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Abstract
Named Entity Recognition (NER) is an essential component of many Natural Language Processing pipelines. However, building these
language dependent models requires large amounts of annotated data. Crowdsourcing emerged as a scalable solution to collect and
enrich data in a more time-efficient manner. To manage these annotations at scale, it is important to predict completion timelines and
compute fair pricing for workers in advance. To achieve these goals, we need to know how much effort will be taken to complete each
task. In this paper, we investigate which variables influence the time spent on a named entity annotation task by a human. Our results are
two-fold: first, the understanding of the effort-impacting factors which we divided into cognitive load and input length; and second, the
performance of the prediction itself. On the latter, through model adaptation and feature engineering, we attained a Root Mean Squared
Error (RMSE) of 25.68 words per minute with a Nearest Neighbors model.
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1. Introduction
Named Entity Recognition (NER) is a task in the field of
Information Extraction that consists of identifying and clas-
sifying specific information elements commonly referred to
as named entities (Marrero et al., 2013). NER is a funda-
mental component to many Natural Language Processing
(NLP) pipelines (Voyer et al., 2010), including the creation
and categorization of language resources. However, auto-
matic recognition of entities often needs a large amount of
labelled training data and, despite some large dataset be-
ing publicly available, they are often associated with spe-
cific domains, such as microblogs, news articles or scien-
tific publications (Feyisetan et al., 2015; Lu et al., 2019).
The process of creating training corpora for NER in new
domains (or for new languages) is expensive, consider-
ing both time and monetary costs (Marrero et al., 2013).
Human-in-the-Loop platforms address this scalability prob-
lem by assigning Human Intelligence Tasks (HITs) to an
existing pool of non-expert contributors. Such contributors
are known to be able to approximate expert judgements,
after leveraging their answers with other contributors’ re-
sponses to the same piece of information (Finin et al., 2010;
Yin et al., 2014). This information settled on the HIT is
completed within a short time, in exchange for a monetary
reward (Hassan and Curry, 2013). A group of HITs that
shares the same formulation (e.g. for which only the text to
be tagged varies) is commonly referred to as job (Hirth et
al., 2011).
In this paper, we address the problem of predicting the time
each HIT takes to be completed in Named Entity Tagging
(NET) tasks before the actual annotation takes place. In
NET jobs, the contributor’s goal is to locate and annotate
pre-defined named entities in unstructured text.
From the Human-in-the-Loop platform point-of-view, esti-
mating the human effort of NET tasks has several applica-
tions, including:

• Estimating the completion time of a NET job: by
combining human effort information with contributor
throughput prediction, one can estimate a deadline for
the completion of a job (Sautter and Böhm, 2013);

• Awarding a fair payment to contributors: the monetary
reward can be adjusted to the expected time-on-task,
making micro-payments a more transparent and fair
process (Lofi et al., 2012);

• Detecting fraudulent contributors: estimating the time
needed by a human for completing a given task es-
tablishes a baseline for detecting outlying behaviour,
which serves as a data quality indicator (Hirth et al.,
2014).

Using a data-driven approach, we address the problem of
human effort prediction by answering two research ques-
tions. First, which factors affect human effort for NET
tasks?, and second, which strategies can be used to predict
human effort? Our major contributions include a study on
the variables that influence the time spent on a named en-
tity annotation task by a human, and a strategy to estimate
effort for NET tasks in crowdsourcing.
The remainder of this paper is structured as follows: Sec-
tion 2 describes related work in the area of human effort
estimation in general, and NET in particular; Section 3
presents the dataset used in this study; Section 4 explains
the experimental setup that includes the target variable def-
inition and data preparation, the evaluation metrics used,
and the feature engineering process; Sections 5 and 6 report
the experiments carried out at the HIT and job level, respec-
tively, and the corresponding results; and, finally, Sections
7 and 8 present the discussion of the results and the conclu-
sions.

2. Related Work
The concept of human effort (or crowd effort) is broadly
used in the crowdsourcing-related literature. Eickhoff and
de Vries (2013), for instance, have used a measure of effort
as an indicator for cheater detection: contributors that are
trying to take advantage of the system by submitting subop-
timal work show outlying effort rates. Another example is
the work of Jain et al. (2017), who have used effort as a per-
formance metric for studying the effectiveness of the tasks



299

themselves, concluding how certain User Interface (UI) el-
ements improve user experience, delivery time and quality.
Effort is defined as the amount of time taken to complete
a HIT. More concretely, it is the interval between the con-
tributor being shown the HIT and submitting it. Hirth et al.
(2014) argue that effort can be divided into two dimensions:

• Reading time: the time it will take a human to read the
input to be processed;

• Answering time: the time involved with decision mak-
ing and interaction with the UI (according to the au-
thor, around five seconds per answer).

With respect to the first dimension, reading time, there is
a large body of work related to reading speed both in the
fields of Human Computation and Psychology. Rayner et
al. (2016) state that ”college-educated adults” read at a rate
of 200 to 400 wpm. Dyson (2001) have studied the influ-
ence of reading speed on comprehension, concluding that
fast and slow readers have similar comprehension accuracy.
The author also concludes that surface memory, i.e., the
recognition of specific wording of statements, is more ac-
curate at regular reading rates. Allen et al. (2014) state that
comprehension relies not only on the readers’ background
knowledge, but also on the cognitive processes necessary
to capitalize on the existing knowledge. At fast speeds, the
authors found better comprehension amongst readers who
pause more often or use more scrolling movements. How-
ever, while facing longer segments of text, cues to the loca-
tion are lost when text is scrolled within a window.
With respect to NET tasks, it is also important to consider
the process of skimming, that is to quickly browse through
the text to find a specific piece of information. Rayner et
al. (2016) argue that skimming rates can be as much as
two to four times faster than those of typical silent read-
ing. The authors also have studied the patterns of word and
character recognition, concluding that, for common words,
all the characters are recognized simultaneously. On the
other hand, unknown words or uncommon words with more
than seven characters require multiple fixations and conse-
quently are less efficient to read.
Regarding the second dimension pointed out in Hirth et al.
(2014), answering time, we also take into account the cog-
nitive load involved in NET tasks. It is known that high
cognitive demand leads to worse performance (Finnerty et
al., 2013). From the Cognitive theory, Sweller and Chan-
dler (1994) describe cognitive load as having two sources:

• inherent complexity: temporal demands that contribu-
tors need to put into the task completion, reflected by
the number of available task elements (e.g. text, im-
ages, links, entities) (Yang et al., 2016);

• organization and clarity of the content: elements such
as task title, instructions, description and keywords,
which have direct impact on how clear a given task is
perceived to be (Martin et al., 2017).

On considerations regarding answering time related to
NET, Feyisetan et al. (2017) have studied how specific fea-
tures of HITs affect the accuracy and speed of entity an-
notation. Particularly, the authors focus on the size of the

taxonomy (i.e. the number of named entities), the entities’
semantics (e.g. person, location) and the input length (text
to be tagged). Running an experiment with 7.5K tweets,
each annotated by three different contributors, the authors
highlight five points:

• contributors are more accurate when having few
named entities;

• tasks with fewer named entities are more likely to be
selected;

• there is no strong connection between input length and
annotation accuracy;

• different categories of named entities have different
accuracy and annotation times (categories like miscel-
laneous” tend to take longer to annotate);

• clean, clearly described and properly capitalized text
contributes to accuracy.

A final aspect to consider when assessing human effort
is motivation. Rogstadius et al. (2011) conclude that
contributors’ performance and effort are affected by vary-
ing the levels of intrinsic motivation (enjoyment, personal
improvement or preference) and the extrinsic counterpart
(payment, social factors or requirements). The authors find
that, while intrinsic motivation do not impact the project
completion times, it has a strong positive effect on contrib-
utor accuracy. On the other front, the authors show that ex-
trinsic motivation leads to quicker results but not to higher
levels of accuracy. These observations were corroborated
by Mason and Watts (2010). Sautter and Böhm (2013),
however, highlight the fact that increasing the monetary re-
ward may increase the rate of cheating contributors entering
the tasks.

3. Dataset
To support this research, we accessed data from 15 Named
Entity Tagging jobs in English which ran on Neevo1 (De-
finedCrowd’s2 proprietary human-in-the-loop platform) be-
tween January and August 2019.
Figure 1 shows an example of a Named Entity Tagging HIT
being completed by a contributor. The HIT is composed by
a prompt with the text to tag (input) and an ontology com-
posed by multiple categories of named entities. The con-
tributor will iteratively highlight a segment of text with a
named entity and select the corresponding category. When
the HIT is complete, the contributor clicks the ”NEXT” but-
ton being then forwarded to the next HIT in the pool.
The dataset is composed of 167,609 unique HITs. Fol-
lowing crowdsourcing best practices (Baba and Kashima,
2013), each HIT was executed by, at least, three different
contributors, resulting in a total set of 505,295 answers,
completed by 1,489 distinct contributors. All executions
are enriched with time-on-task information. The NET tax-
onomy, i.e., the set of named entities categories, is estab-
lished at the job level and varies between one and ten dis-
tinct categories. The number of contributors and HITs to

1https://www.neevo.ai/
2https://www.definedcrowd.com/

https://www.neevo.ai/
https://www.definedcrowd.com/
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Figure 1: Example of a Named Entity Tagging HIT in
Neevo.

complete per job varies greatly, with the shortest job hav-
ing 210 HITs executed by 6 contributors, and the largest
having 52,280 HITs executed by 454 distinct contributors.
Figure 2 shows the distribution of the number of HITs ex-
ecuted per contributor per job, confined to under 100 exe-
cutions. Around 40% of the contributors execute less than
15 HITs per job and, although not shown in the chart, 30%
execute more than 100 HITs. It is worth highlighting that
this discrepancy may affect the average contributor time-
on-task, as contributors may have different levels of en-
gagement and expertise.

Figure 2: Distribution of number of HITs executed per con-
tributor per job, up to 100 HITs for visualization purposes.

In Figure 3 we observe the distribution of the input length
in number of tokens over HITs. It is possible to identify
two main groups of tasks: one with text length around 15
tokens and the other around 65. Additionally, we observe
that 75% of the HITs in the dataset have less than 50 words.
Figure 4 shows the distribution of the time needed to com-
plete a HIT, bounded to executions of under two minutes.
This visualization represents 93.4% of the dataset. The me-
dian of time-on-task is 22 seconds.
The distributions presented in the figures above are the first
step to understand the dataset, define the target variable and
the next section experiments.

4. Experimental Setup
As mentioned in the introductory section, we aim to under-
stand which factors impact the human effort when annotat-
ing named entities and how accurate can we be when try-
ing to predict such effort before the actual annotation takes

Figure 3: Input length distribution in number of tokens.

Figure 4: Distribution of time-on-task over HIT executions,
confined to under two minutes for visualization purposes.

place. When executing a HIT, external factors including
contributor carelessness (such as leaving the HIT open for
an unreasonable amount of time) or contributor expertise
(where an experienced contributor completes tasks at a very
fast pace) may impact the completion time. Given the goal
of the present research, these are not desirable data points
to train (and test) an effort predictor, so we must prepare
the dataset accordingly. This section describes the exper-
imental setup, taking into consideration the data distribu-
tions described in Section 3.

4.1. Target Variable
As described in Section 2, human effort represents the time
needed by a human for completing a given HIT. For repre-
sentability and comprehension purposes, and following the
approaches found on the literature (Feyisetan et al., 2017),
we normalize time-on-task by the number of tokens present
in the input. This transformation results in speed-on-task,
which is measured in words per minute (wpm) and given
by:

Speed− on− task =
NumberTokens

T ime− on− Task
(wpm) (1)

The average speed-on-task is an effort normalization, cal-
culated per each HIT that has a redundancy of at least three
executions. The average speed-on-task is our ultimate vari-
able to predict.
Given the previously referred external factors that affect
the HITs execution, we pre-process the dataset to discard



301

(a) Dataset size versus dataset agreement. (b) Speed-on-task standard deviation versus dataset agreement.

Figure 5: Krippendorff’s alpha and dataset size evolution given the allowed speed-on-task standard deviation threshold.

unreasonable speeds. For this, we investigate the speed-
on-task’s standard deviation (SD) for each HIT: a value of
zero represents perfect alignment, i.e., all contributors per-
formed the task at the exact same speed (optimal condi-
tion); larger values for the standard deviation (see Figure
5b for detailed information) imply discrepant speeds and,
therefore, are not good candidates to be used for training
nor testing the prediction of human effort.
To make the process of data curation systematic, we use
the concept of Inter-Annotator Agreement (IAA) applied to
the speed-on-task values, measuring the Krippendorff’s al-
pha (α) coefficient of the dataset (Krippendorff, 1980). A
value of one for the α coefficient means that there is to-
tal agreement, while a value of zero represents the agree-
ment that can be attributed to chance. Landis and Koch
(1977) defined IAA α ∈ [0.6, 0.8] as ”substantial agree-
ment” and such range is consistently used in the literature
for data quality (Nowak and Rüger, 2010).
Figure 6 describes the iterative data curation procedure car-
ried out. In sum, starting from the highest standard devia-
tion observed for a HIT in the dataset, and in steps of −10,
we remove all HITs below that threshold and compute the
IAA of the remaining dataset. This process is repeated un-
til reaching a defined threshold of α = 0.65. This thresh-
old takes into consideration both the state-of-the-art recom-
mendations and our sense of the data.

Figure 6: Pseudo code for data curation process.

Figure 5 plots the tradeoffs between the value of IAA with
respect to both number of HITs remaining in the dataset
(5a) and standard deviation of speed-on-task (5b). The dot-
ted vertical line on both plots represents the point where

α = 0.65. Through the procedure described in Figure 6,
the first setting where the ideal condition is met (α > 0.65),
corresponds to accepting HITs for which their speed-on-
task standard deviation is below 20 wpm, resulting on a
total dataset size of 37,061 HITs.
Figure 7 shows the speed-on-task distribution considering
the curated dataset. Rayner et al. (2016) states that an av-
erage reader reads between 200 wpm and 400 wpm. In
our dataset, an average HIT executed by a contributor has
average speed-on-task of 53.8 wpm. The average speed-
on-task is lower, as expected, since it includes not only the
task reading time, but also the task comprehension and en-
tity tagging times.

Figure 7: Speed-on-task distribution over HIT executions
after dataset preparation.

4.2. Evaluation Metrics
Regarding the performance metrics, we report Mean Abso-
lute Error (MAE) and Root Mean Squared Error (RMSE).
MAE measures the average of the absolute difference be-
tween each true and predicted values (see Equation 2). It
weights equally small and large errors. RMSE measures
the square root of the average of the squared difference be-
tween the predicted and the true values (see Equation 3).
By definition, this performance metric gives more weight
to larger errors. As a result, we consider RMSE to be more
appropriate for our goal. All performance metrics are ex-
pressed in the same units of the target variable and, as they
measure error, lower values represent higher performance
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rates.

MAE =
1

n

n∑
j=1

|yj − ŷj | (2)

RMSE =

√√√√ 1

n

n∑
j=1

(yj − ŷj)2 (3)

4.3. Feature Engineering
The last step of our data preparation pipeline was to engi-
neer new features motivated by the literature review pre-
sented in Section 2. As described, these are expected to
carry information that can help to predict effort.
The extracted features are:

• Number of categories of named entities: the size of the
named entity taxonomy involved in the job;

• Input length in number of tokens: the length of the text
to be tagged;

• Number of sentences: the number of sentences along
with the input length are an indicator of readability
(Kincaid et al., 1975), that may impact both reading
and answering time;

• Number of punctuation tokens: punctuation influences
speed-on-task as it affects reading speed. An unam-
biguous sentence will generally be read faster when it
contains internal punctuation (Hirotani et al., 2006);

• Number of stopwords: according to the state-of-the-
art, non common words or words unknown to the con-
tributor make require more effort to interpret. As a
result, we use stopwords3, i.e. words that are most
common in a language, to study the hypothesis that
the number of stopwords in a given text influences the
reading speed. We expect that the higher the number
of stopwords, the lower the cognitive effort, resulting
in a higher speed-on-task (Barrouillet et al., 2007);

• Average word length: as the size of the words impacts
reading efficiency (Rayner et al., 2016), we expect that
texts with higher average word length are more diffi-
cult to read;

• Average word length, without stopwords: as the size
and regularity of the words impacts reading efficiency,
this feature excludes stopwords to compute the aver-
age word length.

After computing the Pearson correlation between the fea-
tures with the target variable, we found that the number
of sentences (ρ = 0.27), input length in number of to-
kens (ρ = 0.27), number of stopwords (ρ = 0.30) and
number of punctuation tokens (ρ = 0.24) are the features
which correlate the most with the target variable. The aver-
age word length and number of entities have negative cor-
relations with the target variable, but positive correlations
among them (ρ = 0.29).

3In this research we use https://pythonspot.com/
nltk-stop-words/ set of stopwords

5. Predicting human effort at the HIT level
Using the curated dataset, we can now move to investigate
the performance of predicting the human effort at the HIT
level. The experiments described in the remainder of this
section follow a 10-fold cross validation process. We eval-
uate the model using the evaluation metrics described in
Section 4.2 (MAE and RMSE), and for the solutions that
require a validation set, we tune the models hyperparame-
ters using a grid search approach.
In this section, we carry out experiments considering the
established experimental setup (see Section 4). In Section
5.1, we set a baseline (Ordinary Least Squares) and com-
pare it to three nonlinear models using two features repre-
sented in the state-of-the-art. In Section 5.2, we improve
the nonlinear models by expanding the set of explanatory
variables, to understand in more detail the impact of the
cognitive load features on the effort prediction.

5.1. Baseline
As a first approach to predict human effort, we start by es-
tablishing a linear model baseline with two features. The
features used represent the dimensions described in the
state-of-the-art: input length in number of tokens, as a ba-
sic representation of the amount of information to be pro-
cessed, and number of categories of named entities, as a
representation of cognitive load. The linear model used
herein was the Ordinary Least Squares (OLS) estimator.
Although we believe that the input length in number of to-
kens may evolve linearly with the effort needed to complete
a task, we do not expect the taxonomy size to contribute
linearly to the time contributors spend while annotating.
Therefore, we additionally explore the impact of using non-
linear approaches to the experiment.
Table 1 shows this experiment results. For reference, we
include the performance of always assigning the average
speed-on-task computed in the entire dataset (53.8 wpm).
The OLS Model scores 27.33 wpm RMSE, 5.7% greater
than assigning the average value. Moreover, Random For-
est yields the best results in both evaluation metrics with
26.16 wpm RMSE, 4.3% better than the linear model. The
set of hyperparameters that optimize the Random Forest
model are maximum depth = 25, number of estimators =
700, minimum sample split = 200 and minimum samples
leaf = 2.

Model MAE
(wpm)

RMSE
(wpm)

Average Speed-on-task (53.8 wpm) 21.78 28.98
Linear Model (baseline) 20.09 27.33
Nearest Neighbours 19.10 26.39
Random Forest 19.06 26.16
Gradient Tree Boosting 19.11 26.39

Table 1: Performance of predicting human effort with Non-
linear Models compared with the Linear model Baseline.

Given the similarity among models’ results, we performed
the Wilcoxon signed rank test at the 0.01 level, to verify
the statistical significance of the results attained (Wilcoxon,

https://pythonspot.com/nltk-stop-words/
https://pythonspot.com/nltk-stop-words/
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1946). Comparing the Random Forest with Nearest Neigh-
bors and Gradient Tree Boosting, the p-values were bellow
the significance level proving that the models predictions
are statistically significant.

5.2. Exploring Additional Features
The results of the experiments described in the previous
section show that nonlinear models are more suitable to
capture the human effort complexity. Building up on that
end, in this experiment we expand the set of explanatory
variables to understand if they can contribute to outperform
the previous experiments and, consequently, better explain
the target variable. Under those circumstances, we add text
preprocessing features that could model the cognitive load
associated with the task (see Section 4.3): number of sen-
tences, number of punctuation tokens, number of stopwords
and average word length (with and without stopwords).
Later, we accomplish an ablation study to understand if a
reduced set of features would improve the models accuracy.
Table 2 shows the experiment results when expanding the
set of features according to the recommendations studied
in the state-of-the-art, and after reducing the set of features
according to the feature ablation. We observe that both the
Nearest Neighbors and Random Forest improve the perfor-
mance by reducing the set of features. The former removes
the count of sentences and the average word length without
stopwords, while the latter removes the count of punctua-
tion tokens and the input length in number of words.

Model MAE
(wpm)

RMSE
(wpm)

Random Forest (2 features) 19.06 26.16
Nearest Neighbors (7 features) 18.38 25.72
Nearest Neighbors (5 features) 18.36 25.68
Random Forest (7 features) 18.82 25.73
Random Forest (5 features) 18.76 25.70
Gradient Tree Boosting (7 features) 18.95 25.90

Table 2: Performance of predicting human effort using
Nonlinear Models with the complete set of features (7), the
reduced set of features for the Nearest Neighbors and Ran-
dom Forest (5), compared with the Random Forest with a
set of two features.

As the performances described are very similar, we carry
out the Wilcoxon statistical test at the 0.01 level to com-
pare both the Random Forest and Nearest Neighbors mod-
els, with the full and reduced set of features. Nearest Neigh-
bors achieved a p-value bellow the significance level, con-
cluding that reducing the set of features improves model
accuracy. On the counter part, Random Forest attained a p-
value of 0.083, above the significance level, concluding that
the predictions are similar apart from using the complete or
reduced set of features.
Additionally, Table 2 shows that Nearest Neighbors Re-
gressor outperforms the remaining models considering both
evaluation metrics, attaining 25.68 wpm RMSE, 6% better
than the linear model baseline. The set of hyperparameters
that optimize the Nearest Neighbour model are number of

neighbors = 95 and minkowski distance metric. Compar-
ing the reduced set of features Nearest Neighbors with the
Random Forest and Gradient Tree Boosting with the com-
plete set of features, we observe p-values bellow the 0.01
significance level, proving that the models’ results are sta-
tistically different. Ultimately, the Nearest Neighbors with
the reduced set of features is the model that better predicts
the target variable.
In the final analysis, when comparing the Nearest Neigh-
bors to the Baseline Experiment Random Forest, we ob-
serve an RMSE improvement of 1.8%, statistically signifi-
cant at the 0.01 level. So, in short, adding the features num-
ber of punctuation tokens, number of stopwords and aver-
age word length, to represent the cognitive load, reduces
the prediction error.

6. Predicting Human Effort at the Job Level
By using the human effort at task level, we can estimate
the total effort required by the crowd to complete a job.
We define it as the job effort. This metric is valuable as
it provides insights that are useful for pricing and crowd
payments, as well as crowd management.
To calculate the job effort, we take into consideration the
HITs available and the redundancy required for quality con-
trol. Since in Section 5.2 we predict the effort as the average
speed-on-task, we must denormalize the results to estimate
the job effort in hours. Equation 4 reflects the job effort
estimation, where T is the number of HITs available in the
job, the Number of Tokens is the input length per task, the
PredictedSoT is the predicted mean speed-on-task and Re-
dun is the redundancy required.

JobEffort =

T∑
t=0

(
NumberTokenst
PredictedSoTt

∗Redund) (4)

To verify the accuracy of our estimations, we compare the
predicted job effort with our ground truth, that is, the sum of
all executions’ time-on-task. Then, to evaluate the results,
we use the Mean Absolute Percentage Error (MAPE). This
evaluation metric is the Mean Absolute Error (see Section
4.2) in percentage and allows to compare jobs with different
number of tasks and/or total effort. The job effort estima-
tion achieved 18.1% MAPE.
Figure 8 shows the ground truth versus estimated job ef-
fort per each job. Results show that our model is underpre-
dicting that is, the predicted effort is inferior to the ground
truth. Considering that we employ the predicted efforts at
the HIT level to compute the job effort, and also that the
number of tokens and redundancy are equal to the ground
truth, we hypothesize that these underpredictions are the
result of overpredictions at the HIT level.

7. Discussion
In this paper, we address the problem of predicting the ef-
fort to complete a given NET task, before the actual anno-
tation takes place. Nearest Neighbors with five features is
the model that attain the best performance (see Table 2) es-
timating human effort at the task level. Adding three out of
the five proposed text preprocessing features to the model,
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Figure 8: Estimated job effort in hours (y axis) as a function
of the ground truth in hours. Each point in space represents
one job. The x = y line is the identity line.

has a statistically significant improvement of 1.8% when
comparing to the Baseline Experiment. The final set of
features used by the Nearest Neighbors is input length in
number of tokens, number of categories of named entities,
number of stopwords, number of punctuation tokens and
average word length.
To understand the importance of each feature, we decide to
carry out an ablation study. Table 3 shows the rank of the
features ordered by the highest impact on the model per-
formance. The RMSE column is the score of the model
without the given feature, and the difference is the discrep-
ancy between the score and the initial model performance
(25.68 wpm). That is to say that the number of categories of
named entities is the feature with greater influence on the
model performance. This feature is intuitively more rele-
vant to explain the human effort, as the more entities to tag,
the longer the task comprehension and the answering time.
At the same time, the number of stopwords and the num-
ber of punctuation tokens prove the hypothesis formulated
in Section 4.3 that these features impact the speed-on-task,
the former by lowering the cognitive effort and the latter by
improving the sentence comprehension. Finally, the input
length in number of tokens and average word length are the
features with minor impact on the model performance and
consequently are less relevant to explain the target variable.

Removed Feature RMSE
(wpm)

Diff.
(wpm)

Number categories named entities 27.01 1.33
Number stopwords 25.92 0.24
Number punctuation tokens 25.77 0.09
Input length in number of tokens 25.73 0.05
Average word length 25.70 0.03

Table 3: RMSE obtained when removing each feature from
the Nearest Neighbors model and the difference between
the performance attained without each feature and the per-
formance when using the set of five features (25.68 wpm).

Another important result is the shortage of high speeds
predictability. In Table 2, we observe a discrepancy be-
tween the MAE and RMSE results. RMSE, by definition,

gives a relatively high weight to large errors, suggesting
that our predictions have several outliers. Under those cir-
cumstances and upon further investigation, we searched for
similarities among HITs whose ground truth speed-on-task
surpass 250 wpm, a very large speed-on-task according to
the data exploration detailed in Section 3. Observing the
tasks’ input, we noticed that most texts had short sentences
with low complexity and without named entities to tag, e.g.
”I’m very sorry to hear that” or ”Yes, I’ll remember.”. Ulti-
mately, these evidences indicate that there are uncertain fac-
tors, beyond the contributor carelessness or expertise (see
Section 4.1) that impact human effort.
Figure 9 studies the speed-on-task aggregated by the num-
ber of instances of named entities by means of an error
plot. An instance corresponds to the tagging result, for
example, in Figure 1 there is one instance, i.e., the an-
notation of ”Barack Obama” with the named entity cate-
gory ”Person”. The plot shows the average speed-on-task
(represented with a black circle) and the standard deviation
(represented by the whiskers). Observing the mean speed-
on-task, we notice a decreasing trend when the number of
instances of named entities increases. We expected this cor-
relation as the number of instances influences the answering
time, that in turn influence the speed-on-task. Nevertheless,
we must take into consideration the high variance among
the number of instances of named entities. This variance is
the consequence of other factors impacting the human ef-
fort, such as the contributor profile and the HIT cognitive
load. In either case, although the number of instances of
named entities is a factor that affects human effort, we can-
not use it as a predictor variable, as we do not have access
to this information before the actual annotation takes place.

Figure 9: Mean and Standard Deviation of speed-on-task
per number of instances of named entities.

In Section 4.1, we refer that the contributor profile may im-
pact the HIT completion time, so during the dataset pre-
processing step we discard HITs whose executions do not
agree on the effort needed to complete the task. However,
different efforts may be explained by distinct motivation or
expertise (Rogstadius et al., 2011). Therefore, we study
the contributor speed-on-task variance per each contributor
and analyze its distribution. Observing Figure 10, we notice
that the contributor mean speed distribution has a long tail
with several contributors having speeds above 100 wpm.
Given the speed-on-task distribution (see Figure 7), we rec-
ognize that contributor average speeds above 90 wpm are
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very large. Figure 10 distribution can be explained by the
contributors’ set of skills, leading us to the conclusion that
the contributor characteristics affects human effort. On the
counterpart, we cannot use the contributor characteristics as
predictor variables as the contributor assignment to the task
is undetermined before the actual annotation takes place.
However, if using crowd segmentation, some particularities
as the contributor age, gender, country or fluent language
may be investigated.

Figure 10: Distribution of the average speed-on-task over
contributors.

When estimating the human effort at the job level, we no-
ticed underpredictions, caused by overpredictions at the
HIT level, that is, predicting higher speeds compared to
the ground truth. This outcome corroborates the hypothe-
sis that uncertain factors, before the actual annotation takes
place, affect the human effort predictability.
Considering that in Section 2 we argue that the task comple-
tion time is divided into answering and reading times, by
the end of this section we understand that poor effort pre-
dictions may relate to the shortage of the answering/reading
times explainability, due to uncertain factors before the an-
notation takes place. We believe that this shortage is two-
folded: the reading time depends on the contributor as-
signed, and the answering time depends on the number of
instances of named entities.

8. Conclusion and Future Work
In this research, we used a data-driven approach to under-
stand which factors affect the human effort for NET tasks
and which strategies can be used to predict it. In the state-
of-the-art, we found several factors impacting the human
effort, such as the HIT cognitive load and the contribu-
tor’s motivation. Based on this study, we extracted a set
of features: number of categories of named entities, in-
put length in number of tokens, number of sentences, num-
ber of punctuation tokens, number of stopwords and aver-
age word length (both with and without stopwords). Then,
we performed a set of experiments with different models
and feature combinations. We concluded that the Near-
est Neighbors Regressor outperforms the remaining mod-
els, attaining 25.68 wpm RMSE, 6% better than the Linear
Model Baseline. We also concluded that adding features re-
lated to the HIT cognitive load, specifically the number of
stopwords, number of punctuation tokens and average word

length, improve the models’ performances. In the end, we
expanded this estimation to the job level, achieving 18.1%
MAPE when comparing to the ground truth.
When exploring the results of the experiments, we found
some factors that cannot be measured before the annotation
takes place, i.e., the instances of named entities and the con-
tributors’ profile, impacted the human effort predictability.
Ultimately, we correlated these factors with effort overpre-
dictions at the HIT level.
For future work, we would extend the effort estimation to
other languages besides English. There is also room for im-
provement regarding the investigation of additional features
that model the task cognitive load to improve effort predic-
tions, e.g. investigate the impact of the named entities cat-
egories on the human effort. Finally, since the number of
instances of named entities and the contributor’s particular-
ities impacts the human effort, we would further investigate
these variables predictors.
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