
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 3490–3497
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

3490

Jamo Pair Encoding: Subcharacter Representation-based Extreme Korean
Vocabulary Compression for Efficient Subword Tokenization

Sangwhan Moon†‡, Naoaki Okazaki†
Tokyo Institute of Technology†, Odd Concepts Inc.‡,

sangwhan@iki.fi, okazaki@c.titech.ac.jp
Abstract

In the context of multilingual language model pre-training, vocabulary size for languages with a broad set of potential characters is an
unsolved problem. We propose two algorithms applicable in any unsupervised multilingual pre-training task, increasing the elasticity
of budget required for building the vocabulary in Byte-Pair Encoding inspired tokenizers, significantly reducing the cost of supporting
Korean in a multilingual model.

Keywords: tokenization, vocabulary compaction, sub-character representations, out-of-vocabulary mitigation

1. Background
With the introduction of large-scale language model pre-
training in the domain of natural language processing, the
domain has seen significant advances in the performance
of downstream tasks using transfer learning on pre-trained
models (Howard and Ruder, 2018; Devlin et al., 2018) when
compared to conventional per-task models. As a part of this
trend, it has also become common to perform this form of
pre-training against multiple languages when training a sin-
gle model. For these multilingual pre-training cases, state-
of-the-art methods have relied on subword based tokenizers,
such as Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
or SentencePiece (Kudo and Richardson, 2018) as a robust
mechanism to mitigate the out-of-vocabulary (OOV) prob-
lem at a tokenizer level, by having a fallback to a character
level vocabulary. Not only have these methods shown to
be robust against OOV compared to standard lexicon-based
tokenization methods, but they also have benefited from a
computational cost perspective as it reduces the size of the
input and output layer.
While these methods have shown significant improvements
in alphabetic languages such as English and other Western
European languages that use a Latin alphabet, these methods
have limitations when applied to languages that have a large
and diverse character level vocabulary, such as Chinese,
Japanese, and Korean (CJK) languages.
In this paper, we describe the challenges of subword tok-
enization when applied against CJK. We discuss the differ-
ence of Korean compared to other CJK languages, how to
take advantage of the difference which Korean has when a
subword tokenizer is used, and finally, propose a subword
tokenizer-agnostic method, which allows the tokenizer to
take advantage of Korean specific properties.

2. Problem Definition
CJK languages, due to the strong linguistic dependency of
borrowed words from Chinese as part of their vocabulary,
have a much more extensive range of characters needed to
express the language compared to other alphabetic (e.g.,
Latin) languages. This reflects directly on the vocabu-
lary budget requirements needed for an algorithm, which
builds a subword vocabulary on character pairs such as

BPE. Roughly, the minimum size of the subword vocab-
ulary can be approximated as |V | ≈ 2|Vc|, where V is the
minimal subword vocabulary, and Vc is the character level
vocabulary.
Since languages such as Japanese require at least 2000 char-
acters to express everyday text, in a multilingual training
setup, one must make a tradeoff. One can reduce the av-
erage surface of each subword for these character vocabu-
lary intensive languages, or increase the vocabulary size.
The former trades off the performance and representational
power of the model, and the latter has a computational cost.
Similar problems also apply to Chinese, as it shares a sig-
nificant portion of the character level vocabulary. However,
this also allows some level of sharing, which reduces the
final budget needed in the vocabulary.
Korean is an outlier in the CJK family, which linguistically
has a shared vocabulary in terms of roots, but uses an en-
tirely different character representation. A straightforward
approach would be to share the character level vocabulary
between CJK languages, as it was possible between Chi-
nese and Japanese. However, this, unfortunately, is not a
straightforward operation, as Hangul (the Korean writing
system) is phonetic, unlike the other two examples. This
means that while the lexicon may have the exact same roots,
the phonetic transcription is challenging to do an inverse
transform algorithmically. This requires comprehension of
the context to select the most likely candidate, which would
be analogous to a quasi-masked language modeling task.

3. Related Work and Background
The fundamental idea of characters is not new; in the past,
many character-level approaches have been proposed in the
form of task-specific architectures. There are also sub-
character level methods analogous to our method, all of
which we discuss in the language-specific sections below.

3.1. Non-Korean Languages
A study on a limited subset of Brahmic languages (Ding
et al., 2018) proposes a method which can be used to re-
duce the vocabulary budget needed for all languages by
generalizing, simplifying, then aligning multiple language
alphabets together. This is applicable when the writing
systems have genealogical relations that allow this form of

3491

강江
ㄱ[choseong]

宮 궁

ㅏ[joongseong]

ㅇ[jongseong]

ㄱ[choseong]

ㅜ[joongseong]

ㅇ[jongseong]

Phonetic

Phonetic

Jamo

Jamo

Figure 1: Transformation process and Hangul Jamo sub-
character composition. In the real world, Hangul to Chinese
almost always has a 1:n mapping.

alignment. Previous works (He et al., 2018; Shi et al., 2015;
Sun et al., 2014; Yin et al., 2016) demonstrate the potential
of sub-character based methods in the context Chinese and
Japanese of CJK languages through radical based decom-
position.

3.2. Korean
Korean, as shown in figure 1 builds on a small phonetic
alphabet, and uses a combination of the consonants and
vowels called Jamo as a building block, and use a combi-
nation of those when composing each character. Following
the notation in (Stratos, 2017), given this Jamo alphabet J ,
where the following table can explain |J | = 51, and each
possible role when forming a complete character.
The Jamo alphabet J is a union defined as J = Jh ∪
Jv ∪ Jt, where Jh is a Choseong (head consonant), Jh is
Jungseong (vowel), and Jh is Jongseong (tail consonant).
Therefore, the first example illustrated in figure 1 can be
explained as ㄱ∈ Jh, ㅏ∈ Jv , and ㅇ∈ Jt. Note that Jt
can be omitted, in which case it corresponds to <nil> ∈ Jt.

Level Jamo (Subcharacters)
Jh, Choseong ㄱ ㄲ ㄴ ㄷ ㄸ ㄹ ㅁ ㅂ ㅃ ㅅ ㅆ ㅇ

ㅈㅉㅊㅋㅌㅍㅎ

Jv , Jungseong ㅏ ㅐ ㅑ ㅒ ㅓ ㅔ ㅕ ㅖ ㅗ ㅘ ㅙ ㅚ

ㅛㅜㅝㅞㅟㅠㅡㅢㅣ

Jt, Jongseong <nil> ㄱ ㄲ ㄳ ㄴ ㄵ ㄶ ㄷ ㄹ ㄺ ㄻ
ㄼ ㄽ ㄾ ㄿ ㅀ ㅁ ㅂ ㅄ ㅅ ㅆ ㅇ ㅈ

ㅊㅋㅌㅍㅎ

Table 1: Hangul Jamo sub-characters, along with their re-
spective positional roles for composition.

Exploiting these characteristics is not a new idea, and have
been explored in the context of an end-to-end architecture
in (Stratos, 2017), as a method for learning subword embed-
dings in (Park et al., 2018), and for classification in (Cho et
al., 2019).
One significant contribution of our method is the guaran-
tees of round trip consistency. Previous work, which we
discussed above, also discuss sub-character (Jamo) based
methods, but the evaluation was limited to tasks that do not
require generation, and reconstruction was not discussed.

We attempt to address this limitation in our work. This
is analogous to how subword tokenization methods have
brought to the field guarantees of lossless encoding and
decoding, which was not possible with conventional lossy
encoding methods such as lemmatization, stemming, and
other normalization methods.

Standard Form

하다 ㅎㅏㄷㅏ
Declarative Present Formal Low

한다 ㅎㅏㄴㄷㅏ
Declarative Future Informal Low

할거야 ㅎㅏㄹㄱㅓㅇㅑ
Declarative Present Formal High

합니다 ㅎㅏㅂㄴㅣㄷㅏ

Figure 2: In this example, the standard form 하다 (to do)
can be conjugated into many forms. The first two Jamo
correspond to a common morpheme, which through agglu-
tination becomes different conjugations.

4. Method
The core motivation of our method is to remove the Uni-
code bottleneck we have described in the previous section,
expose the alphabet composition characteristics and the ag-
glutinative nature of Korean to the subword tokenizers. We
also introduce a hard round-trip requirement, which guar-
antees lossless reconstruction of the transformed text back
to the original input while not introducing any unexpected
side-effects when training with other languages.
Our method uses special unused characters in the Hangul
Unicode page as hints for the processors to operate. To-
kenizers will treat these invisible characters the same as a
standard character in the same Unicode page. This is crucial
for tokenizer implementations that treat pairs from different
Unicode pages as non-mergeable.
The method itself is implemented and provided as two mod-
ules, with two different algorithms. The two modules are
the pre-processor, which performs the Jamo decomposition,
and the post-processor, which reconstructs it back to a more
human-readable form. The post-processor is only needed
for generative tasks when the output will be presented to a
human. The pre-processor needs to be run at least once for
each input.
We propose two different algorithms: a simple method
which aligns the output to a character grid of 3, and a
complex method which does not have alignment and in-
stead relies on an automaton to reconstruct the transformed
text. Both methods prefix orphaned Jamo (e.g.,ㅋㅋ, which
roughly means "laugh out loud"), which is extremely com-
mon in internet corpora, with a post-processor hint. These
methods will be referenced as aligned and automaton in
later parts of our paper.

3492

The two methods have different characteristics. Aligned can
be reconstructed with an extremely simple post-processor,
and has much higher guarantees for reconstruction. The
automaton requires a significantly more complex state-
machine based post-processor for reconstruction, which op-
erates in the same way an Input Method Processor (IME)
does.

4.1. General Decomposition
Decomposition exploits the Unicode level properties, which
Korean text has, with similar properties but slightly different
from NFKD1 normalization. The difference is mainly for
reconstruction simplicity and reliability when dealing with
non-deterministic output, such as what would come out
of a model that has not fully converged. Decomposition
involves arithmetic operations against the integer Unicode
codepoint for each character. Given the integer Unicode
codepoint ci for character c, and the constants k1 = 44032,
k2 = 588, and k3 = 28, the following formula explains the
decomposition:

c′i = ci − k1

ih =
c′i
k2

iv =
c′i − (k2 · ih)

k3
it = (c′i − (k2 · ih))− k3 · iv

The constants correspond to offset information for each part
in the global Unicode table and page for Korean. The com-
puted ih, iv , and it correspond to the index of the Jamo in
table 1 for Jh, Jv , and Jt respectively.
Orphaned Jamo is prepended with a special character
U+115F (Hangul Choseong Filler). During reconstruction,
if the post-processor sees this character, it will treat it as a
look-ahead hint and ignore it, and not attempt to reconstruct
a full character in the next iteration. Each orphan Jamo
character is prefixed with this hint.
This operation is performed for c ∈ C where c is an indi-
vidual character, and C is the corpus if the c is a codepoint
that is in a Korean codepage. For non-Korean, the c is left
intact.

4.2. Aligned Processing
4.2.1. Aligned Decomposition
In the pre-processor of the aligned method, we replace cases
of <nil>∈ Jtiv to a special filler character U+11FF (Hangul
Jongseong Ssangnieun) in the Unicode Jamo page to make
the output friendlier against algorithms which avoid merg-
ing character pairs in different code pages. This particular
placeholder was chosen as it is impossible for a user to input
this through a standard IME.
This ensures that when the post-processor sees a Choseong
(head consonant), it can perform a read-ahead for two more
characters and perform a reconstruction.

1 Normalization Form Compatibility Decomposition.

Input 강 강가 ㅋㅋ

Output ㄱㅏㅇ ㄱㅏㅇㄱㅏ<f> <o>ㅋ<o>ㅋ

Table 2: An example of the decomposition in aligned mode.
<o> denotes orphan hints, and <f> denotes filler.

4.2.2. Aligned Reconstruction
In this algorithm, the post-processor is implemented such
that it is an inverse transform of the previous decomposition
process to derive the original ci. The post-processor reads
each c ∈ C from textC, and in the event c is in the Choseong
set Jh, it reads ahead for two more characters, which are
expected to correspond to Jamos within Jv and Jt respec-
tively. Given these characters ch, cv , and ct we look up the
index ih, iv , and it such that ch = Jhih

, cv = Jviv , and
ct = Jtit with an exception where it = 0 if ct = U+11FF,
the filler character.
Given ih, iv, it, the inverse transform can be done with the
following formula.

ci = k1 + (ih · k2 + iv · k3 + it)

The computed ci is the reconstructed codepoint of the orig-
inal character before decomposition. While simplicity is
the strength of this method, it does not fully expose the
agglutinative nature of the underlying language. This is
mainly caused by the filler character acting as a merge bot-
tleneck, so the vocabulary training results in fitting towards
a complete character boundary for cases where the bottle-
neck happens. This results in unmerged shared morphemes,
and an example is illustrated in figure 3.

Standard Form

부르다 ㅂㅜ<f>ㄹㅡㄷㅏ
Declarative Present Informal Low

불러 ㅂㅜㄹㄹㅓ
Correct Shared Surface

불러 ㅂㅜㄹㄹㅓ
Actual Shared Surface

불러 ㅂㅜㄹㄹㅓ

Figure 3: An example of the filler character interfering with
a shared morpheme surface merge. The filler character in
this example is <f>, which results in an incorrect surface,
as seen in the fourth example.

4.3. Automaton (Unaligned) Processing
4.3.1. Automaton Decomposition
The decomposition process in the automaton based algo-
rithm is the same as aligned, as explained in 1. One minor
difference is that the filler character can be omitted, as the
state machine in the post-processing step can automatically
transition the state to a finished character even there is no
filler. An example illustrating the difference is in table 3

3493

Input 강 강가 ㅋㅋ

Output ㄱㅏㅇ ㄱㅏㅇㄱㅏ <o>ㅋ<o>ㅋ

Table 3: An example of the decomposition in automaton
mode. <o> denotes orphan hints. Automaton mode does
not need the filler characters.

4.3.2. Automaton Reconstruction
In this case, as the Jamo output is not aligned to the character
boundary, reconstruction must be done with a stateful parser
algorithm. We use a simplified version of what is commonly
used in an IME for Korean input for reconstruction; the
main difference is that this assumes vowel and consonant
combinations are already pre-combined. This assumption
holds as long as the decomposed text was processed through
the pre-processing as we defined, as iv and it computed
earlier reference pre-combined characters in Jv and Jt. We
will not be discussing every corner case in this paper, but
at a high level, the state machine uses six registers, and
has three possible states as illustrated in figure 4 - initial,
interim, and end.
Initial state is triggered when the current character c sat-
isfies the condition c ∈ Jh. Interim corresponds to any
intermediate state where parts of the registers have been
filled in but are not ready to emit a complete character. End
generally happens after all registers have been filled, and a
character is emitted. In this state machine, the registers can
contain values such that R1 ∈ Jh, R2 ∈ Jv , R3 ∈ Jt, and
R4 ∈ Jh. The algorithm in which the state machine runs is
illustrated in the appendix section, as algorithm 1.
Generally, this state machine will attempt to compose com-
plete characters when all registers R1 to R3 are filled, or if
R1 and R2 are filled, and a termination condition occurs.
This can happen if R2 is filled and a vowel comes in, as
unlike a true IME input, our method has the vowels pre-
combined. As the vowel slot has already been saturated, the
values of the current registers will be emitted to a character,
and the registers will be reset. (This condition is illustrated
in the branch of our pseudocode in 1, where the internal
state is S = INTERIM, c ∈ Jv, R2 ̸= 0.) One other spe-
cial case is the carryover operation, which is the only time
R4 is used. This is used when R1 to R3 has been filled, but
another consonant comes in. In this case, c is assigned to
R4, and the state is set to the initial state.
In this algorithm, emit() is a bridge to the ci reconstruction
algorithm we defined earlier. Given that the function emit()
is called with the arguments ch, cv , and ct respectively,
we use the exact same method as earlier and look up the
index ih, iv , and it such that ch = Jhih

, cv = Jviv
, and

ct = Jtit with an exception where ch is treated as an orphan
if cv = ct = 0.
The function combine() combines two separate consonants
(e.g.ㄹ,ㄱ) in Jt to a combined consonant (e.g.ㄺ)in Jt.
This is done through a lookup table of valid combined con-
sonant characters in Jt.

4.4. Expectations
As a result of introducing either of these methods, we expect
to see improvements in terms of robustness against out-of-
vocabulary, flexibility in target vocabulary size, and sub-

word tokens, which better represent morphemes or common
patterns one can observe in an agglutinative language when
the Unicode character boundary bottleneck is removed.
We will confirm our hypotheses in the experiment section.

5. Experiments
As this work builds on the foundation of unsupervised, sub-
word tokenized large corpus pre-training in a multilingual
context, as without these methods, the problem we are at-
tempting to address would have never surfaced in the first
place. The most significant contribution to this particular
approach is BERT (Devlin et al., 2018), which also has
a multilingual pre-trained model (bert-base-multilingual-
cased) readily available. Along with that, we evaluate
against XLM’s (Lample and Conneau, 2019) 100 language
model (xlm-mlm-100-1280), and two publicly available
pre-trained BERT models; KoBERT and BERT Korean
(BERTKr) 2. We will be using only the tokenizer portions
from these models as comparisons.

Model Langs All Kor Average
BERT 104 119547 1568 5.39 / 1.35
XLM 100 200000 2581 6.61 / 1.37
KoBERT 1 8002 7378 2.70 / 1.67
BERTKr 1 32006 11607 3.04 / 2.58

Table 4: Langs is the count of languages the model supports.
All and Kor is the total vocabulary size followed by the size
of the Korean side of the vocabulary. Average is average
subword length for the whole vocabulary, followed by the
Korean portion.

We compare with and without our methods on the Sen-
tencePiece(Kudo and Richardson, 2018) tokenizer, trained
against 500,000 randomly sampled sentences from the
kosentences Wikipedia dataset, and 50,000 sentences from
the Naver Sentiment Movie Dataset’s test set to represent
user written content. This corpus was then used to train
SentencePiece models with vocabulary sizes of 350, 1K,
2.5K, 5K, and 10K. Sentences longer than the maximum
designated sentence length were discarded during training.
The hyperparameters for training the tokenizer have been
noted in the appendix section.

5.1. Datasets
For our experiments, we will be using the following datasets
to evaluate the effects of our method. As our primary in-
terest is on the tokenization aspect, we will only be using
the corpus to validate the method against domain shift. The
rationale behind this is that each underlying model has dif-
ferent performance characteristics, along with the pre-train
corpus not being part of the release. For these reasons, we
focus mainly on evaluating differences on a tokenization
level.
For vocabulary training, we will be using multiple subsets of
different sizes from the Wikipedia part of the kosentences3

corpus. As our primary focus is on improving transfer

2 https://github.com/SKTBrain/KoBERT
https://github.com/yeontaek/BERT-Korean-Model

3 https://github.com/cynthia/kosentences

3494

R1
Choseong ㄱ

R2
Jungseong ㅏ

R3
Jongseong ㄹ

R4
Carryover 0

C
Work ㅁ

S
State END

Input Text: ㄱㅏㄹㅁㅜㄹㅣ

Read Cursor

INIT INTERIM END

Orphaned Vowel

R1 & R2 set, C is vowel
R1 set, C is consonant

R1 & R2 & R3 set, C is vowel

R1 & R2 set,
C is consonant

R4 is set, OR
C is consonant

R1 & R2 & R3 set, standard completion
OR + Carryover through R4

As R1 & R2 & R3 are set,
Next state is INIT + Carryover through R4)

Figure 4: An illustration of the state machine needed for reconstruction in the automaton method post-processor. This
illustration demonstrates the carryover state transition.

learning, we follow the same protocol of learning the vo-
cabulary at the pre-train stage and using the vocabulary as-is
for downstream tasks. For these reasons, the tokenization
performance will be evaluated against the whole corpora in
the datasets below.

5.1.1. Naver Sentiment Movie Corpus
The Naver Sentinement Movie Corpus4 is a sentiment anal-
ysis corpus, containing 200,000 user review comments, and
a corresponding label which denotes the sentiment. We only
used the review comment text from this dataset’s training
split, as we used the test set during vocabulary pre-train.

5.1.2. KorQuAD 1.0
KorQuAD5 is a Korean adaptation of the same reading com-
prehension task defined as the popular SQuAD (Rajpurkar
et al., 2016) dataset. The task involves answering a ques-
tion given a passage of text, consists of 10,645 passages,
and 66,181 questions. We performed the evaluation on all
of the passages, questions, and answers.

5.1.3. Text Mining Dataset
The Text Mining Dataset6 contains Korean text data from
two sources; one from Naver news, and the other from
Naver movie reviews. The news corpus contains 1,661,786
sentences from article text, and 2,655,847 comments. The
movie review corpus contains 3,280,685 review comments.

5.1.4. Namuwiki
The kosentences dataset we used for training the vocabulary
above contains text from two sources, one of which is from
Wikipedia, and the other from Namuwiki. The latter is
closer to casual writing and contains significant amounts
of paraphrased non-Korean text. We intentionally do pre-
training only on the Wikipedia part of the dataset to use this
as an evaluation dataset.
As this dataset contains over 27 million sentences, we sam-
pled 1 million random sentences from this corpus and used
it for evaluation.

4 https://github.com/e9t/nsmc
5 https://korquad.github.io/
6 https://github.com/lovit/textmining_dataset

5.2. Results
5.2.1. Out-of-Vocabulary Robustness
The most substantial contribution from this work is the OOV
mitigation properties, as it reduces the minimum required
character level budget to represent every possible standard
case (excluding the three extension blocks) from an exces-
sively large 22,852 character level subwords 7 to a theoretical
lower boundary of 102 character level subwords.
As observed in the OOV analysis in table 5 and vocabulary
analysis in table 6, Our method shows significant improve-
ments in mitigating OOV on equal or even smaller vocab-
ulary sizes compared to the baselines, even with a smaller
total vocabulary size allocated for Korean subwords. As we
were unable to find good metrics for comparing OOV ro-
bustness, we were required to define it ourselves. The four
evaluations are computed as follows:

• OC: Count of all OOV tokens.

• OR: Count of all sentences with OOV tokens, divided
by the number of sentences. This is denoted in the
percentile scale (x100).

• LC: The sum of all OOV token surfaces, divided by
the amount of original surface.

• ML: Mean length of all OOV token surfaces.

In a vocabulary size of 10K (of which Korean uses less
than 25% of the budget), we can consistently observe that
the OOV rate is at an utterly negligible amount of less than
0.2%. Our method shows to be active in multiple domains,
unlike the behavior we see in the baseline models.
Comparatively, the vocabulary was trained with a smaller
dataset compared to the baselines. Even with this constraint,
due to the decomposition reducing the character level vo-
cabulary, we see improvements even when considering rare
combinations for Vv and Vt, which generally requires large
corpora when training with composite characters.

5.2.2. Elasticity of Vocabulary Budget
As noted above, we have reduced the minimum character
level budget required to represent every possible case down

7 Unicode Hangul Syllables and Jamo combined is 11,426 charac-
ters, which means the budget requirement is usually twice that in
the vocabulary for most subword tokenizers.

3495

Model Size NSMC TM News-Body TM News-Comments
OC OR LC ML OC OR LC ML OC OR LC ML

BERT 120K 81603 30.08 6.10 5.80 151175 8.26 0.50 4.17 1351933 35.83 5.60 6.58
XLM 200K 259266 62.78 4.53 2.06 2627434 61.86 2.62 2.92 4233920 67.39 3.92 2.45

KoBERT 8K 38480 14.98 0.96 1.84 30724 1.77 0.03 1.23 574058 17.00 0.81 2.00
BertKR 32K 63729 24.93 5.68 6.52 119017 6.46 0.34 3.58 1159335 31.36 4.55 6.11

SP

1K 101738 35.12 1.98 1.61 759562 30.70 0.78 1.76 2414089 51.92 2.45 1.99
2.5K 18412 8.10 0.35 1.23 79231 4.60 0.08 1.23 408751 13.07 0.41 1.32
5K 10096 4.50 0.19 1.19 30950 1.89 0.03 1.16 263799 8.77 0.26 1.25
10K 662 0.31 0.01 1.15 659 0.04 0.00 1.08 24005 0.86 0.02 1.13

SP+Al

350 48282 18.40 1.03 1.91 164518 9.89 0.00 1.00 359789 10.98 0.10 1.79
1K 23912 9.51 0.52 2.20 60189 3.56 0.00 1.00 221439 7.16 0.08 1.70

2.5K 3868 1.45 0.10 2.19 1708 0.11 0.00 1.00 4546 0.17 0.00 1.21
5K 1376 0.50 0.04 2.22 422 0.03 0.00 1.00 1524 0.06 0.00 1.14
10K 23 0.01 0.00 1.55 1 0.00 0.00 1.00 18 0.00 0.00 1.00

SP+Au

350 23955 9.53 0.53 2.20 60189 3.56 0.00 1.02 221438 7.16 0.08 1.68
1K 19016 7.78 0.48 2.22 30468 1.84 0.00 1.02 153298 5.23 0.04 1.43

2.5K 2163 0.78 0.05 2.19 1708 0.11 0.00 1.00 4546 0.17 0.00 1.21
5K 832 0.29 0.02 2.50 422 0.03 0.00 1.00 1524 0.06 0.00 1.14
10K 23 0.01 0.00 1.55 1 0.00 0.00 1.00 18 0.00 0.00 1.00

Model Size TM Movies KorQuAD Namuwiki
OC OR LC ML OC OR LC ML OC OR LC ML

BERT 120K 1664275 37.37 9.18 6.51 14775 4.34 0.47 4.75 123873 10.17 0.82 3.70
XLM 200K 4770386 66.32 5.49 2.19 142926 25.05 2.22 3.98 1220239 62.69 2.63 1.95

KoBERT 8K 728933 17.38 1.23 1.87 21278 4.02 0.49 5.46 67869 4.94 0.26 2.58
BertKR 32K 1157216 27.26 5.79 5.63 15414 6.48 0.92 6.28 202436 15.58 1.44 4.24

SP

1K 1587614 34.29 2.02 1.56 46931 13.92 0.93 2.99 532261 35.84 1.34 1.73
2.5K 519287 13.48 0.65 1.28 9793 3.30 0.19 2.53 94949 6.70 0.26 1.76
5K 114981 3.20 0.14 1.16 5052 1.78 0.09 2.34 51700 3.57 0.13 1.66
10K 15960 0.46 0.02 1.12 337 0.18 0.01 1.98 4651 0.30 0.01 1.74

SP+Al

350 120149 3.21 0.04 1.47 108167 52.73 1.84 1.60 261738 16.68 0.63 2.39
1K 91907 2.52 0.03 1.49 30295 6.84 0.66 5.30 175069 11.62 0.47 2.59

2.5K 91907 2.52 0.03 1.49 9974 2.04 0.33 7.39 45762 2.93 0.25 4.04
5K 540 0.02 0.00 1.00 7432 1.53 0.17 5.18 34634 1.58 0.17 4.92
10K 0 0.00 0.00 0.00 291 0.15 0.01 2.17 3660 0.21 0.01 1.99

SP+Au

350 91907 2.52 0.03 1.47 32194 7.01 0.69 5.34 177032 11.74 0.48 2.57
1K 60536 1.70 0.02 1.40 17094 4.49 0.48 5.52 122446 8.29 0.39 2.79

2.5K 60536 1.70 0.02 1.40 9491 1.89 0.28 6.85 40823 2.62 0.23 4.19
5K 540 0.02 0.00 1.00 6745 1.46 0.15 4.67 36463 1.54 0.14 4.42
10K 0 0.00 0.00 0.00 291 0.15 0.01 2.17 3660 0.21 0.01 1.99

Table 5: OC is OOV token count, OR is OOV sentence ratio, LC is lost character percentage (actual percentile, scaled by
100), and ML is mean lost character count across all OOV tokens.

to 102 character level subwords. Following this logic, we
can also assume that anything above 102 can be claimed for
actual subwords; this means even for a pure Korean corpus.
Our method frees up 22,750 slots for actual subwords, in-
stead of having to allocate it to completed characters which
are unlikely to be seen.
To confirm that our method increases the elasticity of the vo-
cabulary budget, we trained multiple sizes during the OOV
robustness experiments to verify how small the vocabulary
can be compacted. We compare the performance differences
and characteristics with OOV in the exhaustive experiment
table 5. We can see that the ratio of sentences with OOV,
even on small vocabularies such as 1K, has comparable
robustness against tokenizers with much larger vocabular-
ies. The lower boundary of aligned is 109 subwords, and

automaton (unaligned) is 116 subwords. Both boundaries
were found by setting the coverage rate set to 0.994. As
this is effectively an alphabet sized vocabulary, the number
is only useful as a theoretical lower boundary limit, as this
vocabulary would not be practically useful.

5.2.3. Subword Surface Length
Longer surface lengths result in shorter sequences, which
prevent truncation or omission in training due to architecture
limitations and also increase computation time in sequence
models. We also see moderate gains in the subword surface
length, as shown in table 6.
We see a small surface length jump when introducing align
(Al) on top of the SentecePiece baseline, but the gain is not
as significant as when using automata (Au), which nearly

3496

doubles the surface length compared to other cases with the
same vocabulary budget. Our contribution here is the in-
crease in surface length relative to the allocated vocabulary
size, which improves on the baselines.

Model Count Min Max Mean Std
BERT 1568 1 5 1.32 0.62
XLM 2581 1 8 1.55 0.72
KoBERT 7378 1 9 2.12 0.93
BERTKr 11607 1 14 2.19 1.00
SP@1K 861 1 3 1.02 0.13
SP@2.5K 1902 1 5 1.31 0.57
SP@5K 2903 1 5 1.39 0.64
SP@10K 2748 1 3 1.02 0.15
SP+Al@350 150 0.4 1.2 0.96 0.91
SP+Al@1K 460 0.4 2 1.18 0.99
SP+Al@2.5K 1001 0.4 3.6 1.46 1.42
SP+Al@5K 1463 0.4 4.8 1.59 1.67
SP+Al@10K 1049 0.4 3.6 1.44 1.50
SP+Au@350 272 0.4 2.8 0.92 0.95
SP+Au@1K 845 0.4 5.2 1.32 1.57
SP+Au@2.5K 2125 0.4 6 1.71 1.93
SP+Au@5K 3514 0.4 6.4 1.90 2.05
SP+Au@10K 2466 0.4 6 1.72 1.88

Table 6: Count of Korean subwords, minimum, maximum,
average, and standard deviance of the token length for Ko-
rean subwords in each model’s vocabulary. For our meth-
ods, we have scaled it down by 2.5 for a fair comparison.
SP is SentencePiece, and what comes after the @ is the size
of the vocabulary. +Al denotes aligned, and +Au denotes
automaton (unaligned).

6. Limitations and Future Work
Both methods suffer from one severe limitation; the recon-
struction is only possible given that the model output is sane.
This is analogous to the Unicode pair reconstruction prob-
lem which can be observed in the tokenizer used by GPT-2
(Radford et al.,) or other byte-level approaches(Gillick et
al., 2016), as unless the output is as sane byte sequence
which can be reconstructed into a Unicode character, the
output is not only unusable, it also can break parsing the
remainder of the sequence.
While hypothetically a mitigation for these cases can be
put in by encoding checksums for cases where the post-
processor cannot reconstruct into the subword tokens, which
in turn can be used as hints to discard erroneous output from
the model in a generative task, we have not explored this
direction within the scope of this work and leave it as a point
for future exploration.

7. Conclusion
To summarize the contributions from our work, we start by
defining the commonly overlooked problem in multilingual
pre-training when including CJK languages, along with the
computational budget, complexities, and inefficiencies as-
sociated with that.
We then propose a novel, tokenizer agnostic method, which
supplements subword tokenizers in the context of Korean,

which can be beneficial when combined with other methods
involving pre-training large models. As this pre-processing
only needs to be done once per unseen text, and it has no
side-effects when used in polyglot corpora, the cost of ap-
plying this to any large scale multilingual pre-training is not
only negligible, but it is also expected to learn better sub-
words and completely mitigate out-of-vocabulary issues in
all downstream tasks for Korean, while reducing the char-
acter level budget needed to represent Korean.
Additionally, we propose a fully reversible method, which
enables generative downstream tasks such as (but not limited
to) machine translation, text summarization, and language
modeling.
Finally, we demonstrate that our method improves the flex-
ibility and performance of state-of-the-art methods while
mitigating common OOV problems when training multilin-
gual models. We hope our contributions will enable a cost-
effective and straightforward path for including Korean in
future multilingual research.

8. Bibliographical References
Chaudhary, A., Zhou, C., Levin, L., Neubig, G., Mortensen,

D. R., and Carbonell, J. (2019). Adapting Word Embed-
dings to New Languages with Morphological and Phono-
logical Subword Representations.

Cho, W. I., Kim, S. M., and Kim, N. S. (2019). Investigating
an effective character-level embedding in korean sentence
classification. arXiv preprint arXiv:1905.13656.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding. oct.

Ding, C., Utiyama, M., and Sumita, E. (2018). Simplified
abugidas. In ACL 2018 - 56th Annual Meeting of the
Association for Computational Linguistics, Proceedings
of the Conference (Long Papers).

Gillick, D., Brunk, C., Vinyals, O., and Subramanya, A.
(2016). Multilingual language processing from bytes. In
2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL HLT 2016 - Proceedings of
the Conference.

He, H., Wu, L., Yang, X., Yan, H., Gao, Z., Feng, Y., and
Townsend, G. (2018). Dual Long Short-Term Memory
Networks for Sub-Character Representation Learning. In
Advances in Intelligent Systems and Computing.

Howard, J. and Ruder, S. (2018). Universal Language
Model Fine-tuning for Text Classification. jan.

Kudo, T. and Richardson, J. (2018). SentencePiece: A
simple and language independent subword tokenizer and
detokenizer for neural text processing. In EMNLP 2018
- Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, Proceedings.

Lample, G. and Conneau, A. (2019). Cross-lingual Lan-
guage Model Pretraining. jan.

Park, S., Byun, J., Baek, S., Cho, Y., and Oh, A. (2018).
Subword-level word vector representations for Korean.
In ACL 2018 - 56th Annual Meeting of the Association
for Computational Linguistics, Proceedings of the Con-
ference (Long Papers).

3497

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
and Sutskever, I.). Language Models are Unsupervised
Multitask Learners. Technical report.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016).
SQuad: 100,000+ questions for machine comprehension
of text. In EMNLP 2016 - Conference on Empirical
Methods in Natural Language Processing, Proceedings.

Rajpurkar, P., Jia, R., and Liang, P. (2018). Know what
you don’t know: Unanswerable questions for SQuAD. In
ACL 2018 - 56th Annual Meeting of the Association for
Computational Linguistics, Proceedings of the Confer-
ence (Long Papers).

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural
machine translation of rare words with subword units. In
54th Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2016 - Long Papers.

Shi, X., Zhai, J., Yang, X., Xie, Z., and Liu, C. (2015). Rad-
ical embedding: Delving deeper to Chinese radicals. In
ACL-IJCNLP 2015 - 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing
of the Asian Federation of Natural Language Processing,
Proceedings of the Conference.

Stratos, K. (2017). A sub-character architecture for Ko-
rean language processing. In EMNLP 2017 - Conference
on Empirical Methods in Natural Language Processing,
Proceedings.

Sun, Y., Lin, L., Yang, N., Ji, Z., and Wang, X. (2014).
Radical-enhanced chinese character embedding. In Lec-
ture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics).

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtow-
icz, M., and Brew, J. (2019). Huggingface’s transform-
ers: State-of-the-art natural language processing. ArXiv,
abs/1910.03771.

Yin, R., Wang, Q., Li, R., Li, P., and Wang, B. (2016).
Multi-granularity Chinese word embedding. In EMNLP
2016 - Conference on Empirical Methods in Natural Lan-
guage Processing, Proceedings.

Appendix
The content below was not of adequate length for the main
paper.

8.1. Hyperparameters
The following hyperparameters were used to train the Sen-
tencePiece model. We used identity for the normalization
rule, to prevent Unicode normalization composing them
back together. Additionally, the maximum sentence length
was set to 8000, and the model type was set to unigram.
Character coverage was set proportionally to vocabulary
size. We used 0.994 coverage for |V | = 350, 0.995 for
|V | = 1000, 0.997 for |V | = 2500, 0.09985 for |V | = 5000,
and 1.0 for V = 10000.

8.2. Automaton Reconstruction Pseudocode
This section describes the algorithm used for reconstruction
in our automaton based method.
Reset = R1, R2, R3, R4← {0, 0, 0, 0};
Initialize; S ← INIT; Reset();
foreach c ∈ C, given that c ∈ J do

if S = INIT then
if c ∈ Jv then

if R4 then
emit(R1, R2, R3);
Reset(); R1, R2,← {R4, c};

else
if R4 then

R3 = combine(R3, R4);
emit(R1, R2, R3); Reset();

R1← c; S← INTERIM;
end

else if S = INTERIM then
if c ∈ Jv then

if R2 then
emit(R1, R2, R3);
Reset(); S ← INIT;

else
R2← c

else
if R2 then

R3← c; S← END;
else

emit(R1, 0, 0);
Reset(); R1← c; S← END;

end
else if S = END then

if c ∈ Jv then
emit(R1, R2, 0);;
if R3 then

Reset(); R1, R2← {R3, c}; S←
INTERIM;

else
Reset(); S← INIT;

else
l← combine(R3, c);
if R3 = l then

emit(R1, R2, R3);
Reset(); R1← c; S← INTERIM;

else
R4← c; S← INIT;

end
end
Algorithm 1: Simplified Version of the automaton
based reconstruction algorithm. ← is equivalent to a
MOV instruction. l is a temporary scratch, which is
actually R4 - but named differently for clarity.

