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Abstract
Word senses are typically defined with textual definitions for human consumption and, in computational lexicons, put in context via
lexical-semantic relations such as synonymy, antonymy, hypernymy, etc. In this paper we embrace a radically different paradigm that
provides a slot-filler structure, called “semagram”, to define the meaning of words in terms of their prototypical semantic information.
We propose a semagram-based knowledge model composed of 26 semantic relationships which integrates features from a range of
different sources, such as computational lexicons and property norms. We describe an annotation exercise regarding 50 concepts over
10 different categories and put forward different automated approaches for extending the semagram base to thousands of concepts. We
finally evaluate the impact of the proposed resource on a semantic similarity task, showing significant improvements over state-of-the-art
word embeddings. We release the complete semagram base and other data at http://nlp.uniroma1.it/semagrams.
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1. Introduction

The representation of knowledge is one of the great dreams
of Artificial Intelligence. Acquiring and encoding knowl-
edge is essential not only to improve historical NLP tasks
such as Word Sense Disambiguation and Machine Trans-
lation, but also to enable numerous applications (Hovy
et al., 2013) like intelligent personal assistants, Question
Answering, Information Retrieval, etc. Lexical-semantic
knowledge has typically been encoded on a large scale us-
ing word senses as meaning units, starting from WordNet
(Miller, 1995) and then carrying on with VerbNet (Schuler,
2005), PropBank (Kingsbury and Palmer, 2002) and, more
recently, VerbAtlas (Di Fabio et al., 2019). Large reposito-
ries of frames have been introduced with FrameNet (Baker
et al., 1998) and its counterparts in other languages. How-
ever, frames are focused on situation-based representations
with semantic roles and commonly involved objects, with-
out defining the embodied ontological semantics of single
concepts.
Word senses, on the other hand, suffer from a lack of ex-
plicit common-sense semantic information. Indeed, the
well-known fine granularity of word senses in WordNet
(Palmer et al., 2007) is due to the lack of a meaning en-
coding system capable of managing the representation of
concepts in a flexible way. To address this issue, Puste-
jovsky introduced an innovative model (Pustejovsky, 1991)
based on qualia roles to enable the creation of new mean-
ings via semantic slot filling. However, the approach was
limited by the number and type of these slots.
An interesting and novel extension was presented by Mo-
erdijk et al. (2008) with the ANW dictionary and the in-
troduction of the concept of semagram. A semagram is a
conceptual structure that describes a lexical entity on the
basis of a wide range of characteristics, defined with a
rich slot-filler structure. The semagrams provided in the
ANW dictionary are, however, limited in coverage, often
expressed with a fragmented set of semantic slots and writ-
ten in Dutch.

The aim of this paper is threefold: (i) to propose a novel
model of semantic representation of concepts; (ii) to cre-
ate a new semantic resource through manual annotation and
semi-automatic techniques; and (iii) to evaluate the impact
of the resource on a text similarity task, in comparison with
state-of-the-art word and sense embeddings. More in detail,
we provide the following contributions:

1. a new approach to semagrams by bringing together ad-
vancements going in the same direction as Property
Norms (McRae et al., 2005; Devereux et al., 2014);

2. a manual annotation exercise on 50 concepts belong-
ing to 10 different categories; as a result, we have built
a total of 1,621 manually disambiguated slot-filler in-
stances with a set of annotation guidelines;

3. a semi-automated extension strategy involving Sketch
Engine (Kilgarriff et al., 2014) and word2vec embed-
dings (Mikolov et al., 2013b) that led to the annotation
of 250 additional concepts in 1/30 of the original re-
quired time (i.e., 115 seconds per concept on average,
instead of 57 minutes);

4. an automatic extension based on a novel notion of se-
mantic profile and the automatic learning of abstract
lexical-syntactic patterns from Wikipedia, that gener-
ated thousands of semagram annotations with good
precision values;

5. the notion of semantic propagation as the way, en-
abled by the model, to propagate individual semantic
properties through a taxonomy of word senses; this
allowed the automatic extension of the resource from
the initial 50 concepts to 923 additional hyponym con-
cepts with an accuracy of 85.43% calculated through a
manual validation on a sample of 400 slot-filler pairs.

6. a test of the model significance in a semantic similar-
ity task, outperforming all state-of-the-art embedding
models while giving lexicalized meaning to similarity
values.

http://nlp.uniroma1.it/semagrams
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2. Related Work
Models of explicit lexical-semantic knowledge representa-
tion may be classified into five main categories, which we
overview in this Section.

Computational Lexicons Word senses are the basis of
computational lexicons such as WordNet (Miller, 1995) and
its counterparts in other languages (Bond and Foster, 2013).
They usually provide human-readable concept definitions
and contextualize meanings mainly in terms of the paradig-
matic relations (hypernymy, meronymy) that hold between
them. While larger resources such as BabelNet (Navigli
and Ponzetto, 2010) also integrate other relations, these are
typically unlabeled and are not systematized. A key un-
solved issue with wordnets is the fine granularity of their
inventories.

Frames Frames (Fillmore, 1977) encode meanings
through simple slot-filler structures. In other words, they
represent knowledge as a set of attributes and values with
the aim of defining situations or events. However, although
semantic roles provide prototypical lexical units, these lat-
ter are not the primary focus of the frame model. Therefore,
frames are not a viable option for encoding the prototypical
meaning of concepts.

Corpus-based Models Corpus-based semantic models
are based on the idea that similar words are used in similar
contexts (Harris, 1954). Corpus Pattern Analysis (Hanks,
2004, CPA) is a procedure for lexicographers to map mean-
ing to words based on the theory of Norms and Exploita-
tions (Hanks, 2013). The underlying idea is to analyse
the prototypical syntagmatic patterns of words in their use
in large corpora. CPA focuses on patterns for nouns and
for verbs and their argument structure, and is centered on
the lexical aspects of meaning. CPA inherits some of its
intents from the Generative Lexicon (Pustejovsky, 1991),
the theory of preference semantics (Wilks, 1975), and oth-
ers. Generally speaking, words are not taken in isola-
tion and the meaning they are attributed is ascertained on
a contextual basis through prototypical sentence patterns.
However, these theories and methods for building semantic
resources remain linked to the lexical basis and are suit-
able for the manual effort of lexicographers. On the other
hand, automatic approaches such as those of Almuhareb
and Poesio (2004), Baroni et al. (2010), Navigli and Ve-
lardi (2010) and Boella and Di Caro (2013) used surface
text patterns to automatically extract concept descriptions.
However, these methods do not have a knowledge model
as they extract semantics from statistically significant word
properties. Mishra et al. (2017) extract domain-targeted
knowledge, identifying clusters of similar-meaning predi-
cates. However, the approach does not organize knowledge
through semantic relations, and is not suitable for general
knowledge building. Finally, Open Information Extrac-
tion (OIE) achieved notable results in extracting relational
phrases from large corpora such as Wikipedia and the Web
(Banko et al., 2007; Wu and Weld, 2010; Carlson et al.,
2010; Fader et al., 2011; Del Corro and Gemulla, 2013).

Common-sense Knowledge Common-sense knowledge
(CSK) may be described as a set of shared and general facts
or views of a set of concepts. CSK displays some similarity

with a semagram-type of knowledge in that it describes the
kind of general information that humans use to describe,
differentiate and reason about the conceptualizations they
have in mind. ConceptNet (Speer and Havasi, 2012; Speer
et al., 2016) is one of the largest resources of this kind, col-
lecting and automatically integrating data starting from the
original MIT Open Mind Common Sense project1. How-
ever, terms in ConceptNet are not disambiguated, which
leads to the confusion of lexical-semantic relations involv-
ing concepts denoted by ambiguous words (e.g. mouse as a
device vs. a rodent). NELL (Carlson et al., 2010) matches
entity pairs from seeds to extract relational phrases from
a Web corpus, although without linking patterns to a slot-
filler knowledge model, being mostly oriented to named
entities rather than concept descriptions. Property norms
(McRae et al., 2005; Devereux et al., 2014) represent a
similar kind of resource, which is more focused on the
cognitive and perception-based aspects of word meaning.
Norms, in contrast with ConceptNet, are based on empiri-
cally constructed semantic features via questionnaires ask-
ing people to produce features they consider important for
some target concept (e.g., a crocodile is often associated
with the norm is-dangerous). The problem with norms is
that they mix properties and values (i.e., slots and fillers),
and they do not represent complete descriptions (usually,
only immediate and common-sense facts are reported).

Geometric Approaches to Semantics A radically differ-
ent approach is based on vector space models of lexical
(sometimes semantic) representations. Conceptual Spaces
(Gärdenfors, 2004) provide a geometric approach to mean-
ing, viewing concepts as vectors whose dimensions are
qualitative features. For example, colors may be repre-
sented with three dimensions: hue, saturation, and bright-
ness. While this model allows for direct similarity com-
putation among instances, the knowledge it encodes does
not define concepts explicitly, and dimensions usually rep-
resent perceptual mechanisms only. Other methods include
topic models such as Latent Semantic Analysis (Dumais,
2004), Latent Dirichlet Allocation (Blei et al., 2003), and,
more recently, embeddings of words (Mikolov et al., 2013a;
Pennington et al., 2014; Bojanowski et al., 2016) and word
senses (Huang et al., 2012; Iacobacci et al., 2015; Scar-
lini et al., 2020). However, the relations holding between
vector representations are not typed, nor are they organized
systematically.

Semagrams To address the issues with existing ap-
proaches to concept representation, Moerdijk et al. (2008)
proposed the concept of semantic gram, or semagram,
and manually constructed a semantic resource in Dutch –
the ANW (Algemeen Nederlands Woorden boek - Gen-
eral Dutch Dictionary) Dictionary – containing approxi-
mately 70,000 headwords, organized in 20 domains (ani-
mal, plants, etc.) with a total of 200 slots. However, most
of the headwords lack any semagram annotation and only a
few hundred provide rich annotations. Moreover, the guide-
lines lack a formal description: lexicographers were only
invited to characterise features in terms of short statements

1http://media.mit.edu/research/groups/
5994/open-mind-common-sense

http://media.mit.edu/research/groups/5994/open-mind-common-sense
http://media.mit.edu/research/groups/5994/open-mind-common-sense
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about the headword and could autonomously decide what
was relevant and appropriate for inclusion.
The main goal of this paper is to revise the knowledge
model and systematize and automatize the creation and an-
notation of semagrams.

3. The Semagram Knowledge Model
A semagram is a flexible structure for encoding the seman-
tics of a given concept via a slot-filler structure. In Table
1 we show an excerpt of semagram for the concepts of dog
(right) and piano (left). As can be seen, the two semagrams
share several slot types (but, obviously, not their values),
while some slots are used only for one of the two concepts
due to their belonging to different categories.
The first contribution of this paper is a careful, systematic
analysis, unification and extension of semagram slots from
different resources. This analysis was initially performed
on a development sample of 20 concepts over the 10 dif-
ferent categories used by Silberer et al. (2013) and then re-
fined using another set of 30 concepts (3 per category). We
chose these categories for their variety across conceptual
types. The full sample is shown in Table 2 (development
concepts are shown in bold in each category row). The 5
concepts in each category were chosen from among popu-
lar terms according to a diversification criterion specific to
each category that would maximize the intra-category vari-
ability. For example, for the category Animals, we chose
five concepts with different kinds of movement, for the cat-
egory Clothes we selected those that are worn on different
body parts, etc. Each concept and each filler was associated
with a single WordNet synset.
The objective of our work was to define a wide-coverage
semagram knowledge model in terms of the semagram slots
that would be used to cover all the facets of a concept de-
scription. To do this, we followed the basic steps below:

• we started by analyzing concepts belonging to one cat-
egory at a time (from C1 to C10 as in Table 2);

• we translated each concept into Dutch and collected all
its semagrams available in the ANW dictionary (Mo-
erdijk et al., 2008);

• we created clusters of ANW slots that shared identical
or very similar fillers (e.g., the habitat, place and lo-
cation slots used to contain identical or often similar
fillers across concepts of the same category);

• for the same concepts, we then collected the semantic
features contained in the Property Norms (Devereux
et al., 2014), adding in some cases new semagram
slots that were not covered by the ANW dictionary
(e.g., consistency for concepts belonging to the cate-
gory food);

• we repeated the previous step with the Visual At-
tributes (Silberer et al., 2013);

• we finally added new semagram slots, encoding rel-
evant prototypical semantic information that was not
found in the above-mentioned resources.

As a result of applying the above steps to the development
sample of 20 concepts we obtained an initial set of 24 slots.
We then refined our semagram knowledge model by anno-
tating the remaining 30 concepts (3 per category) in our
sample. In this last step we were able to annotate the new
concepts without revising the knowledge model, except for
adding two new slots: bodyPart (which helped in encoding
parts of the body involved in the use of objects, especially
in vehicles, home objects, instruments, artifacts, and tools)
and howToUse (actions for using objects such as instru-
ments, artifacts and tools). The resulting semagram base
contains a total of 1,621 manual slot-filler annotations, and
906 distinct fillers across all semagram slots. The com-
plete list of semagram slots with the corresponding textual
descriptions is shown in Table 3. To get an idea of the im-
portance of our unification work, Table 4 shows the sources
from which each of the 26 slots was derived.
To summarize, the resulting semagram knowledge model
differs from the one of its original proposers in several as-
pects: 1) we defined an XML annotation scheme and the
annotation guidelines, uploaded with the resource; 2) we
removed, added and merged semagram slots starting from
(Moerdijk et al., 2008) and integrating features from Prop-
erty Norms (Devereux et al., 2014) and Visual Attributes
(Silberer et al., 2013), as detailed above; 3) fillers were
disambiguated and put in their lemma form in a comma-
separated list (cf. the two right columns in Table 1).

4. Extending the Semagram Base
In this section, we describe three strategies for the extension
of the initial semagram base:

1. a semi-automated approach based on Sketch Engine
(Kilgarriff et al., 2014) and word2vec embeddings
(Mikolov et al., 2013b);

2. an automatic technique based on the learning of syn-
tactic patterns coupled with an abstraction step relying
on the notion of semantic profiles;

3. a second automatism, called semantic propagation,
which exploits the WordNet hypernym relations to
propagate single slot-filler pairs.

4.1. A Semi-Automated Approach
By having 5 concepts for each of the 10 categories, we ini-
tially looked for a further 25 new concepts per category,
with the objective of extending the semagram base to 300
concepts from the initial set of 50. This search for addi-
tional concepts was made manually, by browsing the Word-
Net structure (e.g., sister terms, hyponyms, etc.).
First, for each concept c in the original set, we created
links between its semagram slots and the grammar rela-
tions of c in Sketch Engine (SE, from now on) (Kilgarriff
et al., 2014) based on the maximum number of matching
words/fillers. For example, the slot “activity” of concept
“dog” was linked through 4 fillers (e.g., “bark”, “walk”,
“chase”, “bite”) with the SketchEngine grammar relation
“verbs with X as subject”.
After the linking stage, all words within the linked SE
grammar relations were thus automatically added as fillers
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Slot Concept Piano Concept Dog
GENERALIZATION musical instrument#N mammal#N; animal#N
SPECIALIZATION grand piano#N; upright piano#N Boxer#N; Reottweiler#N; Poodle#N;

Yorkshire-Terrier#N; Bulldog#N; Bea-
gle#N; Golden-Retriever#N; German-
Shepherds#N; Labrador#N

COLORPATTERN black#A|N; white#A|N; brown#A|N solid#A; spotted#A; grey#A|N; black#A|N;
brown#A|N; white#A|N

PART eighty-eight black,white key#N; lid#N lid-
prop#N; music-rack#N; fall-board#N; three
leg#N; three pedal#N; metal string#N; ham-
mer#N; soundboard#N; case#N

coat#N; fur#N; hair#N; forty-two tooth#N;
four sharp fang#N; long,short tail#N; four
leg#N; two eye#N; bone#N; tongue#N;
two ear#N; flash#N; claw#N; mouth#N;
head#N; whisker#N; jaw#N; neck#N;
nose#N; four paw#N; pad#N

MATERIAL wood#N; ivory#N; metal#N; felt#N
PURPOSE play#V; accompaniment#N; solo#N pet#N; guard#N|V; hunting#N; guide-

animal#N; research#N
USER pianist#N; musician#N; orchestra#N shepherd#N; hunter#N; blind#N; police-

man#N; trainer#N
HOWTOUSE sit#V; press#N
BODYPART finger#N; foot#N
ACCESSORY seat#N collar#N; muzzle#N; leash#N; kennel#N
PLACE kennel#N
MOVEMENT run#V; walk#V
SOUND bark#N; yelp#N; growl#N; whining#N
ACTIVITY walk#V; run#V; eat#V; drink#V; bite#V;

chew#V; bury#V; fetch#V, play#V;
breathe#V; bark#V; yelp#V; growl#V

Table 1: An excerpt of two semagrams for the concepts of dog and piano.

Category Selected concepts
C1: animals bee, dog, elephant, snail, frog
C2: food apple, carrot, corn, bread, wine
C3: vehicles airplane, car, bicycle, ship, tractor
C4: clothes skirt, boot, glove, cap, scarf
C5: home mug, spoon, sink, rocker, gate
C6: appliance projector, telephone, thermome-

ter, dishwasher, stove
C7: instruments accordion, cello, clarinet, drum, pi-

ano
C8: artifacts helmet, bracelet, mirror, umbrella,

typewriter
C9: tools anchor, hoe, scissors, screws,

tongs
C10: containers bag, barrel, bottle, bucket, tray

Table 2: The sample of concepts selected for manual anno-
tation (in bold the concepts from the development sample),
with their corresponding category.

in the original semagrams2 (if not already present). In the
above example, the word “lick” in SE has been automati-
cally disambiguated and added to the semagram of “dog’.
The method allowed the initial manual annotation to be en-
riched from 1,621 (slot, filler) pairs to 1,913 (292 new pairs

2A filtering step based on word2vec embeddings (Mikolov et
al., 2013b) has been applied to remove those fillers having a sim-
ilarity lower than 0.2 with the embedding of the lexicalized con-
cept.

had not been found by the annotators) for the initial 50 con-
cepts, after a manual check for correctness.
Then, the same procedure was applied to the extension set
of 250 new concepts, by considering the words (i.e., candi-
date fillers) in the previously-linked SE grammar relations.
The final result was a total of 6,701 (slot, filler) pairs. The
manual check of the automatically retrieved (slot, filler)
annotations required around 1/30 of the average “from-
scratch” annotation time (i.e., 115 seconds per concept on
average, instead of 57 minutes). This was due to multi-
ple factors: 1) the selection of correct (slot, filler) pairs is
simpler than their search from different sources; 2) words
are automatically POS-tagged; 3) disambiguated3; and 4)
already organized in semagram slots. This approach is,
however, valid on an extension set built around manually-
annotated seed concepts of a particular category.

4.2. An Automatic Approach based on Semantic
Profiles

Using the WordNet synset identifier associated with each
filler of the semagram base, we built the distributional se-
mantic profile for each slot retrieving the most frequent
WordNet supersense4 for each of them. We built differ-
ent semantic profiles for each of the ten categories in order
to make them more precise. Since adjectives are not se-
mantically well categorised in WordNet (they often have

3We utilized Babelfy (Moro et al., 2014) as Word Sense Dis-
ambiguation tool - http://babelfy.org.

4https://wordnet.princeton.edu/man/
lexnames.5WN.html.

http://babelfy.org
https://wordnet.princeton.edu/man/lexnames.5WN.html
https://wordnet.princeton.edu/man/lexnames.5WN.html
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Slot Description
S1: accessory All those objects that may have to do with X. The constraint is that there must be a

physical contact and that the use of such object is strictly necessary for X.
S2: activity All actions that X can actively or consciously do.
S3: behavior All the psychological features of X, including they attitude to they nature.
S4: bodyPart All the body parts which are involved in interacting with X.
S5: colorPattern All the features that refer to the color or texture of X.
S6: consistency All the entries with which the noticeable to the touch consistency or texture of X can

be described.
S7: content All the entities which might be contained within X, without being constitutive parts of

it.
S8: efficiency Positive (efficiency) or negative (inefficiency) features of X related to their function.
S9: generalization Classification of X related to hypernyms.
S10: group Names that indicates a group of animals of the same species of X.
S11: howToUse All the actions or states required to operate, employ, interact with or perceive the

existence of X.
S12: material Material of which X is composed.
S13: movement Terms that describe the type and speed of movement.
S14: part All the constitutive parts of X.
S15: place All the entities in which X can be experienced, found or perceived.
S16: product All types of entity that can be derived from X through its processing or through natural

processes.
S17: purpose All of the purposes for which X is interacted with.
S18: shape Form of X.
S19: size Size of X.
S20: smell All the entries with which the smell of X can be described.
S21: sound All the entries with which the sound of X can be described.
S22: specialization Classification of X in terms of their hyponyms.
S23: supply The power mode that allows the functioning of X.
S24: taste Contains information on the taste of a food.
S25: time All the entries which link X with the time flow or with specific moments of time.
S26: user All the kinds of living beings which are able to operate, employ, interact with or

perceive X.

Table 3: The semagram knowledge model in terms of the slots resulting from our sample concept annotation. By X we
refer to a general concept, chosen from among the fifty annotated concepts.

R S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14
ANW x x x x x x x x x

PN x x x x
VA x x x x
R S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 - -

ANW x x x x x x x x x x x
PN x x x
VA x x

Table 4: Overview of the knowledge model derivation and integration. Columns are semagram slots in the knowledge
model, while rows represent the three sources: the ANW dictionary, the Property Norms (PN), and the Visual Attributes
(VA). Cells have been filled when the corresponding resource was used for the given slot, while empty columns indicate
new slot proposals from the authors (marked in bold).

adj.all as supersense), we kept the nominal synset linked to
an adjective via the WordNet relation semantically-related
form and we chose for the slots whose fillers were mainly
adjectives a set of supersenses for the semantically related
forms which characterize well their distributional profile
(their fillers). Table 5 shows an excerpt of semantic profile
of the values for the semagram slot part for two different

categories (animals and vehicles).
For each of the 50 concepts in our semagram base, we
built a corpus by extracting sentences from a semantically-
enriched version of Wikipedia (Raganato et al., 2016)
which contains the concept together with one of its disam-
biguated semagram fillers5. For example, given the concept

5We also considered plural forms, third person, past simple
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Animals supersenses freq. Values for slot part
noun.body 19 ’eye’, ’tooth’, ’flesh’, ’belly’, ’nail’, ’toe’, ’mouth’, ’abdomen’, ’foot’, ’tongue’,

’bone’, ’head’, ’nose’, ’skin’, ’neck’, ’jaw’, ’ear’, ’hair’, ’leg’
noun.animal 6 ’tail’, ’wing’, ’paw’, ’beak’, ’claw’, ’feeler’

Vehicles supersenses
noun.artifact 44 ’windshield’, ’door’, ’saddle’, ’gear’, ’basket’, ’headlights’, ’horn’, ’window’,

’gearbox’, ’lifeboat’, ’frame’, ’taillight’, ’roof’, ’bell’, ’bunk’, ’tire’, ’brake’ ...
noun.communication 2 ’pedal’, ’radio’

Table 5: Example of semantic distributional profile for slot part with categories Animals and Vehicles.

dog and the slot-value pair (part, tail), we retrieved those
sentences having both the concepts dog and tail within a
window w of words and associated them with the slot part.
In order to increase the precision of the extraction, we used
a limited window w = 5. The corpus extracted for our
50-concept semagram base contains 1,040,312 sentences.
The next step consisted of extracting the textual patterns,
i.e., for each sentence, the text contained between the con-
cept term and the disambiguated semagram value, on a slot
by slot basis. We developed an OIE system, based on (Delli
Bovi et al., 2015), to extract phrase excerpts that unveil the
relation between a concept and a semagram value. The pro-
posed OIE system takes as input a sentence and two lem-
matized arguments (the concept and the semagram value)
and returns a phrase excerpt. First, it generates all possible
lexical variants of the lemmatized words (the word itself, its
plural form, its past simple form, its -ing form, and so forth)
by using the Unimorph English Corpus6 and a set of hand-
crafted rules. Then, it processes the sentences through two
steps: a parsing step and a merging step. In the first step,
a Dependency Parser7 is applied to the sentences to gener-
ate a dependency graph. The graph is passed as input to
the second phase, where it is merged with the output of a
Word Sense Disambiguation (WSD) method which assigns
a sense to each word of the sentence according to the con-
text. The OIE system can also modify some edges of the
graph to deal with conjunctions (e.g., “and”) and coordina-
tion (list of words separated by commas). If a node m is
connected to a node n with an edge labelled as conjunction
(or coordination), the OIE system splits the connection and
links m to a neighbour of n which has the edge labelled as
object (or modifier).
The output of the system is a set of triples of the form (argu-
ment1, shortest path, argument2) in which argument1 and
argument2 are two (possibly disambiguated) words belong-
ing to the lexical variant sets.
Once the patterns are extracted, we search for those that
are relevant for a specific semagram slot. Specifically, for
each pattern p and slot s, we compute score(s, p) using the
following formula:

score(s, p) =
freqs(p)∑

p′∈Patterns freqs(p
′)
∗ 1

H(p) + 1
(1)

where freqs(p) is the frequency of the pattern p in the slot
s, while Patterns is a set containing all the patterns in

and present continuous for the verbs.
6http://www.unimorph.org
7We used Mate-Tools parser (http://code.google.

com/p/mate-tools).

s. H(p) is the entropy of the pattern which is based on
the distribution of the concepts over the categories. A high
value of score(s, p) means that the pattern p is relevant for
the slot s.
Thus, finally, after performing each of the aforementioned
steps of the OIE system, we manually checked the first 100
top-scored patterns and selected a subset for the automatic
extraction of new semagrams. Table 6 shows the selected
patterns for semagram slots material, supply, colorPattern,
bodyPart and place.

Slot Top patterns
colorPattern was painted, being painted, is painted,

were painting, were painted, are painted,
are painted in, was painted, ...

supply runs out of, ran out of, filling with, filled
with, fill with, fills with, using, use, uses,
used, powered by, ran on, running on, ...

material make from, making from, makes from,
made from, produced from, produce
from, producing from, produces from, ...

bodyPart on, wore on, worn on, wears on, wear on,
wearing on around, wears around, wear-
ing around, worn around, ...

place at, on, in, were built at, was built at, are
built at, were at, is at, are at, was at, been
at, was lost at, are lost at, ...

Table 6: Top selected patterns for semagram slots colorPat-
tern, supply, material, bodyPart and place.

We then used two methods for the automatic extension of
the semagram base.

Exact match (EM) for sister terms, hyponyms and simi-
lar concepts. For each concept c and each slot s in the ini-
tial semagram base, we extract the set of sister terms St(c)
and hyponyms Hyp(c) using WordNet, and a set Sim(c) of
top-10 similar concepts relying on word2vec-GoogleNews-
vectors8 and cosine similarity. Then, we construct queries
of the form “x ps y” where x ∈ St(c)∪Hyp(c)∪Sim(c),
ps is one of the extracted patterns for slot s, and y ∈ Cs,
which is the codomain of s (i.e., the existing fillers for that
slot in the semagram base);

Wildcards (W) on fillers and concepts. In this case, we
construct queries of the form “c ps ?q”, where c is a concept
in the semagram base and ?q can match any word that fol-
lows the pattern in a sentence. We leverage the supersense-

8https://code.google.com/archive/p/word2vec/

http://www.unimorph.org
http://code.google.com/p/mate-tools
http://code.google.com/p/mate-tools
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based semantic profiles of the semagram values to filter out
the retrieved sentences having as filler a supersense which
is not contained in the slot profile. Then, we build queries
of the form “?q ps y” where the extracted patterns are con-
catenated with the fillers and used as queries for extracting
new concepts.

Overall, use of the above two methods automatically
extracted 4,205 semagrams (from the initial manually-
annotated 50, with a multiplication factor of 83x) and a to-
tal of 55,245 (slot, filler) pairs (from the 1,621 initial pairs,
with a multiplication factor of 34x). The Exact Match (EM)
method was able to learn 651 new semagrams, with a total
of 1,627 new (slot, filler) pairs. Our experimentation on
the challenging wildcard-based strategies (W) allowed the
extraction of 2,631 semagrams and 8,786 (slot, filler) pairs.

The last phase concerned the manual validation of the (slot,
filler) pairs extracted in the previous Section. We randomly
chose 100 pairs for each extraction method, manually eval-
uating their correctness. Table 7 shows the Precision of the
adopted extraction strategies.

Method Semagrams Pairs Avg Precision*
EM x ps y 651 1,627 85.34%
W x ps ?q 50 3,742 78.36%
W ?q ps y 2,581 5,044 67.00%

Table 7: Precision of the extraction methods on random
samples of 100 slot-filler pairs, starting from the initial
manually-annotated semagram base. *Recall cannot be re-
ported as it would mean having the relevant set of slot-filler
pairs in the whole Wikipedia for each slot.

4.3. An Automatic Approach based on Semantic
Propagation

Due to the nature of the encoding system, the fine-grained
slot-filler pairs represent properties that can be propagated
along a taxonomy of word senses. For example, if a car has
an engine and a brake, it is likely that a coupé will have
them as well. Following this reasoning, we put forward an
automatic semantic propagation of single slot-fillers over
the WordNet taxonomy. In detail, we automatically propa-
gated all (slot, filler) pairs of the original 50 concepts to all
their hyponyms, without relying on any evidence from large
corpora. This experiment led to the automatic creation of
923 new semagrams, as hyponyms of the 50 concepts ini-
tially annotated, for a total of 44,832 new (slot, filler) pairs.
We then manually evaluated the validity of the propagated
(slot, filler) pairs on a random set of 400 instances, reach-
ing a precision of 85.43% (these evaluation data will be re-
leased with the resource). This test demonstrates two facts:
1) the high presence of semantic redundancy that standard
semantic resources do not properly manage with paradig-
matic relations and individual glosses; 2) how significant
a single (slot, filler) annotation might be in the semagram
base, as it can be inherited or propagated through (even
more advanced) reasoning processes among different word
senses.

5. Evaluation and Impact of Semagrams
The proposed semantic encoding may have impact on sev-
eral NLP tasks, such as Word Sense Disambiguation and
Machine Translation. In this paper, we decided to employ
semagrams within the task of word-level semantic simi-
larity, due to their broad range of uses and implications.
As mentioned in Section 2., word embeddings often rep-
resent a useful source of word-level information as they
encode both syntactic and semantic features automatically
harvested from large corpora, in accordance with the princi-
ples of Distributional Semantics. Their adoption is massive,
as demonstrated by their presence and utilization in the
most recent scientific literature. Thus, we compare some
vectorializations of our semagram base with state-of-the-
art embedding models.

5.1. The Evaluation Task
Given a single concept c, the evaluation task first regards
the identification of the top-k similar concepts. Then, it
checks how many of these fall within the same category
cat(c) of concept c. We compared the results of three types
of vectorialization of the semagram base with a baseline
and four state-of-the-art word embedding models.

5.2. Models at Comparison
In this section, we describe the details of the evaluated mod-
els. The concepts considered are the 300 for which we have
their semagram representations, organized in the 10 cate-
gories of Table 2.
[Concepts-Corpus]. We extracted a corpus from the En-
glish Wikipedia9 made up of the 1,311,124 sentences con-
taining at least one of the 300 concepts in the semagram
base. We segmented these sentences by concept, finally ap-
plying a tf-idf concept vectorization.
[Semagram-Corpus]. From the above corpus, we se-
lected those sentences (i.e., 1,901) containing at least one
filler from the concepts’ semagram representations. We
then built a feature space of all 3,586 existing (slot, filler)
combinations, where the values derive from an adapted tf-
idf weighting. In particular, after a process of lemmati-
zation and stopwords removal applied on the corpus, the
value of each (slot, filler) dimension is given by the nor-
malized term frequency of the filler in the corpus (i.e.,
tf = 1 + log(freq(filler))) multiplied by an idf score
(i.e., how much filler is shared among the concepts).
[Semagram-Binary]. From the semagram base, we con-
structed a binary model where the feature space is that of
the Semagram-corpus model. Cells are 1-valued if the con-
cept considered has the related (slot, filler) pairs within its
semagram representation. Otherwise, cells are equal to 0.
[Semagram-Mixture]. The features are those of the above
semagram spaces, while the values come from a weighted-
sum of the two (Semagram-Corpus, Semagram-Binary)
matrices. The weight was set to 0.35 and 0.65 respectively.
[GloVe, fastText, ConceptNet] We employed three word
embeddings models: the GloVe model presented in (Pen-
nington et al., 2014); the fastText one of (Bojanowski et al.,
2016) which integrates subword information in Mikolov’s

9English Wikipedia dump of November 2014.
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model (Mikolov et al., 2013a); and the ConceptNet-based
semantic vectors presented in (Speer et al., 2017).
[SensEmbed]. We finally included the sense-based em-
beddings proposed in (Iacobacci et al., 2015), since our
concepts and fillers are fully disambiguated and linked to
WordNet synsets.

5.3. Results
Results are shown in Table 8. The model based on sema-
grams and enriched with simple tf-idf scores clearly out-
classes the others for all the tested values of k. How-
ever, similar values are obtained with the semagram-based
binary approach. The performance is measured with
precision@k scores, i.e., the number of concepts of cor-
rect category divided by k. Note that our case is a special
one where precision is equal to recall, since the models are
evaluated on the bounded set of 300 input concepts.

Model k=1 =5 =10 =20 =30
C-Corpus 0.72 0.58 0.49 0.36 0.28
S-Corpus 0.69 0.49 0.35 0.23 0.18
S-Binary 0.90 0.73 0.60 0.42 0.32

S-Mixture 0.91 0.74 0.60 0.43 0.32
GloVe 0.67 0.55 0.45 0.33 0.26

fastText 0.72 0.59 0.49 0.35 0.27
ConceptNet 0.79 0.63 0.52 0.39 0.30
SensEmbed 0.66 0.57 0.49 0.36 0.28

Table 8: Precision@k of the models under evaluation.

5.4. Interpretability
Figure 1 shows the top-20 most similar concepts within
the category Artifacts according to the best performing
semagram S-Mixture model over the others. Note that the
different embedding spaces often show divergent scores,
due to their nature and the utilized resources. Instead,
with semagrams, each similarity score derives from spe-
cific fine-grained semantic units. For example, consider
the pair (jewelry, pendant), which shows high divergence
among the models. While this is difficult to interpret or
manage with embeddings, semagrams provide supporting
semantically-typed and disambiguated information which
can be further processed (e.g., Table 9 reports three ex-
ample pairs of Figure 1). Another important aspect is
that, while the existing embeddings give similarities on a
paradigmatic basis, our semagram-based vectors also inte-
grate syntagmatic relations.

Concept pairs Shared (slot, filler) pairs
uniform, vest generalization: habiliment, cover-

ing, clothing, vesture, wear
parasol, um-
brella

generalization: protective cover,
protection; shape: round, circular;
material: plastic

photocopier,
stationery

generalization: tool, utensil; mate-
rial: plastic, metal; user: secretary

Table 9: Semagram-based semantic similarity grounding of
three concept pairs of Figure 1.

Figure 1: Top-20 most similar concept pairs belonging to
the category Artifacts, according to Semagram-Mixture, in
comparison with the other models.

6. Conclusion
In this paper, we started from the notion of semagram, i.e., a
slot-filler structure to encode word meanings, and proposed
a methodology for the creation of a systematized knowl-
edge model of 26 slots integrating and unifying semantic
features from different resources. The result of a manual
annotation is a semagram base of 50 concepts covering 10
categories, successively extended to 300 concepts through
a semi-automated process requiring 1/30 of the original an-
notation time.
Then, we first showed that an Open Information Extraction
approach coupled with a pattern learning method based on
WordNet supersenses can be used to extend the semagram
base, automatically identifying 4,205 semagrams with a to-
tal of 55,245 (slot, filler) pairs with good accuracy levels.
Following this we applied an automatic hyponyms-oriented
semantic propagation of (slot, filler) pairs through the
WordNet taxonomy, reaching high accuracy on a manually-
validated test set. Finally, we demonstrated the ability of
the model to capture better (and explainable) semantic sim-
ilarity relations compared to state-of-the-art word embed-
dings.
As future work, we will integrate the knowledge model
with slots for abstract concepts, and extend the knowledge
acquisition process by means of crowdsourcing (Poesio
et al., 2017) and games-with-a-purpose approaches (Ven-
huizen et al., 2013; Jurgens and Navigli, 2014). We will
also consider the semantic combinations of (Maru et al.,
2019)
We release the complete semagram base with the annota-
tion guidelines and the validation data at http://nlp.
uniroma1.it/semagrams.
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