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Abstract
Cross-lingual word embeddings create a shared space for embeddings in two languages, and enable knowledge to be transferred between
languages for tasks such as bilingual lexicon induction. One problem, however, is out-of-vocabulary (OOV) words, for which no
embeddings are available. This is particularly problematic for low-resource and morphologically-rich languages, which often have
relatively high OOV rates. Approaches to learning sub-word embeddings have been proposed to address the problem of OOV words,
but most prior work has not considered sub-word embeddings in cross-lingual models. In this paper, we consider whether sub-word
embeddings can be leveraged to form cross-lingual embeddings for OOV words. Specifically, we consider a novel bilingual lexicon
induction task focused on OOV words, for language pairs covering several language families. Our results indicate that cross-lingual
representations for OOV words can indeed be formed from sub-word embeddings, including in the case of a truly low-resource
morphologically-rich language.
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1. Introduction
Cross-lingual word embeddings provide a shared space
for embeddings in two languages, enabling knowledge
to be transferred between them. Cross-lingual word
embeddings can be used for tasks such as bilingual
lexicon induction, and can be leveraged to improve systems
for natural language processing (NLP) for low-resource
languages for tasks such as language modelling (Adams
et al., 2017), part-of-speech tagging (Fang and Cohn,
2017), and dependency parsing (Duong et al., 2015). In
the case of out-of-vocabulary (OOV) words, however,
no information is available. This could be particularly
problematic for low-resource languages, where the number
of words that embeddings are learned for could be relatively
low due to the relatively small amount of training data
available, and for morphologically rich languages, where
many wordforms would not be observed while learning
the embeddings. Sub-word level embeddings (Bojanowski
et al., 2017, e.g.) — i.e., embeddings for units smaller
than words, such as character sequences — have been
proposed to address this limitation concerning OOV words
for monolingual embedding models, but little prior work —
with the notable exception of (Braune et al., 2018) — has
considered sub-word embeddings in cross-lingual models.
In this paper we evaluate whether sub-word embeddings
can be leveraged in cross-lingual models. Specifically, we
consider a novel bilingual lexicon induction task in which
an in-vocabulary target language translation is found for
an OOV source language word, where the representation
of the source language word is constructed from sub-
word embeddings. Our findings indicate that sub-word
embeddings do carry information that can be leveraged in
cross-lingual models.

2. Related Work
A variety of approaches have been proposed to find cross-
lingual embedding spaces. Some of these methods require
very expensive signals for training, such as sentence

alignments (Zou et al., 2013, e.g.) or comparable
documents (Vulić and Moens, 2016, e.g.). Large amounts
of such data might not be available for many languages,
particularly low-resource languages. We therefore focus
on methods that require only monolingual corpora and a
bilingual dictionary.
Mikolov et al. (2013) show that there is a linear relationship
between the vector spaces of two languages. If we consider
the first language as A, and the second language as B,
by solving the following optimization problem, we get a
transformation matrix, W:

min
W
||AW − B||F (1)

where F is the Frobenius norm. The transformation matrix
maps the vectors of language A to the vector space of
language B. Moreover, most methods which employ a
dictionary as their cross-lingual training signal need only
a relatively small number of training seeds to find the
mapping between two languages (Mikolov et al., 2013;
Hauer et al., 2017; Duong et al., 2016), so the bilingual
dictionary need not be very large. Xing et al. (2015)
show that enforcing an orthogonality constraint on W
gives improvements. Artetxe et al. (2017) propose a
method that can work with a small seed lexicon, as low
as 25 pairs. They solve the same optimization problem
as Mikolov et al. (2013), and in a process of self-
learning and in several rounds of bootstrapping add more
translation pairs to the bilingual dictionary. In another
work, Artetxe et al. (2018) propose a fully unsupervised
method that can learn the mapping between the vector
spaces of two languages iteratively without the need for
a bilingual signal. They employ the same self-learning
method as Artetxe et al. (2017), however, they introduce
a fully unsupervised initialization method that exploits the
similarity distributions of words in the two languages to
find a set of word pairs to start the learning phase.
Braune et al. (2018) consider an English–German
lexicon induction task focused on low frequency, in-
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vocabulary words. They show that sub-word embeddings
and orthographic similarity can be incorporated to give
improvements. In contrast to Braune et al. (2018), we
consider OOVs, not low frequency words, and a greater
number of languages.

3. Corpora
In this paper, we consider the same languages that
Adams et al. (2017) used in their experiments on
applying cross-lingual word embeddings for low-resource
language modelling; specifically, we consider English,
and the following languages which have varying degrees
of similarity to English, and vary with respect to
morphological complexity: Finnish, German, Japanese,
Russian, and Spanish. The The corpus for each language
is a Wikipedia dump from 20 September 2018, except for
Japanese, where we use a pre-processed Wikipedia dump
(Al-Rfou et al., 2013). For English, the raw dump is
preprocessed using wikifi (Bojanowski et al., 2017), and
for the other non-Japanese languages we use WP2TXT.1

Details of the corpora for each language are provided in
Table 1, in the “Full corpus” columns.
In preliminary experiments we observed that for the full
Wikipedia corpora, relatively few words in the evaluation
dataset (discussed in Section 4.) were OOVs, yet OOVs are
required for our experimental setup. Therefore, following
Adams et al. (2017) we carried out experiments in
which we learned cross-lingual embeddings, but down-
sized the size of the corpora. We found that bilingual
lexicon induction for in-vocabulary items performed with
reasonably high accuracy down to corpora of roughly 100M
tokens. We therefore choose a randomly-selected 100M
token portion of each corpus as a sample, except for
Finnish, where the full corpus is less than 100M tokens.
Details of these corpora are also shown in Table 1, in the
“Sample” columns.
In the bilingual lexicon induction experiments in this
paper we attempt to find an in-vocabulary target language
translation for an OOV source language word. We therefore
always use the full corpus for the target language — so
that translations of many source language words will be in-
vocabulary in the target language — and a sample for the
source language — so that a substantial number of gold-
standard translations will be OOV in the source language,
and to simulate a lower-resource source language.

4. Evaluation Datasets
Panlex (Baldwin et al., 2010) is a freely-available
translation resource, built by combining many translation
dictionaries, that covers thousands of languages and
includes over 1B translations. We use Panlex to build gold-
standard evaluation data.
In our experiments we only consider language pairs where
English is the source or target language, and the other
language is one of the five other languages (i.e., one of
Finnish, German, Japanese, Russian, or Spanish). We begin
by extracting all single-word translations from Panlex for
these language pairs. For each language pair, we then create

1https://github.com/yohasebe/wp2txt

a gold-standard evaluation dataset by keeping only those
translations for which the source language word is not in
the embedding matrix for the source language corpus (i.e.,
OOV in the source language), and the target language word
is in the embedding matrix for the target language (i.e., in-
vocabulary for the target language). We observed that some
translations in Panlex appear to be noisy.2 We therefore
further eliminated any translation for which the source
language word does not appear in the aspell dictionary for
that language.3 Details of the evaluation datasets are shown
in Table 2.

5. Results
In this work we use three approaches, a supervised, a
semi-supervised and an unsupervised method, to learn
a transformation matrix from monolingual embeddings
to have a comprehensive comparison between methods
with various degrees of supervision. For the supervised
method we use a publicly-available implementation of
Conneau et al. (2018).4 For the semi-supervised and
fully-unsupervised methods, we use publicly available
implementations of the approaches of (Artetxe et al.,
2017) and (Artetxe et al., 2018), respectively.5 For all
three models, we use their default settings to learn the
transformation matrix.
In order to evaluate the effectiveness of sub-word
embeddings, two different approaches to forming word
embeddings by using sub-word information are considered.
For the first approach, we use fastText (Bojanowski et al.,
2017) to create an embedding matrix for each corpus. We
use the default fastText parameters, except for the number
of dimensions for the embeddings, which is set to 300.
For the second approach, we use the method introduced
by Zhu et al. (2019), which provides a framework to
investigate two components of forming sub-word informed
word representations — segmentation of words into
their sub-words, and the effect of different sub-word
composition functions. We use byte pair encoding (BPE)
(Sennrich et al., 2016) as the method which provides sub-
word information. To train word embeddings using the
Zhu et al. (2019) framework, we use the default settings,
which use addition as the composition function — similar
to fastText — and do not include an embedding for the
whole word itself in the composition — in contrast to
fastText which does include a representation for the whole
word along with representations for its sub-words. We refer
to this approach — which is based on Zhu et al. (2019) and
incorporates BPE — as BPE.
Results are presented in the following subsections. In
subsection 5.1., the results for bilingual lexicon induction
for OOVs are presented using the various approaches to
representing OOVs and learning the transformation matrix.
Subsection 5.2. describes a further experiment, in which
the test data consists of both in-vocabulary and OOV

2For example, some English entries consist of no Latin letters
and appear to be non-English words, while other entries consist
entirely of non-alphabetic symbols.

3http://aspell.net/
4https://github.com/facebookresearch/MUSE
5https://github.com/artetxem/vecmap

https://github.com/yohasebe/wp2txt
http://aspell.net/
https://github.com/facebookresearch/MUSE
https://github.com/artetxem/vecmap
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Full corpus (target language) Sample (source language)
Language Family #Tokens #Types #Embeddings #Tokens #Types #Embeddings
English Germanic 4500M 9.9M 2470k 100M 800k 210k
Finnish Finnic 70M 3.8M 650k 70M 3800k 650k
German Germanic 690M 10.2M 2030k 100M 2900k 550k
Japanese Japanese 200M 2.2M 370k 100M 1100k 230k
Russian Slavic 390M 8.7M 1550k 100M 3700k 650k
Spanish Romance 500M 4.3M 810k 100M 1500k 310k

Table 1: The size of the full corpus, and sample, for each language, in terms of the number of tokens, types, and resulting
embeddings. Language families are also shown.

Language # of pairs
English source English target

Finnish 13722 10723
German 23891 32473
Japanese 11100 50000
Russian 18299 72648
Spanish 15359 22433

Table 2: The number of pairs in each test set, for each
language, with English as both the source and target
language.

source language words (as opposed to only OOVs). In
subsection 5.3. we discuss incorporating information
from edit distance, along with information from cross-
lingual word embeddings, to find the best translation for
OOVs. The last subsection presents results for bilingual
lexicon induction for OOVs in a truly low-resource source
language, specifically Cherokee.

5.1. OOV Bilingual Lexicon Induction
In the case of the supervised method, given source and
target language embeddings, we require a set of translations
to learn the transformation matrix W in Equation 1.
Following previous work (Conneau et al., 2018; Joulin
et al., 2018; Jawanpuria et al., 2019, e.g.), we use the
training pairs provided by Conneau et al. (2018).6 For
training the semi-supervised method, we take a random
sample of 25 pairs from these training pairs. Given a gold-
standard evaluation pair, we construct a representation for
its (OOV) source language word by averaging its sub-word
embeddings using fastText or BPE. We then transform
this representation using W , and rank the target language
words by the cosine similarity of their embeddings with
this transformed representation of the source word. We
report accuracy@N — for N = 1, 5, and 10 — where the
system is scored as correct if the gold-standard target word
is amongst the top-N most similar target language words.
We compare against two baselines. We consider a random
baseline, which randomly ranks the target language words
for a given source language word. We also consider
a second baseline motivated by a simple approach to
handling OOVs in machine translation, in which the OOV
source language word is copied into the target language.

6https://github.com/facebookresearch/MUSE

This approach could work well, particularly for some
named entities and borrowings. We refer to this approach
as the copy baseline. Note that the copy baseline only
provides one target language translation for a given source
language word, and as such, we only calculate accuracy@1
for this method.7

Results are shown in Table 3. For all languages
and translation directions, when the source of sub-word
information is fastText, accuracy@1 is higher using the
supervised, semi-supervised and unsupervised methods
than using the copy baseline, except for accuracy@1 in
the case of Japanese with English as the target language.8

This inconsistent result for Japanese appears to be due to
differences in the test data when English is the source, as
opposed to target, language. When English is the source
language, and Japanese is the target language, there are
only 5 pairs in the test data where the source and target
words are identical, i.e., cases where the copy baseline
is correct. On the other hand, in the case of English
being the target language, and Japanese being the source
language, there are 270 pairs where the source and target
words are identical. Overall these finding indicate that, for
most languages considered, and any level of supervision,
fastText embeddings outperform the copy baseline.
The results also indicate that fastText outperforms BPE for
this task. In all cases, when comparing results for the same
language, translation direction, level of supervision, and
accuracy@N , with the only difference being the source of
sub-word information, fastText always outperforms BPE.
Zhu et al. (2019) noted that BPE is not effective for dealing
with OOVs, and we observe the same here.
Focusing on approaches using fastText, and considering
the differing levels of supervision, we observe that the
supervised approach often performs better than the semi-
supervised or unsupervised approaches, and indeed this is
always the case for Finnish, Russian, and Spanish, but there
are some exceptions for German and Japanese. We return
to consider the level of supervision in Section 5.4. when we

7Razmara et al. (2013) propose an approach to finding
translations for OOVs based on graph propagation. Their method
requires a phrase table derived from a parallel corpus. In contrast,
the methods for bilingual lexicon induction considered in this
paper do not require a parallel corpus. Because of the substantially
higher resource requirements of the method of Razmara et al.
(2013) we do not compare against this approach.

8For all language pairs, and each value of N considered,
accuracy@N is 0% for the random baseline (results not shown).

https://github.com/facebookresearch/MUSE
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Language Method
% Accuracy

English source English target
@1 @5 @10 @1 @5 @10

Finnish

Supervised+FT 1.49 3.55 4.97 2.43 5.67 7.74
Semi-supervised+FT 1.01 3.33 4.27 1.35 3.74 4.95
Unsupervised+FT 1.10 3.24 4.25 1.17 3.65 4.68
Supervised+BPE 0.22 0.64 0.94 0.50 1.13 1.35
Semi-supervised+BPE 0.15 0.70 1.08 0.45 0.77 1.40
Unsupervised+BPE 0.00 0.02 0.02 0.36 0.90 1.13
Copy baseline 0.46 - - 0.27 - -

German

Supervised+FT 2.35 5.60 7.35 3.16 8.07 10.77
Semi-supervised+FT 2.37 5.01 6.57 2.15 6.16 8.16
Unsupervised+FT 2.32 5.15 6.42 2.01 5.80 8.06
Supervised+BPE 0.25 0.63 0.99 0.25 0.73 1.15
Semi-supervised+BPE 0.18 0.60 0.92 0.26 0.73 1.14
Unsupervised+BPE 0.23 0.63 0.93 0 0 0.04
Copy baseline 2.06 - - 0.81 - -

Japanese

Supervised+FT 0.45 1.61 2.17 0.67 1.73 2.33
Semi-supervised+FT 0.95 2.62 3.65 0.36 1.07 1.47
Unsupervised+FT 0.85 2.54 3.73 0.33 1.05 1.42
Supervised+BPE 0.24 0.77 1.01 0.03 0.19 0.25
Semi-supervised+BPE 0.21 0.63 0.98 0 0 0.01
Unsupervised+BPE 0 0 0 0.04 0.13 0.21
Copy baseline 0.13 - - 0.73 - -

Russian

Supervised+FT 2.11 5.14 6.85 3.86 9.19 12.07
Semi-supervised+FT 1.32 3.49 4.74 2.45 6.21 8.35
Unsupervised+FT 1.19 3.45 4.72 2.69 6.69 8.68
Supervised+BPE 0.16 0.47 0.77 0.41 1.19 1.79
Semi-supervised+BPE 0.17 0.52 0.84 0.36 1.18 1.75
Unsupervised+BPE 0 0 0 0.45 1.12 1.69
Copy baseline 0.09 - - 0 - -

Spanish

Supervised+FT 6.09 10.99 13.43 3.69 8.20 10.68
Semi-supervised+FT 5.62 9.85 12.15 3.28 7.26 9.36
Unsupervised+FT 5.63 9.86 12.23 2.93 6.98 9.23
Supervised+BPE 0.63 2.12 2.81 0.30 0.82 1.11
Semi-supervised+BPE 0.83 1.89 2.76 0.26 0.85 1.17
Unsupervised+BPE 0.81 1.84 2.66 0.26 0.83 1.09
Copy baseline 3.56 - - 2.34 - -

Table 3: % accuracy@N for bilingual lexicon induction for the dataset of translation pairs with OOV source language
words. The method is indicated by “supervision+embeddings”, where supervision is Supervised, Semi-supervised or
Unsupervised, and embeddings is FT for fastText or BPE for the approach of Zhu et al. (2019) using byte pair encoding.
Results for the copy baseline are also shown. The best accuracy@N , for each language and translation direction, are shown
in boldface.

consider the case of a truly low-resource language.

We further observe that for each language, the accuracy is
higher when English is used as the target language, than
when English is used as the source language, except for the
case of Spanish. Note that English has the largest corpus
among the selected languages, and that we always use the
full corpus for the target language, but a sample for the
source language. Therefore, we expect the embeddings
for English as the target language to be higher quality
than those for English as the source language, which could
explain why the accuracy is higher when English is used
as the target language than as the source language. The
inconsistency of this finding in the case of Spanish could
be due to the fact that the copy baseline has the highest

accuracy in the case of Spanish as the target language.
We also observe that the best accuracies are obtained with
English as the source language, and Spanish as the target
language when using fastText, and that this holds for all
levels of supervision.

Despite the relatively low accuracy@N for OOV source
language words, that the results are better than baselines
indicates that sub-word level information is transferable
across languages via cross-lingual embeddings. Moreover,
these results suggest that this is the case even when the
languages considered are in different language families and
not closely related. This could potentially be applied to
improve the handling of OOV words in NLP tasks that rely
on cross-lingual word embeddings, such as low-resource
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POS tagging or dependency parsing.

5.2. Combined In-vocabulary and OOV Test Set
In this subsection we consider an evaluation that considers
both in-vocabulary and OOV source language words. We
show that, although the accuracies reported in Table 3 are
relatively low (albeit better than a baseline), an approach
that incorporates sub-word knowledge outperforms a
method that does not, on a dataset consisting of both in-
vocabulary and OOV source language words.
We build a new test dataset consisting of both in-vocabulary
and OOV source language words. For each language, we
select 1500 test pairs that are in-vocabulary in both the
source and target languages from the data of Conneau et
al. (2018),9 and an equal number of test pairs from our
previous test data, i.e., test pairs that are OOV for the source
language, and in-vocabulary for the target language.
In these experiments, as in the previous experiments,
we compose the representations of OOV source language
words from their sub-word embeddings. In the case
of in-vocabulary source language words, we use their
embeddings as their representation. We then use
the transformation matrix to find their target language
translations. We refer to this approach — which uses
sub-word information for OOVs — as “Sub-Word”. We
compare this against a method that does not use sub-
word embeddings. For this latter method, we again use
word embeddings to represent in-vocabulary words and
use the transformation matrix to find their target language
translations. However, in the case of OOV source words,
we apply the copy baseline. We refer to this method —
that has no knowledge of sub-words, and relies on the copy
baseline to translate OOVs — as “Copy”.
Results are shown in Table 4. Because the results for
BPE in Table 3 were relatively poor, in these experiments
we only report results for fastText as the source of sub-
word information.10 For all languages, with English
as either the source or target language, and for every
level of supervision, the Sub-Word approach outperforms
the Copy approach, except in a small number of cases,
specifically Finnish as the source language for accuracy@1
using the semi-supervised and unsupervised approaches,
German as the target language for accuracy@1 using the
supervised approach, and Russian as the target language
for accuracy@10 using the semi-supervised approach.
Overall these findings indicate that transferring information
between languages using sub-word information is not
dependent on the method for learning the transformation
matrix, and that it is possible to make cross-lingual methods
more accurate, and robust with respect to OOVs, by
incorporating sub-word information.
We applied a Mcnemar’s test with continuity correction to
determine whether the results using the sub-word method

9We found very few of the words in these translation pairs to
be OOV in our corpora, motivating the construction of the dataset
described in Section 4 .

10We carried out the experiments described in this sub-section
using BPE, and the results were indeed relatively poor. For each
language, and level of supervision, the accuracy using BPE was
less than half the accuracy than when using fastText.

were significantly different from those using the Copy
method. To avoid carrying out an overly-large number
of tests, we only conduct tests for the supervised method
— which based on the findings in Table 4 often gives the
best performance — and for accuracy@10 — where the
accuracies are highest — although we do so for English
as both the source and target language. In each case, the
p value is well below the threshold of 0.05 (p < 0.0002
in each case) indicating that the difference between Copy
and Sub-Word is significant in the case of the supervised
method for accuracy@10.

5.3. Interpolation

Braune et al. (2018) considered English–German bilingual
lexicon induction for rare words. Their approach
incorporated sub-word embeddings, and also knowledge
about the edit distance between two words. We therefore
also considered incorporating edit distance into our
approach for bilingual lexicon induction for OOVs. In these
experiments, we only considered the supervised method
to form cross-lingual word embeddings, and fastText
embeddings as the source of sub-word information. We
considered only these approaches because of the previous
findings that fastText outperforms BPE, and that the
supervised method often performs best.

In this approach, we rank target language words using the
following linear combination:

λsim(s, t) + (1− λ)NMED(s, t) (2)

where sim is cosine similarity, i.e., computed from cross-
lingual embeddings; NMED is normalized minimum edit
distance; and s and t are a source and target language word,
respectively.

For these experiments we randomly sampled 1000 test
pairs, and 1000 development pairs from each dataset in
Table 2.11 In these experiments, as for subsection 5.1., all
the source language words are OOVs. The development
data was used to tune λ by grid search. We did not consider
Japanese and Russian because they do not use the Latin
alphabet. For each language, λ = 0.7 gave the best results
on the development data.

Results are shown in Table 5. Focusing on accuracy@1,
in each case considered, combining knowledge from
embeddings and edit distance improves over using either
on its own, indicating that these two sources of information
are complementary.12 In terms of accuracy@5 and @10 we
see the same trend, although there are some exceptions for
Finnish. Nevertheless, we do not see the massive gains in
absolute accuracy from incorporating edit distance reported
by Braune et al. (2018), suggesting that finding translations
for OOVs might be particularly challenging compared to
finding translations for low frequency words attested in a
corpus.
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Language Evaluation
% Accuracy

English source English target
Supervision Method @1 @5 @10 @1 @5 @10

Finnish

Supervised Copy 12.01 23.30 27.43 25.92 37.04 39.76
Sub-Word 12.18 24.28 28.71 25.92 37.42 40.53

Semi-supervised Copy 11.54 21.00 24.57 21.96 29.98 33.22
Sub-Word 11.62 21.88 25.80 21.94 30.39 33.96

Unsupervised Copy 11.71 20.97 25.17 22.05 30.84 33.41
Sub-Word 11.92 21.92 26.39 21.99 31.20 34.16

German

Supervised Copy 15.33 25.18 27.90 18.72 26.32 28.46
Sub-Word 15.29 26.31 29.63 19.02 27.69 30.56

Semi-supervised Copy 16.07 24.79 27.60 19.62 26.37 28.72
Sub-Word 16.15 25.78 29.15 19.86 27.72 30.88

Unsupervised Copy 16.33 24.97 27.26 16.45 23.42 25.51
Sub-Word 16.45 26.12 28.76 16.79 24.73 27.64

Japanese

Supervised Copy 20.34 29.98 33.08 13.66 22.29 24.23
Sub-Word 20.55 30.57 33.93 13.70 22.60 24.66

Semi-supervised Copy 19.79 28.75 30.79 10.14 16.22 18.28
Sub-Word 19.87 29.21 31.46 10.25 16.74 18.88

Unsupervised Copy 20.38 28.70 31.38 9.98 15.58 17.53
Sub-Word 20.47 29.13 32.19 10.10 15.99 18.06

Russian

Supervised Copy 14.73 25.52 28.22 22.25 29.71 31.57
Sub-Word 14.90 25.87 28.88 22.57 30.74 33.44

Semi-supervised Copy 13.05 24.02 27.16 19.32 26.89 29.04
Sub-Word 13.13 24.36 25.57 19.83 27.72 30.88

Unsupervised Copy 12.91 24.28 27.33 19.99 27.37 29.59
Sub-Word 12.95 24.62 27.93 20.50 28.59 31.25

Spanish

Supervised Copy 24.06 34.47 36.42 27.39 34.86 37.27
Sub-Word 24.06 35.62 38.33 27.52 35.72 38.57

Semi-supervised Copy 25.17 34.20 36.11 27.35 34.30 36.97
Sub-Word 25.24 35.47 37.95 27.57 35.16 38.27

Unsupervised Copy 25.03 34.07 35.93 25.97 32.44 34.30
Sub-Word 25.16 35.21 37.73 26.17 33.13 35.38

Table 4: % accuracy@N for bilingual lexicon induction for the test set containing both in-vocabulary and out-of-vocabulary
words. Results are shown for each language, with English as both the source and target language, for cross-lingual
embeddings formed using each level of supervision. “Copy” refers to handling OOVs using the copy baseline, while
“Sub-Word” indicates employing sub-word embeddings to find translations for OOVs.

Language λ
% Accuracy

English source English target
@1 @5 @10 @1 @5 @10

Spanish

0 2.64 5.64 6.59 2.34 6.21 7.14
0.7 6.12 9.11 11.03 5.27 9.60 10.19
1 3.60 5.76 7.31 1.05 3.28 4.33

Copy baseline 1.44 - - 0.82 - -

German

0 1.10 2.32 2.87 0.67 1.56 2.11
0.7 2.21 5.51 6.39 2.78 6.56 8.12
1 0.99 2.98 3.86 1.89 4.00 6.34

Copy baseline 0.66 - - 0.44 - -

Finnish

0 0.35 0.70 0.93 0 0 0.37
0.7 0.70 1.40 2.10 1.48 2.21 2.21
1 0.58 1.40 1.87 0.74 2.95 3.32

Copy baseline 0 - - 0 - -

Table 5: % accuracy@N incorporating edit distance for OOV source language words.
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Language Supervision
% Accuracy

English target
@1 @5 @10

Cherokee
supervised 0.75 2.12 2.49

semi-supervised 0 0 0
unsupervised 0 0 0

Table 6: % accuracy@N for Cherokee, using English as
the target language, for each level of supervision.

5.4. Low-resource Language Experiments

So far we have simulated lower-resource languages by
down-sampling the source language corpora. In this section
we consider the case of Cherokee, a low-resource language.
Cherokee is an endangered Iroquoian language, spoken in
the United States, with approximately 12k speakers. It is a
polysynthetic language written using a syllabary.
In these experiments, we use Cherokee as the source
language, and English as the target language. Because of
the previous findings that fastText embeddings outperform
BPE, we only consider fastText embeddings in these
experiments. Specifically, we use fastText embeddings pre-
trained on Cherokee Wikipedia.13 The embedding table
for Cherokee contains only 7033 words. For English
embeddings, we use the embeddings trained on the full
English Wikipedia from our previous experiments.
We build training and test datasets from the English–
Cherokee translations in Panlex. For the supervised
method, we use all pairs for which both the English and
Cherokee words are in-vocabulary for their respective word
embedding models as training instances. This gives 1143
training instances. From these training pairs, a subset of 25
pairs is selected to train the semi-supervised method. For
test data, we use all translation pairs for which the source
Cherokee word is OOV, and the target English word is in-
vocabulary, which gives a total of 1050 test instances.14

Results are shown in Table 6. The accuracy@1 for the
copy baseline is 0% (results not shown). These results
indicate that, in the case of a morphologically-rich, truly
low-resource language, sub-word embeddings — along
with a supervised approach to learning a transformation
matrix — provide information abut translations for OOV
words. However, the accuracy@N for the semi-supervised
and unsupervised methods is 0%, which suggests that in the
case of a truly low-resource language, these methods might
not be capable of handling OOVs.

11We downsampled the dataset due to the large number of edit
distance calculations required in this evaluation.

12The results for λ = 1 differ from those in Table 3 because
they are for a sample of the full dataset.

13https://fasttext.cc/docs/en/
pretrained-vectors.html

14We do not consider the case of a test set consisting of
both in-vocabulary and OOV source language words because
we only have 1143 translation pairs that are in-vocabulary for
both languages, all of which are used for training the supervised
approach.

6. Conclusions
In this paper we considered whether sub-word embeddings
can be leveraged in cross-lingual word embedding models.
Specifically we evaluated sub-word embeddings in a novel
bilingual lexicon induction task in which we identify target
language translations for OOV source language words.
Our findings indicate that, although the accuracy is not
high in absolute terms, sub-word embeddings nevertheless
provide information that can be leveraged for identifying
translations for OOV words, including in the case of
a truly low-resource, morphologically rich language,
specifically Cherokee. We additionally showed that sub-
word embeddings can be leveraged to find translations
in the case that the test data consists of a mixture of
both OOVs and in-vocabulary words. Our findings further
indicate that bilingual lexicon induction for OOVs can
be improved by incorporating orthographic similarity. In
future work we plan to consider alternative approaches
to learning cross-lingual embeddings that incorporate
knowledge of sub-words during training.
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