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Abstract
Extending machine reading approaches to extract mathematical concepts and their descriptions is useful for a variety of tasks, ranging
from mathematical information retrieval to increasing accessibility of scientific documents for the visually impaired. This entails
segmenting mathematical formulae into identifiers and linking them to their natural language descriptions. We propose a rule-based
approach for this task, which extracts LATEX representations of formula identifiers and links them to their in-text descriptions, given
only the original PDF and the location of the formula of interest. We also present a novel evaluation dataset for this task, as well
as the tool used to create it. The data and the source code are open source and are available at https://osf.io/bdxmr/ and
https://github.com/ml4ai/automates, respectively.
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1. Introduction
Automatic reading of scientific literature has received atten-
tion due to the proliferation of publications, as well as the
importance of their content. A crucial aspect of understand-
ing scientific publications is understanding the mathemat-
ical formulae expressed in those publications, since they
provide an explicit, concise representation of the key rela-
tions between the relevant concepts (Schubotz et al., 2018).
Extending machine reading to extract relations from math-
ematical formulae requires reading the formulae into inter-
nal representations, segmenting them into their component
terms, and linking the terms to their textual descriptions.
The proposed work stands to impact many different tasks
that rely on understanding scientific content, including
math information retrieval (Schubotz et al., 2016; Kris-
tianto et al., 2017), scientific keyphrase and relation extrac-
tion (Sterckx et al., 2016; Augenstein and Søgaard, 2017;
Marsi and Öztürk, 2015), mathematical formula format
conversion (Schubotz et al., 2018), and even accessibility
efforts to make written content available to the visually im-
paired (Pontelli et al., 2009; Alajarmeh and Pontelli, 2015).
Beyond these tasks, there have also been recent efforts to
apply machine reading to automatically analyze, ground,
and compare executable models (Pyarelal et al., 2019). For
this task, formulae found in papers describing these models
can illuminate important semantics of how model variables
interact with each other.
Specifically, given a formula such as the one shown in Fig-
ure 1 (Details of the annotation tool interface depicted in
Figure 1 will be described below in Section 5.3.), there
are several mathematical identifiers including simple iden-
tifiers (i.e., xi), compound identifiers (θij(xi, xj)) and even
subscripts (i). Each of these identifiers is referred to in the
text, where the author expresses what they represent. Our
goal is to find these identifiers in the equation and link them
to their in-text descriptions.
Further, for several reasons, we argue that approaches to

this task should ideally rely only on the text of the paper
describing the formula. First, it is less expensive, as hu-
man annotation for this task is time-consuming, requiring
training and great attention to detail. Second, not all do-
mains have readily available comprehensive ontologies of
mathematical identifiers and variables to refer to, and us-
age of specific identifiers varies widely across disciplinary
subdomains and authors. Even when these resources do ex-
ist, segmenting the formulae and considering the in-context
descriptions is a necessary step prior to any grounding to
existing ontologies. Finally - and perhaps most importantly
- authors of scientific papers usually describe the formula
identifiers at the specific level of detail most relevant to the
discussion at hand.
Here we propose an approach for the automated segmenta-
tion of a given formula and the linking of the segmented
identifiers to in-text natural language descriptions, given
only the original PDF and the location of the formula of
interest. In particular, our main contributions are:

1. An approach to scientific information extraction that
extracts mathematical identifiers from formulae and
links them to their descriptions in surrounding text.
Importantly, our approach operates over papers in PDF
format, assuming only that the location of the for-
mula of interest is provided. Our rule-based approach
for extracting identifier descriptions is readily inter-
pretable, maintainable, and domain-agnostic.

2. A development and evaluation dataset for empirically
evaluating approaches to mathematical information
extraction. For each identifier in a given formula, we
annotate their in-text mentions, descriptions, and units
in the surrounding context from the scientific paper.
We provide a detailed description of the annotation
protocol and an analysis of the annotation quality and
consistency for this complex annotation task. Addi-
tionally, for each annotated identifier, we retrieve the

https://osf.io/bdxmr/
https://github.com/ml4ai/automates
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Figure 1: Snapshot of the our annotation tool, PDFAlign, currently part way through annotation the first mathematical for-
mula of arXiv paper 1801.00269. Details of the annotation schema are provided in Section 5., and details of the annotation
tool itself are in Section 5.3..

sequence of the original LATEX tokens that produced
it, facilitating future approaches that use LATEX as an
intermediate representation.

3. An open-source annotation tool for mathematical in-
formation extraction from PDFs. Our proposed tool
can annotate at both token and glyph level, allowing
for both speed and precision. While this tool can be
immediately used to annotate additional formulae, it
is also designed to be extensible, so that it may be
adapted to annotate PDFs for other mathematical or
textual relations within a particular domain of interest.
The tool, along with all of the code and data necessary
to replicate the proposed work, is freely available.1

2. Related Work
Approaches to information extraction (IE) tend to fall into
one of two broad categories - approaches based on machine
learning (ML) and approaches based on rules. While ML-
based approaches are currently favored in academia (e.g.
(Zeng et al., 2015; Nguyen and Grishman, 2015; Jat et al.,
2018)), rule-based approaches (Appelt et al., 1993; Cun-
ningham et al., 2002; Chang and Manning, 2014; Kluegl
et al., 2016) are well received in industry because of their
interpretability and consequent maintainability (Chiticariu
et al., 2013). Furthermore, rule-based approaches do not
have the high data requirements of ML, making them a
good fit for our purposes. For these reasons, we propose
a rule-based approach to mathematical relation extraction
(Section 4.).
Specifically relevant to our approach, several systems have
been proposed for extracting natural language descriptions
of mathematical expressions from free text. Quoc et al.
(2010) use pattern matching for this purpose, and their goal
of mining coreference relations between mathematical for-
mulae and their descriptions is similar to what we refer to

1https://github.com/ml4ai/automates

as linking here. However, they only consider concepts that
describe the entire formula itself, whereas we are largely
concerned with segmenting the formula to enable the ex-
traction of the descriptions of individual identifiers. Sim-
ilar to what we propose here, Yokoi et al. (2011) use a
combination of pattern matching and machine learning to
extract mathematical mentions (these correspond to math-
ematical identifiers in our paper) and their descriptions.
However, unlike what we propose here, they do not link
them to formulae that have these mentions as components.
This, along with the fact that they work on scientific pub-
lications in Japanese, makes their dataset impossible for us
to use in the evaluation of our system. Kristianto et al.
(2014) also use an ML-based approach to extract mathe-
matical identifiers and their descriptions, including descrip-
tions that go beyond a single noun phrase, and account for
multiple and discontinuous descriptions. However, the ex-
tracted mathematical expressions were not segmented, and
the expression-description pairs were not linked to any for-
mulae, while with our system and our dataset, we attempt
to do that.
Closely related to our approach, Schubotz et al. (2016)
propose a method for extracting identifiers from formulae
and linking them to descriptions. Further, they provide a
gold set of annotations of individual mathematical identi-
fiers from formulae and their corresponding descriptions.
However, we are unable to use this dataset for our evalu-
ation because they include gold descriptions from a vari-
ety of sources, including the context of the paper as well
as external expert annotations and web resources. While
this is useful information, it is not well-aligned with our
goal (i.e., a system which can associate mathematical iden-
tifiers with their author-provided descriptions). Further,
they limit their identifiers to a single variable which may
have one or more subscripts, and their descriptions to noun-
(preposition)-noun or adjective-noun noun phrases. In our
work, we relax these constraints, allowing composite ex-

https://github.com/ml4ai/automates
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pressions to serve as identifiers, deferring to the authors’
provided in-text descriptions, and allowing for more com-
plex descriptions (see Section 5.). All of these systems rely
on the formulae having been previously identified, as do
we.

3. Approach
In order to parse formulae found in scientific papers into
their component identifiers and subsequently link these
identifiers to their textual descriptions in the papers, we
propose the three-stage approach shown in Figure 2. First,
given a PDF of a scientific paper and the location within the
paper of an formula of interest, we parse the formula im-
age into a LATEX intermediate representation (Section 4.1.).
LATEX is an ideal intermediate representation for formulae
as it is machine-readable and also preserves the formatting
(e.g., bold, italics, super and subscript) which is semanti-
cally meaningful for mathematical expressions. Another
advantage of using LATEX is that it allows us to leverage
arXiv2, a preprint repository that contains a vast number of
freely available scientific papers from multiple fields along
with with their LATEX source code, making machine learn-
ing approaches feasible.
Next, we use our rule-based information extraction system,
Odin (Valenzuela-Escárcega et al., 2016), to find and ex-
tract in-text mentions of mathematical identifiers and their
descriptions (Section 4.2.).
Once we have the LATEX representation of the image and the
extracted text identifier mentions, we segment the formula
tokens into the relevant chunks (i.e., individual identifiers
and semantically meaningful compositions) and align them
to the text extractions. In order to evaluate the quality of
our extractions and alignments, we propose a new dataset,
MathAlign-Eval, which consists of mathematical formula
identifiers, their in-text mentions, and any natural language
descriptions and/or units present in a three paragraph con-
text. This dataset is described in detail in Section 5..

4. Models
4.1. Formula Extraction
To convert our formula images to LATEX, we use the
im2markup model of Deng et al. (2017), who frame the
task as a sequence-to-sequence task where the source se-
quence comes from the image of the equation and the des-
tination sequence is the LATEX tokens that produce it. A
high-quality implementation of this model is provided in
the OpenNMT toolkit (Klein et al., 2017). Specifically, the
model consists of a convolutional neural network followed
by a row encoder to encode the image into a representa-
tion that can be used as input for an attention-based neural
decoder. The pre-trained im2markup model is freely avail-
able,3 but was trained on data from only the high-energy
physics domain (Gehrke et al., 2003) and only on images
generated with a specific formatting. We found that this
model was unable to generalize to the images we generated
from arXiv across many domains. Therefore, we retrained
the OpenNMT implementation of the model on an order of

2https://arxiv.org
3https://github.com/harvardnlp/im2markup

magnitude more images from diverse domains and also ap-
plied data augmentation to help the model be more robust
to different image resolutions. Specifically, for each of our
training images we generated a second version with either
blurring, downsampling, and some morphological opera-
tions, with parameters randomly sampled from a specified
distribution. This resulted in a total of 1,716,833 images for
training and 214,690 images for validation.4

4.2. Extracting Identifier Descriptions
As discussed in Section 2., since we do not have suffi-
cient labeled data to both train and evaluate a system for
extracting formulae identifiers and their descriptions from
unstructured text, we focus on approaches that do not re-
quire direct supervision. Specifically, we propose a rule-
based information extraction (IE) system that uses an Odin
grammar (Valenzuela-Escárcega et al., 2016). Odin is an
information extraction framework that includes a declar-
ative language supporting both surface and syntactic pat-
terns along with a runtime system. Our system is based on
Eidos (Sharp et al., 2019), an open-domain causal IE sys-
tem. Unlike in a typical bottom-up IE system, where the
first step involves finding entities, followed by identifying
events that operate over the entities, Eidos was designed so
as to not be limited to a fixed set of concepts (i.e., enti-
ties and events) to make it domain agnostic. Here we use a
hybrid approach. For our extraction of mathematical iden-
tifiers and their descriptions, we do not limit ourselves to
a fixed set of identifiers so that our approach is similarly
domain agnostic. However, we do attempt to identify them
whenever possible using a set of nine rules.Then we have
two rules that are designed to extract descriptions of these
previously found identifiers. However, we also use a set of
six rules that do not rely on previously found identifiers.
For these top-down rules, we first find trigger words signal-
ing a Description relation, and then look for the concepts
that participate in the relation (i.e., the identifier and the
description itself). Similar to Eidos, we also expand our
initial descriptions using certain outgoing dependencies to
capture content that extends beyond a single noun phrase
(see Figure 3). Notably, our approach was developed on
crop modeling papers for the DARPA ASKE program5, but
in an effort to not overfit to the task, the rules were not ad-
justed or tuned for our new dataset.

5. Dataset
We present a development and evaluation dataset6 for eval-
uating automatic reading of formulae in scientific publica-
tions, as well as the open-source annotation tool that we
developed for its creation.
For each formula, we annotate all the discernible mathe-
matical identifiers inside the formula along with the associ-
ated in-text instances, descriptions, and units of measure if
present. Specifically, we annotate identifier frames, where

4To prevent overfitting, we exclude all images from papers
that were present in the set of annotation candidates for our
MathAlign-Eval dataset, Section 5..

5https://www.darpa.mil/program/
automating-scientific-knowledge-extraction

6https://osf.io/bdxmr/

https://arxiv.org
https://github.com/harvardnlp/im2markup
https://www.darpa.mil/program/automating-scientific-knowledge-extraction
https://www.darpa.mil/program/automating-scientific-knowledge-extraction
https://osf.io/bdxmr/
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Figure 2: Architecture of our approach. Given a scientific paper in PDF format, we process it in two ways. First, we extract
the images of the formulae and convert them to LATEX, a machine-readable intermediate representation. Then, we extract
mentions of mathematical identifiers and their descriptions from the text in the PDF using a rule-based system built upon
the Odin information extraction framework (Valenzuela-Escárcega et al., 2016). We then segment the LATEX and align the
component identifiers in the segments to their extracted textual descriptions.

Figure 3: An example of how expanding an initial descrip-
tion along syntactic dependencies (here, acl, advcl if

and dobj, shown in red) can help capture crucial additional
information about the identifier.

each frame contains four properties as they are expressed in
a formula and text: (1) in-formula mentions of the identifier
(for example, θi(xi) in the formula shown in Figure 1), (2)
in-text mentions of the identifier, (3) natural language de-
scriptions (e.g., unary potential), and (4) units of measure-
ment. Each of these properties, in turn, has associated with
it a set of zero or more mentions, where a given mention
does not need to be contiguous. For example, in the de-
scription text, where L and V are characteristic length and
velocity scales for the system7, the description of L is the
non-contiguous mention, characteristic length . . . scales
for the system. A single annotation frame constitutes the
relation between these four elements for a single identifier.
There is always a value for (1), but the others may be ab-
sent, depending on the formula and the context.
In an attempt to overcome the limitations discussed in
Schubotz et al. (2016), in addition to annotating identifiers
consisting of one variable with a subscript, we also anno-
tate multi-variable identifiers, identifiers containing super-
scripts, and identifiers that are only present in the sub- or
superscripts. While we annotate every single-variable iden-
tifier, for the more complicated cases (e.g., compound iden-
tifiers such as θij(xi, xj)), we only annotate identifiers that
are explicitly mentioned or described in text. Similar to
Kristianto et al. (2014), we distinguish between mathemat-
ical descriptions and other mathematical text, e.g., proper-
ties, and only include as descriptions the spans of text that
provide definitions of identifiers (referred to as definiens in
Schubotz et al. (2016)); and allow for multiple and discon-
tinuous descriptions.

7Example taken from arXiv paper 1808.08122.

In addition to providing the string values of every compo-
nent annotated, we provide the information on the location
of each component in the original PDF, including the page
number and the bounding boxes of the glyphs. Further, we
provide the approximate location of each annotation ele-
ment within the original LATEX source, along with the orig-
inal LATEX expression for the annotated identifiers.8

With all the identifiers in each formula annotated, regard-
less of whether or not their descriptions are present in the
surrounding text, we hope that this dataset can be used
to evaluate text reading, formula segmentation, and text-
formula linking systems.

5.1. Data Source

We curated our dataset from open-sourced papers on arXiv,
due to its richness in text-formula alignment data. After re-
trieving all papers submitted in 2018 and their respective
arXiv metadata, we parsed the LaTeX files to search for
formula environments (e.g., equation, align, gather) to ag-
gregate a list of formulae from each paper.

To reduce the annotation burden and to ensure that as many
of the formula descriptions as possible can be found within
their respective contexts, we carefully selected formulae by
filtering papers on formula and context statistics, where we
define the context as the three paragraphs before and after
the formula. Specifically, we excluded all formulae from
papers that contained more than 5 formulae, and also those
whose contexts contained an insufficient amount of natural
language content (or too many in-text mathematical expres-
sions). That is, we eliminated expressions whose context
had more than 50 characters contained within math envi-
ronments. These would be both overly difficult to anno-
tate fully and less useful for our goal of evaluating links
between identifiers and their textual descriptions. Further-
more, we considered only formulae with 200 or fewer LATEX
tokens, to prevent annotating overly complicated formulae

8A notable exception is that if there were author-defined
macros in the original LATEX expression, we provide the expanded
version in the dataset, i.e., the version that compiles in isolation.
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Count

Total number of papers 116
Total number of formulae 145
Total number of identifiers 757
Number of identifiers with descriptions 584

Min Max Avg

Number of identifiers per formula 2 15 5.2
Number of formula mentions per identifier 1 7 1.5
Number of tokens per description 1 21 4.0

Table 1: Statistics for our MathAlign-Eval dataset. We
show the overall number of formulae and identifiers in the
dataset as well as the total number of papers represented.
Also shown are the distribution statistics for the formulae,
identifiers, and descriptions in the dataset.

arXiv Domain Paper Count Formula Count

cs 42 50
econ 2 4
physics:astro-ph 24 33
physics:cond-mat 20 23
physics:hep-ex 2 2
physics:hep-ph 3 4
physics:physics 10 13
physics:quant-ph 4 5
physics:nlin 1 1
physics:nucl-ex 1 1
physics:nucl-th 2 2
q-bio 2 3
stat 3 4

Table 2: Domain statistics for our MathAlign-Eval dataset.
We show the breakdown of the number of papers and for-
mulae per arXiv domain.

and identifiers. 9

Once we had selected a set of mathematical formulae to an-
notate, we gathered the formula content and rendered it in
isolation to generate an image of the formula. Then, we
used OpenCV’s template matching10 to locate the page and
bounding box for the formula in the original PDF. This pro-
cess gives us (a) the gold sequence of latex tokens, (b) the
position of the formulae in the paper, and (c) the cropped
image of each formula.

5.2. Dataset Statistics and Analysis
Following a three month process of developing the annota-
tion guidelines, the annotations were completed over the
course of a month by a group of researchers, including

9In rare cases, we note that some papers in our dataset have
superficially passed the filtering criteria due to the use of rare key-
words to generate LaTeX formula environments. In such cases,
we asked annotators to disregard overly complicated or long for-
mulae.

10https://docs.opencv.org/2.4.13.7/doc/
tutorials/imgproc/histograms/template_
matching/template_matching.html

graduate students and senior researchers. The process of
creating the guidelines included three rounds of small scale
annotation (two annotators each round) and discussions of
the results based on qualitative assessment of annotations
produced in each round. This process allowed us to decide
on the information to be annotated, improve the compre-
hensibility and establish the scope of the annotation guide-
lines, and make key decisions about the features to include
in the annotation tool. During the annotation exercise, the
annotators completed both the segmentation task and the
linking task jointly, as opposed to first doing the segmenta-
tion and later the linking. The decision to follow this pro-
cedure was based on the fact that for our task, segmentation
is largely dependent on linking—multi-variable identifiers
and identifiers in the subscripts and superscipts are only an-
notated if they have associated in-text descriptions.

The statistics for the dataset, including the total number
of formulae and identifiers included, are given in Table 1.
Fifty-seven of the annotated formulae were double anno-
tated in order to calculate inter-annotator agreement; how-
ever six formulae were excluded from the dataset because
they were not suitable for the task. The remaining 51 dou-
ble annotated formulae comprise the development set for
the pipeline proposed in the paper. The test partition has an
additional 94 annotated formulae.

The domain representation statistics for the entire dataset
are provided in Table 2. Our dataset is comprised of 145
equations from 116 papers: 92 papers contributing 1 equa-
tion each, 19 papers contributing 2, and 5 papers contribut-
ing 3. While the dataset is strongly represented by the dis-
ciplines of computer science, astrophysics, and condensed
matter physics, the dataset spans 13 unique arXiv domains.
Of these 13 domains, 9 are physics subfields and the re-
maining 4 domains include computer science, economics,
quantitative biology, and statistics.

To evaluate the quality of the dataset, we calculated the
inter-annotator agreement score for a subset of the anno-
tations. To the best of our knowledge, there is no estab-
lished procedure for evaluating the type of data produced
for this task. However, since for every distinct formula
identifier we produce a set of associated components, which
could include additional instances of the identifier within
the formula as well as the associated in-text instances, de-
scriptions, and units, our task appears to be most similar
to coreference annotation. Passonneau (2004) provides a
flexible framework for adapting Krippendorff’s alpha relia-
bility score for coreference annotation in a way that allows
for an evaluation that takes into account the severity of er-
rors. We follow the procedure similar to that in Passonneau
(2004), with the formula identifier being the unit coded and
the rest of the components together with the coded unit
making up an equivalence class. Since under our approach
it is possible for formula identifiers to overlap, we do not
allow for lenient evaluation of formula identifiers, that is,
the coded units have to match exactly, while for the other
components, evaluation is lenient. The code for calculating
inter-annotator reliability score was adapted from an exist-

https://docs.opencv.org/2.4.13.7/doc/tutorials/imgproc/histograms/template_matching/template_matching.html
https://docs.opencv.org/2.4.13.7/doc/tutorials/imgproc/histograms/template_matching/template_matching.html
https://docs.opencv.org/2.4.13.7/doc/tutorials/imgproc/histograms/template_matching/template_matching.html
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ing Python implementation of Krippendorff’s alpha 11.
While the scores for half of the annotated formulae were
over the threshold established for this inter-annotator re-
liability measure (0.67, Passonneau (2004)), a number of
annotated formulae had a much lower score bringing the
overall score for 57 equations down to 0.59. An error anal-
ysis uncovered the following recurring issues: (1) misuse
of the annotation tool, (2) annotating subscripts as sepa-
rate identifiers without them being defined in text, and (3)
inconsistent annotation of cases that did not occur in the
data used to develop the guidelines (e.g., the use of natural
language as identifiers within the formula). Based on the
error analysis, we manually checked the single-annotated
formulae for these recurrent errors to ensure the quality
of the gold dataset; also, we have updated the annotation
guidelines in light of these recurring errors in hopes of bet-
ter informing future annotators. Another major source of
disagreement was the difficulty of establishing equivalence
between formula identifiers and in-text identifiers. While
the original guidelines instructed annotators to link formula
identifiers to descriptions only if the intermediate in-text
identifier was exactly identical (aside from the presence or
absence of an index in a time-series), based on seeing more
data, we found that we cannot always abide by this heuris-
tic. In these cases, annotators had to make a judgment call
based on the context provided, and these calls were not al-
ways equivalent between annotators.

5.3. PDF Annotation Tool
While we first tried to use brat (Stenetorp et al., 2012) to
annotate our data, we found that there were a large number
of links that spanned several lines, even paragraphs, and
the LATEX source formulas were hard for annotators to seg-
ment. As a result, the annotation process was cumbersome,
and it was difficult to ensure coverage of all identifiers. For
this reason, to better facilitate the human annotation needed
for our purposes, we developed an open-source tool that
makes use of the original LATEX source for the paper as well
as the glyph-level bounding boxes. For the user’s conve-
nience, the annotation is done directly on the PDF file, and
the annotations are propagated to the LATEX source. To pre-
pare the PDF to be annotated, the tool first uses poppler12

to render the pages of the PDF into images. It then uses
pdfminer13 to find the bounding box of each glyph in the
document, which we combine with a set of heuristics, e.g.,
split at spaces, to generate token bounding boxes. We then
use SyncTeX (Laurens, 2008) to align each bounding box
to the corresponding line in the original LATEX source.
A challenge with using SyncTeX is that it only gives the
line number for the LATEX, and may return the line of the
formula itself or the line where the formula’s environment
is ended, but here we are interested in knowing the ex-
act portion of the LATEX which corresponds to a particu-
lar formula identifier. Therefore, in order to find the se-
quence of LATEX tokens corresponding to each identifier,
we implemented a LATEX tokenizer based on the descrip-

11https://github.com/grrrr/
krippendorff-alpha

12https://poppler.freedesktop.org
13https://github.com/pdfminer/pdfminer.six

tion of Eijkhout (1991), and used this to tokenize the for-
mula. We then generated all valid subsequences of these
tokens and used colorization to select the subsequence that
best matched the manually annotated bounding boxes cor-
responding to the identifier. This is done by calculating
the precision and recall of the colorized pixels with respect
to the gold bounding box (i.e., how many of the colorized
pixels were inside the bounding box versus outside, and
how many of the foreground pixels inside the bounding box
were colorized). The selected subsequence of LATEX tokens
was the one which maximized the corresponding F1 score.
We obtain the text representation of each of our mentions
directly from the PDF being annotated. Each glyph inside
a PDF can have an extraction value associated with it, i.e.,
the unicode representation of the glyph. For example, with
ligatures the character sequence “fi” may be rendered as a
single glyph but the extraction value (used for search and
copying content) is fi. These extraction values are typi-
cally included in the PDF as a character mapping table, or
CMap.14 However, PDFs generated with LATEX do not in-
clude these values for all fonts (particularly relevant for us,
for certain math fonts). Therefore, in order to have access
to the text content of the annotated glyph-level bounding
boxes, we gathered the mappings from glyph name to uni-
code sequence for several of the font families most com-
monly used for math expressions. We then used this map-
ping to extend the internal lookup table used by pdfminer15

so that it has access to the correct unicode value.
The tool is open source and available as a stand-alone ap-
plication.16

6. Experiments and Results
In order to evaluate our segmentation and linking approach,
we compare our extracted formula identifiers, and any de-
scriptions they have, with the gold set. In particular, we
compare the unicode value of the annotated bounding boxes
with the unicode value of our identifier LATEX and the de-
scriptions. To get a unicode value for the LATEX predicted
by our approach, we first tokenized it with our LATEX tok-
enizer. Then, we use a set of heuristics to produce a canon-
ical version of the identifier. Next, we replace some LATEX
control sequences with their corresponding unicode char-
acter, using a manually built lookup table that is meant to
contain most math symbols and Greek letters. Finally, we
remove elements that provide layout information, but not
content (as these are not represented in the unicode).
As our task is substantially different from any we were able
to find in previous work (see Section 2.), we are unable to
compare against other datasets and approaches. However,
as our approach is the first for this dataset, we anticipate
future comparisons.
We consider three levels of evaluation: strict, lenient, and
soft. For the strict evaluation, when comparing predicted

14https://www.adobe.com/content/dam/acom/
en/devnet/acrobat/pdfs/pdf_reference_1-7.
pdf

15Our fork with this modification is available at https://
github.com/ml4ai/pdfminer.six.

16https://github.com/ml4ai/automates/tree/
master/pdfalign

https://github.com/grrrr/krippendorff-alpha
https://github.com/grrrr/krippendorff-alpha
https://poppler.freedesktop.org
https://github.com/pdfminer/pdfminer.six
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
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Eval Level Precision Recall F1

Segmentation and Full Description

Strict 0.17 0.23 0.19
Lenient 0.22 0.30 0.26
Soft 0.23 0.32 0.27

Segmentation and Description without Expansion

Strict 0.16 0.22 0.18
Lenient 0.22 0.31 0.26
Soft 0.23 0.32 0.27

Segmentation Only

Strict 0.56 0.68 0.62
Lenient 0.60 0.74 0.66

Table 3: Results of our approach on the tasks of segmenting
a mathematical formula and linking the segmented identi-
fiers to in-text descriptions. We provide the precision, re-
call, and F1 score using three different evaluation levels:
strict, which requires exact string match of both identifier
and description; lenient, which allows for certain specific
forms of subsumption; and soft, which allows descriptions
which overlap. We show results for our full system, the sys-
tem without expanding the extracted text decriptions (see
Section 4.2.), and also the segmentation only.

and gold identifiers and descriptions, we consider it a match
if there is an exact string match for one of the identifier
mentions and one of the description mentions, where a spe-
cial token is used to denote the lack of any description for
the identifier. With this level of evaluation, any extra word
in a description results in a failure to match. We addition-
ally include a lenient evaluation. This is similar to the strict
evaluation, except that we (a) allow identifiers correspond-
ing to functions (e.g., f(x,y)) to match with only the func-
tion “name” (here, f) and (b) allow descriptions to match
if one is fully subsumed within the other. Finally, similar
to Kristianto et al. (2014), we also include a soft matching,
which extends the lenient description matching to also in-
clude overlapping descriptions. For this, we find the longest
common substring and ensure that it contains words that are
not stopwords (to avoid counting matches whose substring
is simply the, etc.).
As we hope that the proposed dataset can additionally be
used to evaluate the task of formula segmentation, we also
provide the performance of our approach in only the seg-
mentation task, i.e., ignoring the descriptions. We report
the results of our approach, with both the full task as well as
the segmentation only task, using all three evaluation levels
in Table 3.
The task of segmenting the formula is simpler than the
compound task of both segmenting and linking, and un-
surprisingly the results reflect this difference. The perfor-
mance of our approach on the segmentation task (0.62 F1
for strict and 0.66 for lenient) is much higher than for the
full task (F1 scores from 0.19 to 0.27). Also unsurprisingly,
the lenient and soft scores are much higher than the strict
(0.26 and 0.27 versus 0.19). Notably, the soft measure is

Figure 4: An example of in-text identifiers (n, ad, and hd)
and their descriptions appearing in a coordinate construc-
tion, i.e., there are other identifiers present between the tar-
get identifier (e.g., n) and its description (the number of
time slots for the multicast). Example taken from arXiv pa-
per 1801.00110.

not much higher than the lenient (0.27 versus 0.26, respec-
tively), though it is far less restrictive. This suggests that
when the system is able to locate the general location of
the description of an identifier, but doesn’t extract the ex-
act span annotated, the missing or extra information is on
the edges of the extracted description (e.g., as with an addi-
tional clause).
Some previous work has limited the descriptions to single
noun phrases (Schubotz et al., 2016), while others have al-
lowed for larger text spans (Kristianto et al., 2014). We
find that our choice to allow for expansion of descrip-
tions along syntactic dependencies (such as certain prepo-
sitional phrases) does not adversely affect the performance.
The fact that removing the expansion does not noticeably
raise or lower performance suggests that there are descrip-
tions of both types (i.e., of simple noun phrases as well
as longer clauses), and ideally a future system would find
these longer phrases, but only when necessary.
Though a direct comparison is not possible, we note that
our performance is lower than that of Kristianto et al.
(2014); however, their task is limited to linking descriptions
to mathematical identifiers in the same sentence, while we
must find descriptions of identifiers in a much larger, three
paragraph context (see Section 5.). That said, the gains they
see in their task when using a machine learning approach,
as compared with pattern-based approaches, motivate gath-
ering a much larger set of annotations to facilitate super-
vised training, which we defer to future work.

6.1. Error Analysis and Future Work
We conducted a lightweight manual error analysis on the
entire development dataset, which uncovered several future
directions of improving the proposed pipeline. In several
cases, the false negative was the result of the formula iden-
tifier and its in-text equivalent not being exactly identical,
but differing in terms of presence or absence of subscripts.
The outstanding issue that has to do with this class of errors
is the difficulty for non-experts to establish equivalency be-
tween identifiers in scientific publications, which was also
referenced in section 5.2.; the issue will require further
analysis and a more sophisticated procedure for matching
formula identifiers with their in-text counterparts. A ma-
jor source of false negatives, which will also need to be
addressed in the future, was the fact that many in-text iden-
tifiers and their descriptions appear in coordinate construc-
tions (see Figure 4). This construction is quite common,
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and our current rule-based approach is unable to handle it.
We also found that in several cases, what was counted as a
false positive due to the extracted description not matching
the gold data was in fact a true positive; however, the de-
scription for the identifier was extracted from a portion of
the paper outside of the annotation window. This could be
addressed by allowing annotators to annotate descriptions
throughout the paper.
In addition to the future directions discussed above, we
see the value in applying machine learning techniques to
this task. In order to support supervised machine learn-
ing approaches, we envision gathering training data through
a large-scale annotation exercise, enabled by a web-based
version of the annotation tool, which is currently under de-
velopment.

7. Conclusions
Here we have presented an approach to the joint tasks of
segmenting mathematical formulae into their component
identifiers and linking these identifiers to natural language
descriptions. Specifically, given only a PDF document and
the location of the formula of interest, we are able to convert
the image of the formula into an intermediate LATEX rep-
resentation, which we segment and link to identifiers and
descriptions extracted from the text of the PDF. Our rule-
based approach is interpretable and extendable, allowing
for modifications for future use on new segmentation and
linking tasks. For evaluating our approach, as well as facil-
itating future work on this task, we provide an evaluation
dataset, MathAlign-Eval, which consists of over 700 iden-
tifiers and their descriptions, as well as the original span of
LATEX used to generate the identifier. Further, we provide
our annotation tool, PDFAlign, to enable extension of the
dataset, and all of our code, data, and resources are open-
source and readily available.
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