. Further research should
scrutinise whether tuning an already existing model (e.g.,
HTR+ or kraken+) with pages from “unknown” material
results in another performance boost.
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