
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 2605–2614
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

2605

Evaluating Sentence Segmentation in Different Datasets of Neuropsychological
Language Tests in Brazilian Portuguese

Edresson Casanova1, Marcos V. Treviso2*, Lilian C. Hübner3, Sandra M. Aluísio1
1University of São Paulo, 2Instituto de Telecomunicações, 3Pontifical Catholic University of Rio Grande do Sul

edresson@usp.br, marcos.treviso@lx.it.pt, lilian.hubner@pucrs.br, sandra@icmc.usp.br

Abstract
Automatic analysis of connected speech by natural language processing techniques is a promising direction for diagnosing cognitive
impairments. However, some difficulties still remain: the time required for manual narrative transcription and the decision on how
transcripts should be divided into sentences for successful application of parsers used in metrics, such as Idea Density, to analyze the
transcripts. The main goal of this paper was to develop a generic segmentation system for narratives of neuropsychological language
tests. We explored the performance of our previous single-dataset-trained sentence segmentation architecture in a richer scenario
involving three new datasets used to diagnose cognitive impairments, comprising different stories and two types of stimulus presentation
for eliciting narratives — visual and oral — via illustrated story-book and sequence of scenes, and by retelling. Also, we proposed
and evaluated three modifications to our previous RCNN architecture: (i) the inclusion of a Linear Chain CRF; (ii) the inclusion of a
self-attention mechanism; and (iii) the replacement of the LSTM recurrent layer by a Quasi-Recurrent Neural Network layer. Our study
allowed us to develop two new models for segmenting impaired speech transcriptions, along with an ideal combination of datasets and
specific groups of narratives to be used as the training set.
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1. Introduction
Language assessment has been shown to be an efficient
complementary tool for detecting cognitive and neuropsy-
chological disorders, therefore present in most tests, tasks
and batteries that evaluate cognitive processes. For ex-
ample, neuropsychological language tests are an important
tool for diagnosing individuals with significant depression
in Alzheimer’s disease (AD) (Fraser et al., 2016), to differ-
entiate between Mild Cognitive Impairment (MCI) and AD
(Drummond et al., 2015), to differentiate between AD and
other neurodegenerative dementias (Yancheva et al., 2015;
Beltrami et al., 2018) and to differentiate variants of neu-
rodegenerative dementias, such as in Primary Progressive
Aphasia (PPA) (Fraser et al., 2014).
Language assessment has been performed mainly by using
discursive production in which narratives are largely used,
since they are a natural form of communication and favor
the observation of the patient’s functionality in everyday
life (Tillas, 2015). The discourse tasks used to assess the
narrative productions of elder individuals are often based
on: (i) an illustrated story book without a text (e.g. Cin-
derella), (ii) an immediate and delayed retelling of a story
orally presented, or (iii) a single scene or a sequence of
scenes, presented on pictures, of a common event that oc-
curs in daily life.
With regard to specific batteries used to evaluate language
in discourse tasks, we can cite a few (Wechsler, 1997;
Bayles and Tomoeda, 1993; Goodglass et al., 1983; Hübner
et al., 2019). Discourse tasks that require some degree of
memorization are usually included in verbal memory tests.
This is the case of the Logical Memory Subtest task from
the Wechsler Memory Scale, used for assessing episodic
memory (Wechsler, 1997). In this task, an individual repro-

*Work carried out during the master’s course at the University
of São Paulo.

duces a story immediately after listening to it (immediate
recall); thirty minutes later, subjects are asked to recall the
story again (delayed recall). The retellings are transcribed
for further analysis. The higher the number of recalled el-
ements of the narrative, the higher the memory score. This
procedure is also used in the Arizona Battery for Commu-
nication Disorders of Dementia (ABCD) (Bayles and To-
moeda, 1993). The single-scene description task called
“The Cookie Theft Picture” is part of the Boston Diagnos-
tic Aphasia Examination (BDAE) (Goodglass et al., 1983).
The Cookie-Theft picture has been shown to be clinically
relevant in identifying linguistic deficits in Alzheimer’s dis-
ease patients given the importance of using visual stimuli
when evaluating individuals of this group. The Cinderella
story is also very widely used in the assessment of apha-
sia and some types of dementia. (Fraser et al., 2015) and
(Aluisio et al., 2016) based their work on the story of Cin-
derella. Participants were given a sequenced picture book
(without words) to remind them of the story; then they were
asked to tell the story in their own words. The narrative
samples were then transcribed by trained annotators.

A challenge in choosing the type of neuropsychological as-
sessment of individuals with AD and MCI is the use of a
battery that can distinguish these individuals. ABCD ap-
pears as an option since it is capable of detecting mild stage
AD, while the Bateria de Avaliação da Linguagem no En-
velhecimento (BALE) (Battery of Language Assessment in
Aging, in English) (Hübner et al., 2019) was developed
for application to patients with different educational levels,
including illiterate ones, a very common condition among
Brazilian elders.

All the studies cited above confirm that the automatic anal-
ysis of connected speech by natural language processing
techniques (NLP) is a promising direction for diagnosing
cognitive impairments. However, some difficulties still re-
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main: the time required for manual narrative transcription
and the decision on how transcripts should be divided into
sentences for (i) extracting narrative recall scores automati-
cally from semantic similarity methods applied to sentences
— the shorter the sentences, the better the method response
(see (Borges dos Santos and Aluísio, 2020)) and (ii) the
successful application of parsers used in metrics to analyze
the transcripts. One of these metrics is called Idea Den-
sity and was originally proposed as a way of measuring
the memory load of narratives, by representing the under-
lying content of the text as a series of semantic units, called
propositions or ideas. The method proposed by da Cunha et
al. (2015) is a rule-based system acting upon dependency
trees, strongly depending on a robust parser.
Growing consensus in the NLP area indicates that in or-
der to have fully automated systems for diagnosing cogni-
tive impairments, an NLP pipeline must use an Automatic
Speech Recognition (ASR) system. Although to build a
high performance ASR for pathological language can be a
long term research, we will ignore the issue (i) for now. If
we have a manual transcription or an automatically gener-
ated one, we still have to detect sentence boundaries, there-
fore, we will focus on this task in this paper.
Since the majority of studies on diagnosing cognitive im-
pairments by NLP methods deal with English-speaking pa-
tients (Filiou et al., 2019), in this study we will evaluate the
Brazilian Portuguese (BP) language in order to contribute
with datasets and studies to develop automatic analysis of
connected speech in BP. Our motivation for this study was
to explore the performance of a single-dataset-trained sen-
tence segmentation architecture in a richer scenario involv-
ing three new datasets. Therefore, here, we evaluate four
datasets used to diagnose cognitive impairments (see Sec-
tion 3), comprising different stories and two type of stimu-
lus presentation for eliciting narratives: (i) oral stimuli pre-
sentation with retelling, where sequencing discourse marks,
such as “e”,“aí”, “daí” and “então” (and, then, in English)
and confirmatory discourse marks “né” and “ok” (ok, in
English) are frequent and (ii) visual stimuli, via both il-
lustrated story book and sequence of scenes of a common
event, where deictic expressions (place deixis) are perva-
sive, such as “aqui” and “aí” (here) and “ali” and “lá”
(there), besides presenting sequencing discourse marks and
confirmatory discourse.
Figure 1 shows the result of a manual transcription in BP of
a narrative of the ABCD story telling task, which presents
a story about a woman who is unaware of having lost her
wallet while doing the shopping; she then receives a call
from a little girl who found the wallet. As we can see in (a)
the transcript without punctuation prevents the direct appli-
cation of NLP methods that rely on sentence segmentation
for the correct use of tools as taggers and parsers. These
tools are used to implement metrics of syntactic complex-
ity, basic counts of PoS tags and to analyze other levels of
language to diagnose cognitive impairments.
When the architecture developed in the project Deep-
BonDD1 was trained with The Cinderella Story dataset (a
production task elicited via an illustrated story book) and

1https://github.com/mtreviso/deepbond

(a) ahm uma senhora foi fazer compras no me foi no mercado não lembrava
o local no me fazer compras e quando ela foi pagar a conta no caixa percebeu
que estava sem a carteira aí ela foi deixou a mercadoria não levou a mercadoria
voltou para casa chegando em casa toca o telefone era uma garotinha avisando
ela que que tinha achado a carteira é isso tem mais coisa não cortei eu resumi
o que eu ouvi

(b) ahm uma senhora foi fazer compras no me foi no mercado. não lembrava o
local . no me fazer compras . e quando ela foi pagar a conta no caixa percebeu
que estava sem a carteira . aí ela foi deixou a mercadoria . não levou a mercadoria
. voltou para casa . chegando em casa toca o telefone . era uma garotinha
avisando ela que que tinha achado a carteira . é isso . tem mais coisa . não cortei
. eu resumi o que eu ouvi .

Figure 1: (a) Narrative transcribed where there is no punc-
tuation or capitalization, besides presenting several disflu-
encies, such as unlexicalized filled pauses, restarts and pa-
tient’s comments, shown in bold. (b) Narrative manually
segmented of a retelling task using The Wallet Story.

evaluated with the other three datasets analyzed in this pa-
per, F1 values were much lower than the original work on
Cinderella (Treviso et al., 2017a) (Table 1). The average of
F1 in the three datasets, for all classes, is 0.59. In the orig-
inal evaluation with training and cross-validation testing in
the same dataset, the best F1 value for Controls was 0.76,
for MCIs, 0.74, and for ADs, 0.66. However, Table 1 shows
that, in general, for sentence segmentation, more data is
beneficial, independently of task and topic of datasets.
Given this motivation scenario, where the main goal was
to develop a robust and generic segmentation system for
narratives of neuropsychological language tests, the present
study tries to answer three questions:

1. Would modifications to the Recursive Convolutional
Neural Networks (RCNN) architecture proposed by
(Treviso et al., 2017a) have better performance on sen-
tence boundary detection of new tasks and story top-
ics? (Section 2 presents details about the RCNN archi-
tecture proposed by (Treviso et al., 2017a) and Section
4 presents the three modifications evaluated here);

2. Are there particularities in tasks that elicit narratives
with visual stimuli not present on those elicited with
oral stimuli (and vice versa), requiring specific sen-
tence segmentation detectors for each task? (Section 5
presents our experiments on this issue.)

3. Do the story topics of language tests and the group
of elders of a dataset negatively impact sentence seg-
mentation detectors, also requiring specific sentence
segmentation detectors? (Section 6 presents our eval-
uations on this issue.)

Section 2 presents a literature review on sentence segmen-
tation, focusing on spontaneous and impaired speech. Sec-
tion 7 presents the discussions and the contributions to-
wards building a full-fledged system for automating neu-
ropsychological tests in Portuguese.

2. Related Work on Sentence Segmentation
for Impaired Speech

Due to the increasing usage of ASR systems, which usu-
ally output a stream of tokens without any capitalization
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Training set Test set MCIs Controls ADs Average

Cinderella - Same class The Dog Story 0.43 0.54 0.56 0.51
Cinderella - All classes The Dog Story 0.58 0.59 0.54 0.57

Cinderella - Same class Lucia n/a 0.67 0.54 0.60
Cinderella - All classes Lucia n/a 0.66 0.62 0.64

Cinderella - Same class Wallet 0.54 0.56 n/a 0.55
Cinderella - All classes Wallet 0.57 0.53 n/a 0.55

Table 1: Robustness tests in terms of F1 using the original RCNN model trained on the Cinderella dataset. “Same class”
means that the method was trained only with the same specific class used for testing. “All classes” means that data from all
classes were used for training. “n/a” entries denote that the tested dataset does not have examples for that specific class.

or punctuation symbols, methods for detecting sentences
boundaries were applied to solve the need of subsequent
tools (such as taggers and parsers) in an NLP pipeline.
Previous methods, such as Decision Trees combined with
Language Models (Shriberg et al., 2000; Liu et al.,
2005b; Christensen et al., 2006), Maximum entropy mod-
els (Batista et al., 2012) and CRFs (Khomitsevich et al.,
2015; Fraser et al., 2015) were applied both for prepared
and spontaneous speech. These methods rely on lexical
and prosodic clues (e.g. pitch, energy and pauses) in or-
der to detect the correct position of a sentence boundary.
For instance, the CRF method proposed by (Fraser et al.,
2015) uses lexical, prosodic and Part-of-Speech (PoS) tags
as features to segment speech from elder people with apha-
sia. They found that by using all these features together
the model yields better results and the mistakes made by
the model don’t affect much the syntactic structure of the
segmented transcript.
More recently, Recurrent and Convolutional Neural Net-
works were employed for both types of speech and
achieved good results by using word embeddings as the
lexical representation of words (Tilk and Alumäe, 2016;
Che et al., 2016; Treviso et al., 2017a; González-Gallardo
and Torres-Moreno, 2018), suggesting that deep neural net-
works can be successfully applied for this task.
Prosodic features have been shown to be very effective to
discriminate between different types of sentence bound-
aries and in general their usage reflects better results
(Shriberg et al., 2009; Huang et al., 2014; Khomitsevich et
al., 2015). However, to put prosodic features into practice
we need alignments between the audio and its transcription,
which is hard to obtain mainly due to the low quality of the
recordings. This problem is even more critical for impaired
speech, where patients with cognitive impairment usually
produce a narrative in which sentences are not syntactically
well-formed, words are pronounced in a way that modifies
their original morphology, and utterances have low prosody
quality (elder speakers with a very low voice volume). Even
long pauses are not always an indication of sentence bound-
aries due to word-finding difficulty of elders (Fraser et al.,
2015). Therefore, prosody is hardly ever a good feature for
the classifier.
Recent studies show that by using only lexical clues it is
possible to achieve a comparable performance with meth-
ods that use prosodic features altogether (Klejch et al.,
2016; Klejch et al., 2017). Moreover, by leveraging trans-

fer learning techniques it is possible to reduce the drop in
performance even more. For example, the method devel-
oped by (Treviso et al., 2017a), which was evaluated with
different types of word embeddings, showed that by us-
ing a good word embedding representation it is possible to
achieve similar results in the SOTA. Their method consists
of a combination of Recurrent and Convolutional Neural
Networks (RCNN). Its complete architecture is composed
by the following four components:

1. An embedding layer maps words to dense vectors rep-
resentations;

2. These vectors are fed to a convolutional layer that is
responsible for the automatic extraction of new fea-
tures depending on neighboring words;

3. The new extracted features are passed to a Bi-LSTM
to capture long range dependencies; and

4. The output of the recurrent layer is projected to a bi-
nary output where a softmax operation is calculated,
giving the probability of whether or not the word pre-
cedes a sentence boundary.

Since the number of sentence boundaries is much lower
than the one of non-sentence boundaries, this is categorized
as an unbalanced classification problem. To deal with this,
the RCNN gives a higher weight to the minority class in the
objective function.
The main drawback of the RCNN model is its large number
of parameters combined with the small amount of training
data (usual in clinical data), which usually leads to overfit-
ting, and therefore careful regularization strategies have to
be employed. In practice, we found that for narratives of
new story topics the RCNN model is not able to often de-
tect good sentence boundaries, relying on discourse marks
and therefore generating very small sentences, with a main
verb as the manual segmentation does.
By inspecting the errors of the RCNN model, we also found
that its most common mistakes are related to deictics, se-
quencing and confirmatory marks preceding (e.g. “lá”,
“né”, “ok”) and succeeding sentence boundaries (e.g. “aí”,
“daí”, “então”). Although it was shown that these errors do
not affect too much the syntactic structure of the sentence,
they could be easily captured by considering lexical clues
more effectively (Treviso et al., 2018). Examples of places
where the model should have put a sentence boundary but
it missed it (i.e. false negatives) are shown in Fig. 2
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(a) menino que foi na cidade . aí tá caminhando na rua . daí viu as pessoas lá .
daí encontrou um cachorrinho . o cachorrinho tava perdido . chegando lá a mãe
abriu a porta . e ele pediu pra mãe deixar o cachorro lá . morar com ele lá . aí
arrumou até uma casinha pro cachorrinho . aí ela consentiu ele deixar até fazer
uma casinha pro cachorro .

(b) menino que foi na cidade aí tá caminhando na rua daí viu as pessoas lá
daí encontrou um cachorrinho o cachorrinho tava perdido . chegando lá a mãe
abriu a porta . e ele pediu pra mãe deixar o cachorro lá morar com ele lá . aí
arrumou até uma casinha pro cachorrinho . aí ela consentiu ele deixar até fazer
uma casinha pro cachorro .

Figure 2: (a) Manual segmentation of a narrative elicited
via a sequence of scenes of a common event (The Dog
Story). (b) Example of errors made by the RCNN model;
slots where a sentence boundary should have been put are
shown in bold.

3. Datasets
Four datasets were used to train our models (Sections 3.1,
3.2 and 3.3). As a preprocessing step we removed capi-
talization information and in order to simulate high-quality
ASR, we left all speech disfluencies intact. Demographic
information of participants and statistics about the narra-
tives of our study are presented in Table 2. Datasets of Neu-
ropsychological Language Tests are typically small, as can
be seen in Table 2. Table 2 shows the uniform mean length
of sentences of three datasets (The Wallet Story, The Dog
Story and The Cinderella Story), with regards to the groups
MCI and Controls. This is an interesting feature to train/test
a model, using a large dataset which combines several sto-
ries. Cinderella’s mean length of narratives is very long,
while both retellings produce short narratives.
In the four datasets of this study, we have segmented sen-
tences using prosodic, syntactic and semantic knowledge,
to create short sentences, with a sole idea, i.e. with an
unique main verb. Therefore, coordinated sentences where
divided. Although this decision has an impact on certain
syntactic metrics, such as the number of sentences with co-
ordination and the length of sentences, it makes possible
for parsers to function properly over impaired speech. The
manual sentence segmentation was performed by peers in
two datasets, and both kappa values are very high (Landis
and Koch, 1977): the kappa value for the Cinderella Story
was 0.84 (almost perfect agreement), and for the Dog Story
was 0.77 (substantial agreement). Therefore, the remaining
annotation was performed by a sole annotator.

3.1. The Wallet Story from ABCD
ABCD is a standardized test battery for the comprehensive
assessment and screening of dementia. It includes 17 sub-
tests that evaluate linguistic expression, linguistic compre-
hension, verbal episodic memory via immediate/delayed
recall of stories, visuospatial construction, and mental sta-
tus. The subtest which is important for our study is the
evaluation of the episodic memory, which is composed of
the immediate and late retelling of a memorized story from
(Bayles and Tomoeda, 1993), the Wallet Story. This story
was translated and adapted to BP by Danielle Rüegg, Isabel
Maranhão de Carvalho, Leticia Lessa Mansur and Márcia
Radanovic, and was administered and collected by the team
coordinated by Professor Dr. Leticia Lessa Mansur at the
University of São Paulo Medical School to 23 elders with

MCI and 12 healthy aging adults; totaling 70 narratives.
This test has 17 units of information, with possible alterna-
tives, with 17 being its maximum score.

3.2. The Cinderella Dataset
The Cinderella dataset consists of spontaneous speech nar-
ratives produced during a test to elicit narrative discourse
with visual stimuli, using a book composed of sequenced
pictures portraying the the Cinderella Story. In the test, the
examinee verbally tells the story to the examiner based on
the pictures. The narrative is recorded and manually tran-
scribed by a trained annotator who scores the narrative by
counting the number of recalled propositions/units of infor-
mation; there are 28 informational units to be recalled, pre-
sented in 23 pictures. This dataset consists of 60 narratives
from BP speakers (20 controls, 20 with AD, and 20 with
amnestic MCI), diagnosed and collected at the University
of São Paulo Medical School and also used in (Toledo et
al., 2017; Aluisio et al., 2016; Treviso et al., 2017b; Treviso
et al., 2017a).

3.3. The Dog Story and Lucia Story Datasets
from BALE

BALE is a standardized battery with norms for the healthy
elders Brazilian population illiterate, with low (2 to 8 years
of schooling) and high (9 years or more) education, from 60
to 90 years old, described in (Hübner et al., 2019). BALE
provides the academy and clinicians with standardized and
validated tasks, filling an important gap in terms of tasks
validated for BP, specially at the discourse level. It was con-
ceived by the adaptation of other tasks nationally and inter-
nationally used to test language impairment mainly in AD,
following psycholinguistic criteria, including imageability,
frequency, animability, extension, among others, such as
cultural issues. It consists of 10 linguistic tasks, assessing
from the word level, in the naming task, for example, to
the discourse level. One of its differentials is to evaluate
discourse in four types of narrative texts, especially at the
production level, but with the implicit textual comprehen-
sion as well. This battery was chosen because its aim is
to allow for its administration to elder people who are il-
literate and/or of low educational level, who represent the
majority of the aged sample assisted by the public health
system in Brazil. The Dog Story and Lucia Story are two
of the four narrative texts from the BALE instrument. The
Dog Story dataset is composed of transcriptions from the
oral narrative production test based on the presentation of a
set of seven pictures telling a story of a boy who hides a dog
that he found on the street, based on the story of LeBooeuf
(Le Boeuf, 1976). This dataset consists of 106 narrative
texts from BP speakers, including 82 healthy aging adults,
12 with AD, and 12 with MCI. BALE also includes a task
of retelling and text comprehension of an orally presented
story called Lucia Story. This test has 24 units of informa-
tion, with possible alternatives, with 24 being its maximum
score. This retelling test was administered to 9 Alzheimer’s
individuals and 80 healthy aging adults. Both datasets were
collected by the team coordinated by Professor Dr. Lilian
Cristine Hübner of the School of Humanities at the Pontifi-
cal Catholic University of Rio Grande do Sul (PUCRS).
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Stories Groups Nb. of
Subjects Age Years of

Education
Nb. of
Sentences

Mean length of
Sentences (σ)

Mean length of
Narratives (σ)

The Wallet Story MCI 23 62+ 4+ 376 7.45 (±3.99) 60.87 (±17.22)
Control 12 55+ 4+ 184 7.70 (±4.29) 59.00 (±14.41)

The Lucia Story Control 80 63+ 2+ 564 8.44 (±5.57) 59.51 (±21.36)
AD 9 68+ 1+ 39 6.54 (±5.59) 28.33 (±18.37)

The Dog Story
MCI 12 57+ 2+ 173 8.26 (±4.43) 119.08 (±41.61)
Control 82 60+ 0+ 1170 8.44 (±5.10) 120.46 (±51.65)
AD 12 59+ 0+ 153 7.60 (±5.50) 96.92 (±37.56)

The Cinderella Story
MCI 20 60+ 3+ 618 12.38 (±7.40) 404.80 (±198.40)
Control 20 60+ 3+ 654 12.79 (±7.23) 395.25 (±210.33)
AD 20 60+ 3+ 794 9.83 (±7.00) 390.30 (±285.91)

Table 2: Statistics of narratives and of the Control and patient groups; the first two datasets are based on retellings and the
last ones are based on sequenced figures.

4. Exp. I: Would New Architectures Have
Better Performance?

Here, we propose and evaluate three modifications to the
RCNN architecture developed by (Treviso et al., 2017a),
namely: (i) the inclusion of a Linear Chain CRF to cap-
ture pairwise dependencies between labels; (ii) the inclu-
sion of a self attention mechanism with the aim of captur-
ing very long dependencies; and (iii) the replacement of the
LSTM recurrent layer by a Quasi-Recurrent Neural Net-
works (QRNN) (Bradbury et al., 2016) layer in order to
reduce the number of trainable parameters.
A CRF model can be helpful since we have sequences of la-
bels that are very unlikely (or even impossible) to happen,
such as a sequence of three sentence boundaries one after
the other: B B B. Furthermore, by applying Viterbi decod-
ing we can seek the best sequence of labels taking into ac-
count these transition likelihoods. In contrast to RNNs that
have to remember decisions across a very long stream of to-
kens, attention mechanisms can access distant positions in
the input at any moment, therefore they can be very help-
ful to learn very long dependencies. Despite having less
parameters than LSTMs, a QRNN layer is based on con-
volutional and pooling operations, which can be computed
effectively in parallel and, as a result, decrease both training
and inference time.
To choose the best architectures, several configurations
were evaluated using greedy search on the hyperparame-
ters found in Table 3. We used a 5-fold cross-validation
on the MCI class set of The Cinderella Story dataset. The
choice of evaluating only on the MCI class was due to the
high demanding time of running all experiments in all four
datasets and the fact that this class represents cognitive im-
pairment between the characteristics of Controls and ADs
narratives. As we can see in Table 3, the models explore
the use of CNNs, RNNs, QRNNs, different variants of at-
tention mechanisms, and CRF; mixed models with two or
more combinations were also explored. The dot product at-
tention is the scaled version proposed by (Vaswani et al.,
2017); the general attention is also known as Luong at-
tention (Luong et al., 2015); the additive attention is also
known as Bahdanau attention (Bahdanau et al., 2015).

Hyperparameters Values

Conv. filters 35, 50, 100, 200
Kernel size 1, 3, 5, 7
Conv. dropout 0.0, 0.25, 0.5, 0.75
Recurrent hidden size 35, 50, 100, 200
Recurrent type RNN, GRU, LSTM, QRNN
Recurrent dropout 0.0, 0.5
Attention dropout 0.0, 0.25, 0.5, 0.75
Attention variant Dot Product, General, Additive
Attention hidden size 35, 50, 100, 200, 300
Number of heads 1, 2, 4
Multi-head hidden size 50, 100, 200

Table 3: Hyperparameters tried during greedy search.

We trained our models for a maximum of 40 epochs using
small batch sizes. We found that smaller batch sizes work
better in practice for models that have a CRF at the end,
therefore we set the batch size to 1 for all configurations in
order to have comparable results. We employed early stop-
ping with patience of 5 epochs. We optimized the model’s
parameters using the Adam optimizer with the weight de-
cay fix implementation (Loshchilov and Hutter, 2019). In
order to avoid overfitting, we also used `2 regularization
with λ = 0.01. For all other optimizers hyperparameters,
we used the default ones defined on the PyTorch implemen-
tation. Finally, in all our experiments we used pre-trained
word embeddings from (Treviso et al., 2017a), selecting the
600D Word2vec-skipgram type (due to its higher perfor-
mance) and keeping them freezed during training.
Taking into account all configurations, more than 200 new
architectures were trained and evaluated on the MCI class
set of the Cinderella dataset. Since in this work we have
more training data from different language tests, our main
aim was that we can have a new model that performs better
than the RCNN and can also generalize better to datasets of
different story topics.
Due to space constraints we do not report the results
for each configuration. Nevertheless, these experiments
showed that dropout after convolutional and recurrent lay-
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Model Retelling Sequenced Figures Average
MCIs Controls ADs MCIs Controls ADs

1. CRF 0.38 0.44 0.36 0.63 0.68 0.76 0.54
2. QRCNN 0.71 0.76 0.64 0.88 0.84 0.85 0.78
3. RCNN (original) 0.72 0.76 0.65 0.88 0.85 0.91 0.79
4. RCNN + CRF 0.74 0.76 0.65 0.88 0.85 0.85 0.79
5. CNN 0.72 0.76 0.65 0.88 0.85 0.85 0.79
6. CNN + CRF 0.72 0.76 0.63 0.88 0.85 0.83 0.78
7. CNN + ATTN 0.72 0.75 0.65 0.88 0.83 0.86 0.78
8. CNN + ATTN + CRF 0.74 0.76 0.65 0.89 0.84 0.83 0.79
9. RNN 0.73 0.76 0.64 0.89 0.85 0.88 0.79
10. RNN + CRF 0.76 0.78 0.66 0.89 0.86 0.85 0.80
11. RNN + ATTN 0.71 0.74 0.64 0.88 0.85 0.85 0.78
12. RNN + ATTN + CRF 0.77 0.79 0.67 0.89 0.86 0.85 0.81

Table 4: Cross-validation F1 scores for each method on both retelling and sequenced figures datasets.

ers is an important factor to prevent overfitting. The
dropout rate after convolutional layers was usually set to
0.25, and 0.5 for recurrent layers. For all models with con-
volutional layers, we found that the best kernel size was 7,
and the best number of filters varied between 100 and 200.
In general, the number of recurrent units varied between
100 a 200, except for models based on QRNNs, which per-
formed better with 50 units. As for the recurrent unit type,
we found that LSTMs usually perform better than GRUs
and QRNNs. Finally, the general and additive attention
variants were the ones that yielded the best results.
In order into train the best architectures with the datasets
presented in Table 2, datasets of tasks that elicit narra-
tives with visual stimuli (Cinderella and Dog Story) were
joined and used for training the selected architectures. The
datasets of tasks that elicit narratives with oral stimuli (Lu-
cia and Wallet Story) were also joined and used for training
the same architectures.
Taking in account the previous experiment with the MCI
class set of The Cinderella Story dataset, we selected 12
different models (including the original RCNN) with their
best configuration. Moreover, in order to show the impact
of each architecture, we chose models that have unique con-
figuration of layers. Table 4 shows 10-fold cross-validation
results for datasets based on retellings and based on se-
quenced figures using these selected models.
With the exception of the CRF model, all others yield sim-
ilar results, ranging from 0.78 to 0.81 F1 score in average,
with the best value being the RNN + ATTN + CRF model.
Therefore, our answer to the question “Would new architec-
tures have better performance?” is no, there was no signifi-
cant increasing in F1 score. It is a fact that more data taken
from similar distribution (same task of a language battery)
is beneficial. The RNN + ATTN + CRF model also makes
a small improvement on the F1 score when compared to
the original RCNN model; however, the RCNN is still very
competitive. Finally, it is worth noticing that all architec-
tures use the same word embeddings extracted from (Tre-
viso et al., 2017a), which were pre-trained using a large col-
lection of written texts and, as a consequence, some of the
lexical clues for sentence boundaries of spontaneous speech

were probably not captured by this representation.

5. Exp. II: Does the Task Require a Specific
Sentence Segmentation Detector?

An important question is whether models trained in a same
task also generalize well to the other task being evaluated,
i.e., can we use a model trained on retellings to segment
narratives based on sequenced figures and vice versa?
To answer these questions, we chose 3 top recurrent mod-
els (9, 10 and 12) from the cross-validation experiments of
Table 4 with addition of the original RCNN.
To avoid an unfair comparison between the datasets, the
models were then trained again via 10-fold cross-validation
where we also randomly split the other dataset into 10 folds
to be used for testing. In order to evaluate each model,
we first train the model using the training set of each fold
and evaluated it twice, once using its test set counterpart
and the other time using the respective fold of the other
dataset. For example, if we trained the model for the 1st
fold of sequenced figures, we tested it both on (i) its test
subset; (ii) the 1st fold of the retelling dataset. Since we
do not have a validation set, we can not employ an early
stopping procedure, so instead we estimate a good number
of epochs based on the average number of epochs obtained
in the experiments reported on the Table 4.
Table 5 presents F1 scores of our four best models from the
previous experiment trained on the retelling datasets, and
Table 6 presents F1 scores of our four best models from
the previous experiment trained on the sequenced figures
datasets. In both tables the models were tested on both
retelling and sequenced figures datasets.
Table 6 shows the best generalization result: the model
RNN + ATTN + CRF. It was trained on sequenced-figures
datasets and presents the best average values in both testing
data (retellings and sequenced figures as well). The model
RNN, in Table 6, also presents similar behavior. From these
results, we can assume that sequenced-figures narratives
bring linguistic features also present in retellings, but the
reverse direction is not true, as we can see in Table 5. How-
ever, if a researcher will only work on retelling tasks, Table
5 shows that using only retelling datasets for training led to
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Model Retelling Sequenced Figures Average

MCIs Controls ADs Average MCIs Controls ADs Average

RCNN (original) 0.84 0.80 0.75 0.80 0.51 0.60 0.44 0.52 0.66
RNN 0.72 0.77 0.61 0.70 0.66 0.74 0.60 0.67 0.68
RNN + CRF 0.84 0.83 0.81 0.83 0.51 0.57 0.41 0.50 0.66
RNN + ATTN + CRF 0.85 0.83 0.74 0.81 0.51 0.58 0.41 0.50 0.65

Table 5: F1 scores of our best models trained on the retelling datasets and tested on both datasets.

Model Sequenced Figures Retelling Average

MCIs Controls ADs Average MCIs Controls ADs Average

RCNN (original) 0.68 0.74 0.61 0.68 0.67 0.70 0.67 0.68 0.68
RNN 0.69 0.74 0.64 0.69 0.69 0.71 0.63 0.68 0.68
RNN + CRF 0.73 0.76 0.61 0.70 0.67 0.71 0.61 0.66 0.68
RNN + ATTN + CRF 0.70 0.76 0.63 0.70 0.69 0.72 0.62 0.67 0.69

Table 6: F1 scores of our best models trained on the sequenced figures datasets and tested on both datasets.

better results for the retelling task.

6. Exp. III: Does the Story Topic Demand a
Specific Segmentation Detector?

Here, we evaluate if we can generalize on the topic of sto-
ries used in language batteries, allowing the creation of a
generic and unique model for the sentence segmentation
task for impaired speech transcriptions. Table 7 shows the
results of our best models presented in Table 5 and 6 trained
here with three datasets and tested with the fourth remain-
ing dataset, totaling 16 models, and allowing a rich com-
bination to evaluate the best results for the segmentation
task. We show in bold the three best average values of F1

scores (models 8, 9 and 10) (Avg 1). We also calculated
the average of F1 by model (RCNN, RNN, RNN+CRF and
RNN+ATTN+CRF) and training class (same, all and MCI
and Control classes) (Avg. 2), allowing us to find the model
with the best generalization for new data, independently of
the task.
Model 8 (RNN + ATTN + CRF) uses the datasets Cin-
derella, Dog and Wallet for training and Lucia for test-
ing. The training was done with two datasets of narratives
elicited by visual stimuli (Cinderella and Dog Story), which
have already been selected as the best stimuli to generalize
the best model in Experiment 2, taking in account the train-
ing with sequenced figures datasets (Table 6).
Considering a new dataset, independently of its task, the
best model is the RNN, trained with “All groups” (Avg. 2).
Comparing its value of F1 (0.66) with the results of Table
1 (our previous generic segmentation system), there was a
increase of 0.7 in the F1 score.
Taking all these results into consideration, we chose the
model RNN + ATTN + CRF for creating detectors for a
specific task, i.e. training with datasets of tasks that elicit
narratives with visual stimuli (Cinderella and Dog Story)
and with datasets of tasks that elicit narratives with oral
stimuli (Lucia and Wallet Story). Also, we chose to use
only the groups of Controls and MCIs as their narratives
are more similar than those of DAs. The RNN + ATTN +

CRF model returned the best results in Experiments 1 and
2. Models with CRF generally do not generate two bound-
aries in sequence, as in “Ela saiu de. casa.”, since the con-
straint of two periods in sequence is very strong. Moreover,
by inspecting the predictions of these models we saw that
the mean length of the sentences in the predicted transcrip-
tions are very close to the ones in the training datasets (dif-
ference less than 1 most of the time). Although its number
of parameters is slightly higher than that of the model RNN,
the use of attention and CRF end up helping in the quality
of the transcriptions. By looking at the results for Experi-
ments 2 and 3, we also chose the RNN model, trained with
Cinderella + Dog + Lucia datasets and with all classes, to
be used as a unique and generic sentence segmentation de-
tector due to its generalization performance.

7. Conclusions and Future Work
In this paper, our main goal was to develop a robust and
generic sentence segmentation system for narratives of lan-
guage tests, based on experiments using four datasets of
narratives used to evaluate cognitive processes. Instead,
our study allowed us to develop and choose two new mod-
els — RNN and RNN + ATTN + CRF — for segmenting
impaired speech transcriptions, along with an ideal com-
bination of datasets and specific groups of narratives to be
used as the training set. We chose the RNN + ATTN + CRF
model for creating a segmentation detector for a specific
task, because it returned the best results in Experiments 1
and 2. By analyzing the results from the Experiment 3, we
chose the RNN for creating our generic segmentation detec-
tor. These findings are consistent with the model selected
as the one that generalizes better for a different stimuli in
Experiments 2 and 3. We also made publicly available the
four datasets used in this study. Although we got better
segmentations by applying Viterbi decoding for all of our
models with CRF on top, the input for the Viterbi algorithm
is the entire transcription, and therefore a global optimiza-
tion over the sequence is being done, which might not be
helpful at the end because there are several valid combina-
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Model Training datasets Test dataset Training class MCIs Controls ADs Avg. 1 Avg. 2

1. RCNN Cinderella + Lucia + Wallet Dog
Same class 0.49 0.59 0.61 0.56 0.60
All classes 0.59 0.66 0.60 0.62 0.65
MCIs and Controls 0.55 0.55 0.56 0.55 0.65

2. RNN Cinderella + Lucia + Wallet Dog
Same class 0.58 0.66 0.61 0.61 0.61
All classes 0.62 0.65 0.59 0.62 0.66
MCIs and Controls 0.55 0.64 0.57 0.59 0.64

3. RNN + CRF Cinderella + Lucia + Wallet Dog
Same class 0.54 0.56 0.56 0.56 0.58
All classes 0.62 0.65 0.60 0.62 0.63
MCIs and Controls 0.58 0.65 0.54 0.59 0.64

4. RNN + ATTN + CRF Cinderella + Lucia + Wallet Dog
Same class 0.53 0.57 0.50 0.53 0.56
All classes 0.61 0.65 0.63 0.63 0.65
MCIs and Controls 0.44 0.56 0.44 0.48 0.63

5. RCNN Cinderella + Dog + Wallet Lucia
Same class n/a 0.71 0.56 0.63
All classes n/a 0.75 0.69 0.72
MCIs and Controls n/a 0.74 0.69 0.72

6. RNN Cinderella + Dog + Wallet Lucia
Same class n/a 0.71 0.56 0.64
All classes n/a 0.72 0.62 0.67
MCIs and Controls n/a 0.71 0.70 0.71

7. RNN + CRF Cinderella + Dog + Wallet Lucia
Same class n/a 0.76 0.59 0.67
All classes n/a 0.72 0.63 0.68
MCIs and Controls n/a 0.75 0.69 0.72

8. RNN + ATTN + CRF Cinderella + Dog + Wallet Lucia
Same class n/a 0.74 0.51 0.62
All classes n/a 0.76 0.62 0.69
MCIs and Controls n/a 0.77 0.71 0.74

9. RCNN Cinderella + Dog + Lucia Wallet
Same class 0.63 0.71 n/a 0.67
All classes 0.70 0.74 n/a 0.72
MCIs and Controls 0.73 0.76 n/a 0.74

10. RNN Cinderella + Dog + Lucia Wallet
Same class 0.64 0.70 n/a 0.67
All classes 0.75 0.76 n/a 0.75
MCIs and Controls 0.71 0.71 n/a 0.71

11. RNN + CRF Cinderella + Dog + Lucia Wallet
Same class 0.55 0.60 n/a 0.58
All classes 0.69 0.65 n/a 0.67
MCIs and Controls 0.70 0.67 n/a 0.69

12. RNN + ATTN + CRF Cinderella + Dog + Lucia Wallet
Same class 0.61 0.63 n/a 0.62
All classes 0.72 0.67 n/a 0.69
MCIs and Controls 0.73 0.70 n/a 0.72

13. RCNN Wallet + Dog + Lucia Cinderella
Same class 0.57 0.60 0.49 0.55
All classes 0.57 0.59 0.52 0.56
MCIs and Controls 0.60 0.61 0.52 0.58

14. RNN Wallet + Dog + Lucia Cinderella
Same class 0.54 0.59 0.47 0.54
All classes 0.60 0.61 0.53 0.58
MCIs and Controls 0.60 0.61 0.51 0.57

15. RNN + CRF Wallet + Dog + Lucia Cinderella
Same class 0.56 0.60 0.36 0.51
All classes 0.59 0.61 0.47 0.55
MCIs and Controls 0.61 0.63 0.50 0.58

16. RNN + ATTN + CRF Wallet + Dog + Lucia Cinderella
Same class 0.53 0.60 0.26 0.46
All classes 0.60 0.61 0.51 0.57
MCIs and Controls 0.61 0.62 0.51 0.58

Table 7: F1 scores of the 16 models trained on a combination of three datasets and tested on the fourth remaining dataset.
“Same class” means that the method was trained only with the same specific class used for testing. “All classes” means that
data from all classes were used for training. Avg. 1 means average of F1 in a row; Avg. 2 means average of F1 by model
and training class, averaging over all the combinations of training/test datasets.

tions of boundary and non-boundary states. Thus, a local
decoding strategy, like posterior decoding, might be more
helpful in this scenario. Another direction is to follow the
recent trend of the NLP community and encode our input
using contextual representations from pretrained language
models like ELMo and BERT (Peters et al., 2018; Devlin et

al., 2019), yet a fine-tunning procedure on a large dataset of
spontaneous speech transcriptions is still probably needed
(Howard and Ruder, 2018). Finally, we plan to do evalu-
ations with the output of an ASR system, as a high word
recognition error rate can greatly affect our results.
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