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Abstract
Coreference resolution (CR) aims to find all spans of a text that refer to the same entity. The F1-Scores on these task have been greatly
improved by new developed End2End-approaches (Lee et al., 2017) and transformer networks (Joshi et al., 2019b). The inclusion of
CR as a pre-processing step is expected to lead to improvements in downstream tasks. The paper examines this effect with respect to
word embeddings. That is, we analyze the effects of CR on six different embedding methods and evaluate them in the context of seven
lexical-semantic evaluation tasks and instantiation/hypernymy detection. Especially in the last task we hoped for a significant increase
in performance. We show that all word embedding approaches do not benefit significantly from pronoun substitution. The measurable
improvements are only marginal (around 0.5% in most test cases). We explain this result with the loss of contextual information,
reduction of the relative occurrence of rare words and the lack of pronouns to be replaced.
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1. Introduction
Many NLP systems use word embeddings as a fast to
learn resource that captures important lexical information
(Mikolov et al., 2013). Once trained, embeddings can
be used in many different tasks, like Coreference Resolu-
tion (Lee et al., 2018), Emotion Detection (Felbo et al.,
2017), Biomedical Natural Language Processing (Wang et
al., 2018), Image Caption Generation (Vinyals et al., 2015)
or Text Classification (Uslu et al., 2019). Most of them rely
on local information delimited by context windows or de-
pendency parents to predict word relations (Levy and Gold-
berg, 2014). This approach encounters problems wher-
ever semantic relationships have to be captured, which are
expressed by coreference, as the following example illus-
trates:

Edgar Allan Poe was an American writer.
Poe is best known for his poetry.

Based on a context window-based approach of a maximum
of five right neighbors, we get data to examine the relation-
ship of Poe and writer and of his and poetry. But the model
is not informed about a relationship between Poe and poetry
when using a too small window. Obviously, the detour via
the use of overly large window sizes (which would capture
wanted as well as unwanted co-occurrences) can be pre-
vented by a coreference resolution which replaces his with
Poe.
The mapping of different linguistic expressions to the same
entity is called Coreference Resolution (CR) (Ponzetto and
Poesio, 2009). Previous systems were computationally
very intensive and required a large NLP pipeline to calcu-
late the required features (Clark and Manning, 2015; Wise-
man et al., 2016; Clark and Manning, 2016; Poesio et al.,
2016). The currently most modern system (Lee et al., 2018;
Joshi et al., 2019a) does not need any of these features,
therefore it is now possible to perform CR in a reasonable
time. The resulting state-of-the-art score is 79.6% F1-Score

for English. In this paper, we use CR as pre-processing step
for training word embeddings, replace pronouns with their
first mention, and evaluate the final word embeddings on
different tasks. There are several approaches to evaluating
word embeddings, which can be divided into extrinsic and
intrinsic tasks. Extrinsic is the evaluation on downstream
tasks such as POS tagging. Intrinsic evaluations explore
word data about syntactic or semantic relations. The Word
Similarity (WS) task, for example, evaluates how well the
dot product of two word pairs correlates with the scores of
human annotations (Jastrzebski et al., 2017). In this paper,
we analyze the influence of resolving anaphoric relations
on computing word embeddings by means of intrinsic ap-
proaches. As shown above, anaphoric relations are usually
lost in training, although they manifest important relation-
ships between words. Our experiments show that none of
the embeddings analysed is improved by mention substitu-
tion – in any event, the improvements are only marginal.
We explain this result with the loss of contextual informa-
tion, reduction of the relative occurrence of rare words and
the lack of pronouns to be replaced. The paper is organized
as follows: Section 2 gives a short overview of word em-
beddings and of CR. Then we present our approach to en-
hancing word embeddings based on CR in Section 3. The
experimental setup is described in Section 4. The results in
Section 5. A prospect to future work is presented in Section
6.

2. Related Work
Pre-trained word embeddings (Mikolov et al., 2013; Ling
et al., 2015; Pennington et al., 2014; Levy and Goldberg,
2014; Komninos and Manandhar, 2016) are a standard
component of most modern NLP architectures. However,
most of these systems are based only on local word infor-
mation, such as skip-grams (e.g. Mikolov et al. (2013) or
Ling et al. (2015)) or dependency relation-based windows
(e.g. Levy and Goldberg (2014) or Komninos and Manand-
har (2016)).
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Edgar Allan Poe was an American writer.

Poe is best known for his poetry.
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Figure 1: Dependency trees of two consecutive sentences.
The blue arrow from poetry to Poe indicates the expanded
context that is mediated by his.

Word Context
poe writer/nsub−1, (poetry/nmod:poss−1)
writer poe/nsub
his poetry/nmod:poss−1

poetry his/nmod:poss, (poe/nmod:poss)

Table 1: Example input (reduced) of Levy and Goldberg
(2014) based embeddings induced by the example of Figure
1. The additional contexts in parentheses are achieved with
the help of CR.

Only recently, new systems have been introduced which are
trained on large contexts using LSTMs (Peters et al., 2018)
or large neural attention systems (Transformers) based on
more complex transfer-learning tasks (Devlin et al., 2018;
Liu et al., 2019) and are therefore not limited to local infor-
mation – but at the price of additional computational com-
plexity. At the same time, the list of proposals for new em-
bedding methods that are pre-trained on ever larger corpora
from more and more areas (genres, registers etc.) of more
and more languages is constantly growing (Grave et al.,
2018; Bojanowski et al., 2017; Radford et al., 2019). In re-
cent years, the impact of various features such as POS-tags,
subword information, semantic relations and in-domain
data on word embeddings have been analyzed (Rezaeinia et
al., 2017; Wendlandt et al., 2018; Bojanowski et al., 2017;
Boleda et al., 2017; Gupta et al., 2017) and improved re-
sults have been obtained.
In this paper we complement this research and ask about
the effects of CR on word embeddings. This is done by
example of six methods of computing word embeddings:
Cbow (Mikolov et al., 2013), Skip (Mikolov et al., 2013),
Glove (Pennington et al., 2014), Wang (Ling et al., 2015),
Levy (Levy and Goldberg, 2014) and Komninos (Komninos
and Manandhar, 2016).

3. Coreference Substitutions for Enhancing
Word Embeddings

In this section, we briefly introduce a formal apparatus to
model coreference. Let

T = (w1, . . . , wi, . . . , wn) (1)

be a document with n tokens and words (lemmas) w =
L(wi) at position i. To avoid grammatical issues (espe-
cially morphological ones), we lemmatize all tokens in T .
A mention

mi:j = (wi, . . . , wj) (2)

is then defined as a continuous segment of tokens of T . Let

M = (m1, . . . ,mp), p ≤ n, (3)

be the sequence of all mentions observed in T , sorted by
occurrence. A mention mi is said to be antecedent to a
mention mj if both are co-referent (and thus connected by a
co-reference link) and if i < j. We denote this antecedence
by mi < mj . Then we define the function

first(mj) = arg min
mi∈{mi<mj |i∈{1,...,j−1}}

{i} (4)

which returns the antecedent of mj of lowest index and
write mi � mj ⇔ first(mj) = mi.

3.1. Extending the informational scope of
window-based embeddings

Our approach to extending window-based embeddings by
means of CR is the following: For all pronominal mentions
mi, for which first(mi) is not pronominal, we replace:

mi ← first(mi) (5)

This means that we replace each pronoun with its lowest
index antecedent which in our case is represented by a cor-
responding lemma or multiword expression as shown in the
following example:

. . . his poetry. 7→ . . . Edgar Allan Poe poetry.

So far, our replacement procedure only considers pronouns.
The reason is that we expect the greatest loss of informa-
tion from not replacing them. In this way, we avoid prob-
lems that we would get if we replaced phrasal mentions
(e.g. more complex noun phrases) with their phrasal an-
tecedents.

3.2. Extending the informational scope of
dependency-based embeddings

For embeddings derived from dependency trees, we choose
an approach that explores the underlying dependency rela-
tions. Let

D(w, T ) = {d(wi1), . . . , d(wik)} (6)

be the set of all parent tokens d(wih) to which the tokens
wih , h = 1..k, of lemma w = L(wih) are directly depen-
dent in text T . Conversely,

D−1(w, T ) = {wi ∈ T | L(d(wi)) = w} (7)

is the set of all tokens that directly depend on some token
of lemma w in T . A tabular representation of these sets
derived from the text sample of Figure 1 is shown in Ta-
ble 1. The procedure for extending the informational ba-
sis for computing dependency-based embeddings is now
as follows: for each lemma for which there is a token
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Type WS Average MEN WS353 SimLex999 RW MTurk-287 Google SemEval2012 2
c p h ph c p h ph c p h ph c p h ph c p h ph c p h ph c p h ph c p h ph

Cbow 2 42.29 42.11 43.37 42.43 67.54 67.02 68.56 67.38 53.87 54.56 55.28 54.32 35.42 34.75 35.09 34.97 25.28 25.31 25.98 24.42 61.63 60.76 61.75 61.23 33.68 34.61 39.20 36.15 18.59 17.77 17.70 18.52
Cbow 5 44.64 44.47 45.80 44.94 70.45 70.21 71.24 70.71 58.24 57.42 58.61 58.52 37.42 37.18 37.78 37.57 24.36 24.32 24.78 24.35 61.60 60.64 62.21 61.89 41.63 43.08 46.37 43.94 18.79 18.45 19.61 17.62
Cbow 10 45.68 45.48 46.37 46.07 72.25 71.93 72.60 72.45 60.70 60.31 60.69 60.72 37.32 37.15 37.61 37.37 25.28 24.70 24.83 24.13 62.24 62.63 63.80 63.88 44.41 45.65 46.97 46.20 17.57 16.00 18.10 17.73
Skip 2 47.58 47.71 48.59 48.13 73.54 73.43 74.35 73.50 66.03 65.57 67.76 66.47 40.92 40.84 41.25 41.81 31.33 31.46 31.95 32.12 61.66 61.88 62.96 61.48 41.53 42.12 42.87 41.94 18.02 18.71 19.03 19.59
Skip 5 49.61 49.15 49.32 49.63 75.44 75.64 75.83 75.55 69.09 68.80 67.98 68.95 40.44 39.69 40.10 40.35 32.43 30.96 31.50 32.04 63.92 63.43 65.34 65.30 48.33 47.96 47.90 48.19 17.63 17.58 16.56 17.06
Skip 10 48.92 48.61 48.64 48.61 76.19 76.25 76.28 76.05 68.14 68.12 68.38 68.08 38.07 38.24 38.03 38.13 30.33 28.37 29.48 29.12 65.89 65.91 65.70 66.04 48.31 48.59 48.40 48.52 15.50 14.82 14.20 14.31

Glove 2 33.94 32.96 34.20 34.00 62.17 61.00 62.95 62.29 43.20 40.73 43.37 41.23 27.47 27.26 28.01 27.55 14.04 13.51 13.99 14.05 51.92 50.02 50.84 50.90 25.28 25.15 25.78 25.98 13.47 13.05 14.47 15.99
Glove 5 38.29 37.28 38.02 38.41 68.47 66.54 68.45 68.84 47.51 45.78 47.10 46.93 29.35 27.18 28.39 28.94 16.56 16.39 16.18 16.64 53.52 53.79 54.18 54.11 37.99 36.93 38.04 37.87 14.61 14.40 13.77 15.54
Glove 10 39.43 38.23 39.06 39.16 70.00 68.16 69.47 69.42 48.04 46.62 47.48 47.38 29.06 27.04 27.86 28.32 16.87 16.53 16.40 16.71 55.14 54.66 55.07 55.57 42.42 41.89 42.42 42.22 14.50 12.74 14.74 14.48
Wang 2 47.26 47.36 47.96 47.46 72.03 71.63 73.34 71.78 65.45 66.74 67.65 66.32 43.22 42.94 43.30 41.99 33.36 32.90 33.27 33.34 59.63 59.37 59.32 59.63 36.89 38.54 38.69 38.22 20.22 19.41 20.13 20.93
Wang 5 48.37 48.04 48.28 48.21 73.03 73.30 73.74 73.48 68.25 67.33 68.64 67.92 41.33 41.02 41.71 42.28 32.68 31.34 32.59 33.05 62.39 60.38 59.93 59.15 42.38 43.78 43.01 42.83 18.56 19.12 18.36 18.75
Wang 10 47.56 48.50 48.38 48.58 73.06 73.89 74.17 73.60 68.10 68.96 68.93 68.79 41.70 41.32 41.21 41.58 32.14 31.61 31.87 32.47 56.89 60.49 58.04 60.28 44.02 45.16 45.59 45.02 16.99 18.05 18.82 18.31
Levy 41.80 - - 41.97 66.54 - - 66.95 60.59 - - 61.76 46.16 - - 46.40 31.64 - - 31.64 54.35 - - 54.70 12.21 - - 12.49 21.11 - - 19.86

Komninos 47.45 - - 47.26 72.68 - - 72.50 62.84 - - 62.68 42.09 - - 41.29 33.73 - - 33.46 61.00 - - 60.80 38.84 - - 40.28 20.97 - - 19.78

Table 2: Evaluation of different embedding types with different window sizes. c stands for the original dataset, p where we
replaced only pronouns, h where we only replaced every mention with the mention head and ph, where we replaced only
pronouns with the corresponding antecedent.

that directly dominates a pronominal anaphoric mention,
we add a dependency link from this token to the non-
pronominal antecedent of lowest index of this pronoun. If
this antecedent consists of several tokens, the root node of
the corresponding dependency subtree is used as the tar-
get of the link. More formally: for each anaphoric pro-
noun wk ∈ D−1(w, T ) depending on token d(wk) of
lemma w = L(d(wk)) such that there exists a mention
wk = mj ∈ M (pronominal mentions are one-place), we
extend the set of dependents D−1(w, T ) of w as follows:

Ḋ−1(w, T ) = D−1(w, T ) ∪
{r(tree(mi)) | ∃mj ∈M

∃wk ∈ D−1(w, T ) :

wk = mj ∧mi � mj} (8)

where r(tree(mi)) denotes the root of the dependency sub-
tree tree(mi) spanned by mention mi. A dependency tree
showing an added link between poetry and Poe is exempli-
fied in Figure 1. The corresponding extended contexts are
indicated by brackets in Table 1. By analogy to D−1(w, T ),
we extend D(w, T ), so that added links can be processed
in both directions by means of the approach of Levy and
Goldberg (2014). Note that we only consider anaphoric,
but not cataphoric references which also allow for adding
dependency links.

4. Experiments

4.1. Data Sets and Models
Our dataset used for training consists of the first paragraphs
of 1.000.000 Wikipedia articles (effects of smaller datasets
are analysed in section 5.4) with almost 300 millions to-
kens, of which over 4 million (of almost 5.5 million) pro-
nouns have been replaced or extended. The models used
are the Skip and Cbow variant of Word2Vec (Mikolov et
al., 2013), Glove (Pennington et al., 2014) and Wang2Vec
(Ling et al., 2015), Levy (Levy and Goldberg, 2014) and
Komninos (Komninos and Manandhar, 2016). Word2Vec,
Glove and Wang were trained with a fixed vocabulary of
the 400.000 most commonly lemmatized tokens and Levy
and Komninos with all lemmatized tokens that occurred at
least 15 times in the data set. We trained all embeddings
with a size of 300, standard parameters, window sizes of 2,
5 and 10, and 25 iterations.

4.2. Pre-processing

We used Spanbert-Base of Joshi et al. (2019a) for coref-
erence resolution. For the needed dependency features we
used the AllenNLP’s (Gardner et al., 2018) implementation
of Dozat and Manning (2016). For tokenization, lemmati-
zation and POS tags, Spacy (Honnibal and Montani, 2017)
was used.

5. Evaluation

5.1. Word Similarity

The first analyses on the generated word vectors ran over
various word similarity tasks. All results are listed in ta-
ble 2. For evaluation, we used the benchmark tool of Jas-
trzebski et al. (2017)1 as it computes the accuracy for
a lot of important Word Similarity and Analogy Tasks.
We used: (MEN (Bruni et al., 2014), WS353 (Finkel-
stein et al., 2002), SimLex999 (Hill et al., 2015), RW
(Luong et al., 2013), MTurk-287 (Radinsky et al., 2011),
Google (Mikolov et al., 2013), SemEval2012 2 (Jurgens
et al., 2012)). We compare the unmodified dataset (c-
version) with a version, were we replaced pronouns with
the complete antecedent (p-version, described in section
3.1), replaced everything with the mention-head (h), and
replaced only pronouns with the mention-head (ph-version,
described for dependency in section 3.2). For most context
window-based embeddings, the results based on the data
set containing the co-reference do not differ markedly. It
is noteworthy that the p-version is usually worse than the
c-version. The observed reductions in the case of context
window-based approaches can be explained by the effect
of the loss of semantic contexts (see section 5.5). The
h- and ph-versions perform therefore better. We therefore
only consider these versions in further analyses. But still,
some embeddings have a tendency towards slightly bet-
ter results (e.g. Cbow), while others tend to get a little
worse (Wang2Vec). The best responding test data is by far
Google, with an increasing of 5.52% with Cbow (2). The
worst results were obtained on the RW and MTurk-287 data
set. Intuitively, the results for coreference embeddings are
better for small window sizes.
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Ins/Hyp Conc Diff DDSq
(Window) c ph c ph c ph

I-NotInst (10) 81.09 81.09 78.97 80.48 80.73 82.00
I-Inverse (10) 98.79 98.34 99.09 99.24 98.79 99.24

I-I2I (10) 95.80 96.40 92.20 92.80 92.20 92.80
I-Union (10) 84.94 84.41 77.58 76.88 79.77 78.98

H-NotHyp (10) 55.16 55.53 54.32 54.23 72.84 73.12
H-Inverse (10) 81.75 79.56 83.84 82.01 83.76 81.92

H-C2C (10) 69.03 68.57 64.15 64.52 79.23 79.78
H-Union (10) 42.73 42.24 40.79 40.30 52.98 52.26
I-Union (2) 86.25 85.20 77.67 77.50 79.16 78.37
H-Union (2) 45.13 44.36 43.19 41.29 53.61 53.29

Table 3: Results on the Instances and Concepts dataset
(Boleda et al., 2017) with the Cbow model.

Ins/Hyp Conc Diff DDSq
c ph c ph c ph

I-NotInst 82.96 80.84 81.45 80.54 81.90 80.84
I-Inverse 99.55 99.70 99.70 99.85 99.70 99.85

I-I2I 98.40 98.60 96.01 95.61 96.01 95.61
I-Union 87.16 87.07 80.00 80.17 81.22 80.70

H-NotHyp 56.55 57.66 53.67 53.11 67.69 68.52
H-Inverse 84.37 84.02 85.76 86.46 85.59 86.11

H-C2C 72.45 72.54 66.30 66.02 74.56 73.92
H-Union 44.74 45.06 41.13 41.08 50.25 50.16

Table 4: Results on the Instances and Concepts dataset
(Boleda et al., 2017) with the Levy.

5.2. Instances versus Concepts
Next, we tested whether the vectors could better distinguish
between instances or concepts. The embedding task includ-
ing the test dataset was presented by Boleda et al. (2017).
The data set consists of word pairs (x, y) where a linear
classifier is used to decide whether x is an instance or a
hyponym of y. As a negative example, the data set con-
tains various error cases, like swap(x, y) (inverse). Further
details can be found in Boleda et al. (2017). As in the orig-
inal work, we trained a linear logistic regression classifier
with the concatenation (Conc), the difference (Diff) and the
squared difference (DDSq) of the vectors as input. We used
scikit-learn (Pedregosa et al., 2011) for implementing this.
The results for the Cbow model are listed in table 3 and for
the Levy model in table 4. Again, the vectors do not seem
to achieve any performance improvement. However, with
regard to the Union dataset, it appears that the results have
tended to get worse.

5.3. Feature Analysis
To analyze the results, we took the classification results of
the development and test dataset from the linear classifier
of section 5.2 to decide, which words where classified bet-
ter or worse. With this information we trained a Decision
Tree (DT) and a Support Vector Machine (SVM) to predict
whether the classification of a word w is improved or wors-
ened when taking into account the following features: 1.

1https://github.com/kudkudak/
word-embeddings-benchmarks

Figure 2: Decision Tree for classifying the error distribu-
tion on the H-Union dataset. Red nodes stand for word
embeddings, which tend to get worse through pronoun sub-
stitution. Blue nodes tend to get better through pronoun
substitution. Gini is a measure of the probability that a ran-
domly selected element from the data will be misclassified.
Value stands for the division of the samples into the two
classes at this node.

How often did we use w to replace a pronoun according
to Section 3 (Replacer), 2. Log-frequency of w in the cor-
pus (VocabC), 3. Frequency in the test set (inTest) and 4.
Character count of w (WordLen). The generated DT for the
Cbow model with window size 10 on the H-Union dataset
is shown in Figure 2. One observation is that words that
appear more frequently in the corpus become slightly bet-
ter, whereas words that are already rare tend to get worse.
But as soon as words occur too often, they tend to get
worse again. It seems that the embeddings already con-
tain all necessary neighborhood information in the case of
high-frequency words. Rare words, on the other hand, be-
come even rarer and therefore their vector representations
are worsened. The strongest feature for the SVM was Vo-
cabC and the log of Replacer, so we trained a small version
with only these two features to show their behaviour in a
two-dimensional space (see Figure 3). The results are sim-
ilar to those of DT. However, with the decision boundaries
it is recognizable how the word frequencies correlate with
the results. The words tend to get better if they are neither
too frequent nor too rare in the training data. The same ap-
plies to the replacement. One possible explanation is that
common words already cover all information. Rare words,
on the other hand, are rarely referenced by anaphora and do
not benefit from this procedure. It should be noted that this
is not so easy to detect with smaller window sizes.

5.4. Corpus Size

We have also tested different corpus sizes, but have not
found any significant effect for them either. The results are
listed in Table 5. Doc Count is the randomly selected num-
ber of Wikipedia articles.

https://github.com/kudkudak/word-embeddings-benchmarks
https://github.com/kudkudak/word-embeddings-benchmarks
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Figure 3: Error distribution of the SVM with log(Replacer) on the x-axis and VocabC on the y-axis. Cbow (left), Skip
(middle), Glove (right) with window size 10. Red areas stand for word embeddings, which tend to get worse through
pronoun substitution. Blue areas tend to get better through pronoun substitution. The decision-boundaries reveal, that
words that are neither too frequent nor too rare in the corpus tend to produce better results if they are neither replaced too
often nor too rarely.

Doc Average
Count c p h ph

100 4.41 5.05 5.00 5.15
1000 14.92 15.54 15.35 16.13
10000 29.87 29.79 28.80 29.67

100000 38.56 38.69 39.54 39.01
1000000 43.35 43.54 43.71 43.58

Table 5: Average results (see section: 5.1) for Cbow with
vector size 100 and window size 10 on different amounts of
Wikipedia articles.

5.5. Explanation of the results
5.5.1. Loss of Semantic Contexts
Windows-based embeddings achieve their quality by look-
ing at which words appear together in observed windows.
In the example

[Edgar Allan Poe]1 was an American writer.
[Poe]1 is best known for [his]1 poetry. 7→
[Edgar Allan Poe]1 was an American writer.
[Poe]1 is best known for [Edgar Allan Poe]1 po-
etry.

the distance between associated words (e.g. writer and po-
etry) increases so much by the substitution of his that the
system is no longer informed about their association in this
example. This effect is increased by the fact that we al-
ways replace pronouns with possibly longer mentions (ex-
periment p). In this way, we amplify the effect that we
originally wanted to avoid. The example also shows that
substituting pronouns is not a trivial task and can distort the
semantics of a sentence. The same may happen with syntax
as shown in the example above.

5.5.2. Word Frequency
We were able to show that words that are neither too fre-
quent nor too rare in the corpus tend to produce better re-
sults if they are neither replaced too often nor too rarely.
In contrast, the use of frequent words to replace pronouns

tend to noise out their already well-documented contex-
tual information within the original corpus. And for rare
words, the additional context information gained by CR
is not detailed enough to calculate better embeddings for
them. However, it should be noted that the replacements
have only led to a minimal increase in the volume of data.

5.6. Discussion

Our goal was not primarily to achieve the best results for
the evaluation tasks we carried out, but to investigate the
effects of coreference resolution on computing word em-
beddings. Actually, there is an effect, but only a small
one. This finding indicates the need to further elaborate the
interplay of pre-processing routines like coreference res-
olution and downstream tasks such as training word em-
beddings. With a more elaborated substitution function
first : M → M than the one implemented here better re-
sults might be achieved. An extension would be, for ex-
ample, training with both sentences, the ones in which sub-
stitutions are made and the original ones. Replacing with
(parts of) nominal phrases might distort the training as well.
The use of only named entities could help with this prob-
lem, but would further reduce the amount of information
obtained.

6. Conclusion

We experimented with improving word embeddings based
on CR as a pre-processing step. We have shown that word
embedding approaches do not tend to benefit significantly
from pronoun substitution. The measurable improvements
were only marginal, even though we could achieve strong
improvements with Cbow on the Google dataset. In fu-
ture work, we want to analyze the effect of linking all men-
tions of the same reference chain with each other (com-
pletely connected graph). In addition, we want to find out
which dependency edges contribute to the information gain
by training corresponding classifiers.
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