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Abstract 
In the paper, we present class-based LSTM Russian language models (LMs) with classes generated with the use of both word 
frequency and linguistic information data, obtained with the help of the “VisualSynan” software from the AOT project. We have 
created LSTM LMs with various numbers of classes and compared them with word-based LM and class-based LM with word2vec 
class generation in terms of perplexity, training time, and WER. In addition, we performed a linear interpolation of LSTM language 
models with the baseline 3-gram language model. The LSTM language models were used for very large vocabulary continuous 
Russian speech recognition at an N-best list rescoring stage. We achieved significant progress in training time reduction with only 
slight degradation in recognition accuracy comparing to the word-based LM. In addition, our LM with classes generated using 
linguistic information outperformed LM with classes generated using word2vec. We achieved WER of 14.94 % at our own speech 
corpus of continuous Russian speech that is 15 % relative reduction with respect to the baseline 3-gram model. 
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1. Introduction 
One of the main state-of-the art approach to language 
modeling is application of neural networks (NNs). For 
language modeling, the usage of recurrent NNs (RNNs) is 
preferable because this type of NNs can store the whole 
context preceding the given word in contrast to feed-
forward NNs which store a context of restricted length. 
One type of recurrent NNs is a long short-term memory 
(LSTM) network which contains special units called 
memory blocks. Each memory block is composed of a 
memory cell, which stores the temporal state of the 
network, and multiplicative units named gates (an input 
gate, an output gate, and a forget gate) controlling the 
information flow (Hochreiter and Schmidhuber, 1997). 
LSTM-based language models (LMs) can be used in 
speech recognition systems at N-best or lattice rescoring 
stage. It was shown in many papers that such models 
outperform standard n-gram models in term of both 
perplexity and word error rate (WER) (Sundermeyer et 
al., 2015; Kumar et al., 2017). Detail review of researches 
on application of RNN-based LNs for speech recognition 
is presented in (Kipyatkova and Karpov, 2016). 
There are only few researches on application of NNs for 
Russian language modeling. RNN LM for Russian was 
firstly used in (Vazhenina and Markov, 2013). RNN LM 
was trained on the text corpus containing 40M words with 
vocabulary size of about 100K words. An interpolation of 
the obtained model with the baseline 3-gram and factored 
LMs was carried out. Obtained LM was used for rescoring 
of 500-best list that allowed the authors to achieve WER 
relative improvement of 7.4%. 
Another research on NN for Russian language modeling 
was described in (Medennikov and Bulusheva, 2016). The 
baseline 3-gram LM was trained on transcriptions of 
telephone conversations (390 hours of speech) as well as 
on text corpus (about 200M words) containing materials 
from Internet forum discussions, books, etc. Vocabulary 
for the baseline model contained 214K words. NN-based 
LMs were trained only with a part of the test corpus, and 
for this corpus the vocabulary of 45K most frequent words 
was used. LSTM-based LM was used for rescoring of 
100-best list. Relative WER reduction was equal to 8%. 

There are several toolkits for training RNN-based LM. 
One of them is RNNLN toolkit (Recurrent Neural 
Network Language Modeling Toolkit) (Mikolov et. al., 
2011). This toolkit allows creating RNNs with one hidden 
layer. TF-LM (TensorFlow-based Language Modeling 
Toolkit) allows training LSTM and bidirectional LSTM 
(BLSTM) applying several optimization methods 
(Verwimp et. al., 2018). For our experiments, we chose 
TheanoLM toolkit (Enarvi and Kurimo, 2016). It supports 
training NNs of different types: RNN, Gated Recurrent 
Unit (GRU), LSTM, BLSTM, highway networks. It also 
provides application of several optimization methods and 
different stop criteria. 
Training of RNN LM on a corpus with a large vocabulary 
is a very time-consuming task. One method for reducing 
the training time is to use hierarchical softmax that factors 
the output probabilities into the product of multiple 
softmax functions (Morin and Bengio, 2005). The 
hierarchical softmax is realized in TheanoLM toolkit, 
where a two-level hierarchy is used. The first level 
performs a softmax between √𝑉 word classes and the 
second level performs a softmax between √𝑉 words inside 
the correct class, where √𝑉 is the vocabulary size (Enarvi, 
2017). In this case, word probability is computed as 
follows: 

𝑃(𝑤௧|𝑤…𝑤௧ିଵ) =

= 𝑃(c(𝑤௧)|𝑤…𝑤௧ିଵ)𝑃൫𝑤௧ห𝑤…𝑤௧ିଵ, 𝑐(𝑤௧)൯, 

where 𝑤௧  is a word at time step t, c(𝑤௧) is a function that 
maps a word to a class. 
Another technique for training speed-up is to train class-
based LM instead of word-based LM. Class-based models 
use a function that maps every word wi to a class ci: f: wi 
→ f(wi)=ci. At first, probability distribution over classes is 
computed. Then, probability distribution for the words 
that belong to a specific class is computed: 

𝑃(𝑤௧|𝑤௧ିାଵ…𝑤௧ିଵ) = 𝑃(𝑤௧|𝑐௧)𝑃(𝑐௧|𝑐௧ିାଵ…𝑐௧ିଵ) 

There are several methods for word-clustering. The 
simplest one is to cluster the words according to their 
unigram frequencies (Mikolov, 2011). 
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Clustering can be performed basing on the contexts in 
which the words occur. Such method was described in 
(Brown et. al., 1992). In the paper, it was proposed to 
initially assign each word to a distinct class and to 
compute the average mutual information between adjacent 
classes, and then to merge pair of classes for which the 
loss in average mutual information was least. 
Clustering based on Continuous Bag-of-Words (CBOW) 
model (Mikolov et. al., 2013) is carried out by creating 
word embedding vectors and clustering them using K-
means. 
Also for word-clustering rule-based methods can be used. 
For example, in (Enarvi et. al., 2017) clustering was 
performed with the help of a set of rules describing the 
usual reductions and alterations in colloquial words. In 
(Han et. al, 2005) rule-based word clustering was made 
for document metadata extraction. In the paper, the 
clusters were formed from various domain databases and 
the word orthographic properties. 
In (Song et al., 2017) word-clustering was carried out 
basing on part-of-speech (POS) tagging. In the paper, the 
initial word clusters were defined by the word’s tags and 
then the clusters larger than a predefined size were 
randomly broken into smaller ones in order to generate a 
specified number of word classes. 
In our previous research (Kipyatkova, 2019), we have 
trained word-based LSTM LM using TheanoLM toolkit. 
We have obtained relative WER reduction of 22% as 
compared to the result obtained with our 3-gram model. 
Although we have applied hierarchical softmax function, 
training of the model takes several weeks. In the current 
research, we try to train class-based LSTM LM with class 
generation using both word’s frequency and linguistic 
information. 

2. Development of LSTM Language Model 
for Russian 

2.1 Russian Text Corpora and Baseline LM 
Our corpora of Russian texts for training and testing of 
both baseline and LSTM LMs are described in detail in 
(Kipyatkova and Karpov, 2013). The training corpus was 
collected from recent news published in freely available 
Internet sites of four on-line Russian newspapers1. The 
database contains text data that reflect contemporary 
Russian including some spoken language. At first, the 
texts were divided into sentences. Sentences containing 
direct and indirect speech were treated as separate 
sentences. These sentences can be of the following types: 
(1) direct speech is placed after indirect speech; (2) direct 
speech is before indirect speech; (3) indirect speech is 
within direct speech. Then, a text written in any brackets 
was deleted, and sentences consisting of less than six 
words were also removed. Uppercase letters were 
replaced by the lowercase ones, if a word started with an 
uppercase letter. If a whole word was written by the 
uppercase letters, then such change was made, when this 
word was in the dictionary of Russian words (Karpov et. 
al., 2013). The training corpus consists of 350M words 
(2.4 GB data), and it has more that 1M unique word-
forms.  

                                                           
1 www.ng.ru, www.smi.ru, www.lenta.ru, www.gazeta.ru 

The size of the test corpus used for perplexity evaluation 
was 33M words. Text material for test corpus was taken 
from a newspaper2 that was not used for training. 
The vocabulary consists of 150K most frequent word-
forms from the training corpus. As a baseline, we used 
word-based 3-gram model with Kneser-Ney discounting 
created using SRI Language Modeling Toolkit (SRILM) 
(Stolcke et al., 2011). The perplexity of the baseline 
model was 553. 

2.2 Generation of Classes for Class-based LMs 
Russian is a morphologically rich inflective language. 
Words in Russian can inflect for a number of syntactic 
features: case, number, gender, etc. Word-forms in 
Russian are derived by adding single or multiple prefixes, 
suffixes and endings to a stem in accordance with the 
grammatical category of the word (Ryazanova-Clarke and 
Wade, 2002). Thus, information about word’s 
grammatical category can be used for word-clustering. 
In the current research, for word-clustering we used two 
criteria: the frequency of word’s appearance in the 
training text corpus and linguistic information. 
We applied “VisualSynan” software from the AOT 
project (Sokirko, 2004) for obtaining linguistic 
information. As linguistic information we used a 
grammatical tag that codes some grammatical information 
about the word: part-of-speech, gender, case, 
singular/plural number. For example, the grammatical tag 
of the word “актрисе” (“actress”) is bc that means noun 
POS, feminine gender, singular, dative case. In total, we 
obtained 293 different grammatical tags. 
The process of word mapping consisted of two stages.  
1) At the first stage, the frequencies of appearance of 
words in the training text were computed. Each word with 
frequency larger than a certain threshold was mapped to 
its own class. So, for each frequent word an individual 
class was created.  
2) At the second stage, for the rest of words, grammatical 
tags were defined. The words having similar grammatical 
tag were combined in one class. Separate classes were 
assigned for English words (words written in Latin letters) 
and for abbreviations (words written by the uppercase 
letters). 
Two lists of words created at these stages were combined. 
Thus, we obtained the list of words with their classes. We 
tried three values of word’s frequency threshold: 5k, 10k, 
and 35k. Table 1 presents the total number of classes 
(including classes obtained using grammatical classes) for 
these values of threshold. 
 

Threshold of word frequency Total number of classes 

35000 1265 

10000 4134 

5000 7801 

Table 1: The obtained number of classes for several 
threshold of word frequency 

 
In addition, we performed clustering words into classes 
with the help of word2vec3. For comparison, we chose the 
number of classes equal to 4134. 

                                                           
2 www.fontanka.ru 
3 https://github.com/dav/word2vec 
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2.3 LSTM-based Russian Language Models 
At first, we created NN LMs consisting of a projection 
layer, which maps words to specified dimensional 
embeddings, one hidden LSTM layer, and a hierarchical 
softmax layer. NN LM architecture is presented on 
Figure 1, where wt is an input word at time t; ht is the 
hidden layer state, ct is LSTM cell state.  

 
Figure 1: LSTM-based LM architecture. 

 
We created three class-based LSTM LMs with number of 
classes equal to 1265, 4134, 7801 and compared them 
with the word-based LSTM LM described in (Kipyatkova, 
2019) and class-based LSTM LM with classes obtained 
using word2vec. All models had the same parameters of 
LSTMs: the projection layer size was equal to 500, the 
hidden layer size was equal to 512, and Nesterov 
Momentum optimization method was used. These 
parameters gave us the best results in terms of WER in 
our previous experiments. The initial learning rate was 
equal to 1. The stopping criteria was “no-improvement” 
which means that learning rate is halved when validation 
set perplexity stops improving, and training is stopped 
when the perplexity does not improve at all with the 
current learning rate (Enarvi et. al., 2017). The maximum 
number of training epochs was 15. As well, we made a 
linear interpolation of the LSTM LM and the baseline 
LM. 
The results of estimation of the created models are shown 
in Table 2. In the table, PPL means the value of perplexity 
of LSTM LMs (interpolation coefficient equals 1.0). PPL 
of interp. model means the value of perplexity obtained 
after interpolation of LSTM LM with the baseline LM. 
Training time of all models is presented in the table as 
well. Training was performed on Nvidia GeForce GTX 
1080 GPU with CUDA. 
As we can see from the table, the value of perplexity of 
LSTM LM exceeds the perplexity of 3-gram model, 
however the perplexity of interpolated models is lower 
than 3-gram model. Training of class-based LSTM was 
three times faster than word-based LSTM. 
After that, we tried to increase the number of LSTM 
layers and to create a model with one LSTM layer 
followed by a highway network with tanh activation and 
dropout rate of 0.2 after LSTM layer similarly to network 
architecture described in (Enarvi et. al., 2017). Highway 
network was introduced in (Srivastava et. al., 2015). It 
uses gate units, which learn to regulate the flow of 
information through a network. The output (𝑦௧) of the 
highway network with one gate 𝑔(𝑥௧) is defined as 
follows: 

𝑔(𝑥௧) = 𝜎(𝑊ఙ𝑥௧ + 𝑏ఙ) 

𝑦௧ = 𝑔(𝑥௧) ∙ 𝑡𝑎𝑛ℎ(𝑊𝑥௧ + 𝑏) + ൫1 − 𝑔(𝑥௧)൯ ∙ 𝑥௧ 
where 𝑥௧ is an input to the highway layer, W is a wight 
matrix, b is bias, 𝜎 is simoid activation function. 
 

Model Number 
of classes 

Training 
Time, h 

PPL Interp. 
coeff. 

PPL of interp. 
model 

Word-based model 

LSTM - 336 346 0.7 289 

Class-based models 

LSTM 
(word2ve
c classes) 

4134 116 1023 0.3 431 

LSTM 1265 96 1209 0.4 444 

LSTM 4134 100 853 0.5 407 

LSTM 7801 109 717 0.5 386 

LSTM+ 
highway 

4134 106 838 0.5 404 

LSTM 
(2 layers) 

4134 128 828 0.5 399 

BLSTM 4134 150 273 0.7 163 

Table 2: Perplexities of LSTM LMs 
 
The usage of NN with 2 LSTM layers and LSTM 
followed by highway network results only in slight 
decrease of perplexity. 
Also, we created BLSTMs. Perplexity of BLSTM LM is 
much lower comparing to the 3-gram model and 
interpolation of this model with 3-gram LM allowed us to 
obtain additional decreasing of perplexity. In addition, we 
tried to increase the number of BLSTM layers but it 
results in overtraining. 

3. Experiments 

3.1 Speech Recognition Setup 
The open-source Kaldi toolkit (Povey et. al., 2011) was 
used for training the acoustic models and performing 
speech decoding. We used hybrid DNN/HMMs acoustic 
models based on time-delay neural network with 5 hidden 
layers and time context [-8, 8]. Mel-frequency cepstral 
coefficients (MFCCs) were used as input to the NNs. For 
speaker adaptation, 100-dimensional i-Vector (Saon et. 
al., 2013) was appended to the 40-dimensional MFCC 
input. Detail description of our acoustic models is 
presented in (Kipyatkova, 2018). Transcriptions for 
speech recognition vocabulary were generated 
automatically by application of context-dependent and 
independent phonetic transcribing rules (almost 100 rules) 
to the list of word-forms with denoted stress vowel 
(Karpov et. al., 2011; Karpov et. al., 2013). Position of 
stress vowel was defined by dictionary of more than 2.3M 
word-forms with marks of the stressed vowels that was 
composed of two different morphological databases: 
AOT4 and Starling5, and expanded with some more 
frequent words that were absent in these databases 
(generally names, cites, special terms etc.). 
For training the acoustic models, we used three corpora of 
Russian speech recorded at SPIIRAS (Kipyatkova, 2017): 

                                                           
4 www.aot.ru 
5 starling.rinet.ru/morpho.php 

Projection 
layer

LSTM layer

wt

P(wt|wt-1 ,…,w0)

ct-1

ht-1

ct

ht

Hierarchical 
softmax layer

Projection 
layer

LSTM layer

wt+1

P(wt+1|w,wt-1 ,…,w0)

ct+1

ht+1

Hierarchical 
softmax layer

Projection 
layer

LSTM layer

wt-1

P(wt-1|wt-2 ,…,w0)

ct-2

ht-2

Hierarchical 
softmax layer



2473

1) the speech database developed within the framework 
of the EuroNounce project (Jokisch et. al., 2009) that 
consists of recordings of 50 speakers, each of them 
pronounced a set of 327 phonetically rich and meaningful 
phrases and texts; 
2) the corpus consisting of recordings of other 55 native 
Russian speakers; each speaker pronounced 105 phrases: 
50 phrases were taken from the Appendix G to the 
Russian State Standard Р 50840-95 (these phrases were 
different for each speaker), and 55 common phrases were 
taken from a phonetically representative text, presented 
in (Stepanova, 1988); 
3) the audio part of the audio-visual speech corpus 
HAVRUS (Verkhodanova, 2016) that consists of 
recordings of 20 speakers pronouncing 200 phrases: (a) 
130 phrases for training were two phonetically rich texts 
common for all speakers, and (b) 70 phrases for testing 
were different for every speaker: 20 phrases were 
commands for the MIDAS information kiosk (Karpov, 
2009) and 50 phrases were 7-digits telephone numbers 
(connected digits). 
The total duration of the entire speech data is more than 
30 hours. 
To test the system, we used another speech dataset 
consisting of 500 phrases with the length from 6 to 20 
words pronounced by 5 speakers. The phrases were taken 
from the materials of a Russian on-line newspaper that 
was not presented in the training speech and text data. 
The speech data were collected in clean acoustic 
conditions, with 16kHz sampling rate, 16-bit audio 
quality. A signal-to-noise ratio (SNR) at least 35-40 dB 
was provided. The speech data were recorded with 
44.1 KHz sampling rate (for ASR downsampled to 16 
KHz), 16 bits per sample, SNR was 35dB at least, by a 
stereo pair of Oktava MK-012 stationary microphones 
(close talking ≈20 cm and far-field ≈100 cm microphone 
setup) connected to PC via Presonus Firepod sound board. 

3.2 Experimental Results on Russian Speech 
Recognition 

LSTM-based LM was applied for rescoring of 500-best 
list of hypotheses and for selection of the best recognition 
hypothesis for the pronounced phrase. Interpolated LMs 
were used for rescoring as well. Obtained speech 
recognition results are presented in Table 3. WER 
obtained with our baseline 3-gram model was equal to 
17.62% (Kipyatkova, 2017). The out-of-vocabulary rate 
for the test set was 1.1%. 
As we can see from the table, application of class-based 
LSTM models solely did not lead to any improvement of 
speech recognition results. However, after interpolation of 
LSTM LM with the baseline LM we have obtained 
reduction of WER. Application of LSTM LM with classes 
generated using linguistic information results in lower 
WER that LSTM LM with classes created with help of 
word2vec. Increasing the number of classes expectedly 
improves speech recognition results. However, if we 
compare LSTM models interpolated with the baseline 
model we can see that whereas increasing the number of 
classes from 1265 to 4134 decreased WER on 1%, 
difference in WER obtained using interpolated models 
with 4134 and 7801 classes was small. 
 

Model Number of 
classes 

WER, % Interp. 
coeff. 

WER of interp. 
model, % 

Word-based model 

LSTM - 14.55 0.7 14.01 

Class-based models 

LSTM 
(word2vec 

classes) 

4134 21.24 0.3 16.82 

LSTM 1265 19.31 0.3 16.67 

LSTM 4134 18.33 0.4 15.71 

LSTM 7801 17.38 0.5 15.51 

LSTM 
(2 layers) 

4134 18.05 0.5 15.62 

LSTM+ 
highway 

4134 17.85 0.5 15.79 

BLSTM 4134 17.32 0.4 14.94 

Table 3: WER obtained after 500-best list rescoring (%) 
 
The usage of class-based LM results in higher WER than 
usage of word-based LSTM but training of class-based 
LSTM took much less time than word-based LSTM. 
Increasing the number of layers does not result in 
significant decreasing of WER. The lowest WER 
(14.94%) was obtained using BLSTM LM interpolated 
with 3-gram LM with interpolation coefficient equal to 
0.4. 

4. Conclusions 

In the paper, we have investigated class-based LSTM 
LMs for Russian speech recognition. We have 
implemented class generation using both word frequency 
and linguistic information. Application of class-based 
LSTM LM interpolated with 3-gram LM results in 
significant improvement in training time comparing to the 
word-based LM. We have also performed experiments 
with LSTM followed by highway network and BLSTM. 
Finally, we have achieved 15% relative reduction of WER 
using BLSTM LM with respect to the baseline 3-gram 
model. 
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