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Abstract
We introduce the STEM (Science, Technology, Engineering, and Medicine) Dataset for Scientific Entity Extraction, Classification,
and Resolution, version 1.0 (STEM-ECR v1.0). The STEM-ECR v1.0 dataset has been developed to provide a benchmark for the
evaluation of scientific entity extraction, classification, and resolution tasks in a domain-independent fashion. It comprises abstracts in
10 STEM disciplines that were found to be the most prolific ones on a major publishing platform. We describe the creation of such a
multidisciplinary corpus and highlight the obtained findings in terms of the following features: 1) a generic conceptual formalism for
scientific entities in a multidisciplinary scientific context; 2) the feasibility of the domain-independent human annotation of scientific
entities under such a generic formalism; 3) a performance benchmark obtainable for automatic extraction of multidisciplinary scientific
entities using BERT-based neural models; 4) a delineated 3-step entity resolution procedure for human annotation of the scientific
entities via encyclopedic entity linking and lexicographic word sense disambiguation; and 5) human evaluations of Babelfy returned
encyclopedic links and lexicographic senses for our entities. Our findings cumulatively indicate that human annotation and automatic
learning of multidisciplinary scientific concepts as well as their semantic disambiguation in a wide-ranging setting as STEM is reasonable.

Keywords: Entity Recognition, Entity Classification, Entity Resolution, Entity Linking, Word Sense Disambiguation, Evaluation
Corpus, Language Resource

1. Introduction

Recently, an increasing number of research efforts are
geared toward adopting Knowledge Graphs (KG) for mod-
eling scholarly publications (Ammar et al., 2018; Jaradeh
et al., 2019). They advocate for such advanced seman-
tic machine-interpretability, via KGs, of the publications
to enable their more intelligent automated processing (e.g.,
in search applications). To this end, KGs leveraged in aca-
demic and industrial settings fostering better search already
serve as case-in-point, albeit so far only over commonsense
world knowledge (consider the DBpedia (Auer et al., 2007)
and Google (Singhal, Amit, 2012) KGs as two prominent
examples among others).

To represent scholarly publications as KGs, from an Infor-
mation Extraction (IE) perspective, and scientific IE, in par-
ticular, extracting scientific entities from scholarly publica-
tions becomes a vital task to address since entities lie at
the core of KGs. While these scientific entities are essen-
tially scientific terms, they are referred to with the broader
notion of entities in the rest of the paper to posit them as
valid knowledge graph node candidates. As an IE task, the
extraction of scientific entities is being increasingly stud-
ied in the Natural Language Processing (NLP) community–
the SemEval series itself has so far seen four tasks orga-
nized (Kim et al., 2010; Moro and Navigli, 2015; Augen-
stein et al., 2017; Gábor et al., 2018). However, very little
of this work (Handschuh and QasemiZadeh, 2014) has been
done in the tradition of corpus linguistics and none, so far,
in the broad multidisciplinary setting of Science.

In this vein, with the aim of providing a platform for
benchmarking methods of scholarly article processing, in
2017 Elsevier Labs released an open access corpus of
publications across Science, Technology, Engineering, and

Medicine (STEM),1 thus providing a shared test bed for
multidisciplinary scientific IE research. The corpus is based
on the 10 most prolific STEM disciplines, viz. Agriculture
(Agr), Astronomy (Ast), Biology (Bio), Chemistry (Che),
Computer Science (CS), Earth Science (ES), Engineering
(Eng), Materials Science (MS), and Mathematics (Mat).
The study presented subsequently in this paper was per-
formed on scientific abstracts in this STEM corpus.
In general, the challenges associated with scientific IE are
seen to be greater than for, say newswire articles, in part
because of the expected domain expertise required to anno-
tate resources for machine learning making the annotation
task costly, in turn limiting resources. Since, at present, a
study of human agreement of annotating scientific entities
across STEM is lacking, consequently, we have little under-
standing about at least a certain set of scientific concepts
that are generically applicable and the extent to which they
can be decided without domain knowledge. Quantitatively
evaluating this based on a set of generic scientific concepts
is the first goal of this paper. We refer to this problem as
the generic scientific concept extraction task, for which our
research question is: Can a generic formalism of scientific
concepts offer human annotators who possess sufficient sci-
entific competence, the ability to reliably annotate a multi-
disciplinary scholarly corpus with scientific entities? Ex-
amining this question, leads us in turn to make the observa-
tion that the problem of such otherwise costly data creation
can be made accessible to a wider group of people with the
minimal involvement of domain specialists.
In the second part of this study, with the goal of retaining
accurate entities, we disambiguate our annotated entities
via encyclopedic links and lexicographic senses. Specif-

1https://github.com/elsevierlabs/OA-STM-Corpus
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ically, we carry out Entity Resolution (ER) (Getoor and
Machanavajjhala, 2012) via Entity Linking (EL) and Word
Sense Disambiguation (WSD) annotations. We adopt their
respective standard task definitions for our scientific enti-
ties, where EL (Rao et al., 2013; Usbeck et al., 2015) entails
linking entities to the most suitable entry in a knowledge
base, and WSD (Navigli, 2009) involves explicitly assign-
ing meanings to single-word and multi-word occurrences
within text. Performing joint EL and WSD keeps us on
course with the current “best of two worlds” trend in ER
research considering their seamless integration as comple-
mentary semantic information units for disambiguating the
entities (Hovy et al., 2013) to obtain boosted performance
in their automatic disambiguation (Moro et al., 2014b). In
addition, we note that without ER, our entity annotations
can seem somewhat subjective on the one hand. While on
the other hand, they might be limiting for real-world usage.
With ER, we make the scientific entities locatable in the
real world thus removing to a certain degree their subjec-
tive impression, while facilitating their categorization (con-
ceptualization) according to the metadata in the knowledge
base, without restricting users to our four concepts.
Further, the introduction of this STEM corpus facilitates the
testing of the ER approaches in a unique setting: to that of
being restricted within the single broad domain of Science,
while still being multidisciplinary, thus, in a sense, vali-
dating the automatic systems for their semantic adaptabil-
ity. Training algorithms on such a corpus entails switching
senses of the the same word. E.g., “the Cloud” in CS should
be resolved to a technological sense, versus in Ast where it
takes the common interpretation of the mass of water vapor
we see in the sky; or “neural networks” which in CS are
an algorithm versus in Bio or Med which refer to the brain.
It would require the seemingly evident shift from common
interpretations of terms, though not always. E.g., “power”
in Mat refers to exponentiation, which, otherwise in a com-
mon sense, takes on a human social interpretation; or even
a common word as “ring” in Mat is an algebraic structure
versus the jewelry common interpretation; or “subject” in
Med as research participant rather than an academic disci-
pline. However, we note that our corpus not only enables
evaluating systems for their semantic adaptability in a joint
fashion for both EL and WSD tasks, it can also be lever-
aged for designing approaches attempting either one of the
tasks, on the premise of their dichotomy, offering still novel
insights in this regard owing to its multidisciplinary nature.
Finally, in this study, for both parts of the STEM data,
we present benchmark results with insights on respective
model performances: 1) for entity recognition, we train a
BERT-based neural model (Devlin et al., 2019) on our data
of scientific entities; and 2) for entity resolution, we manu-
ally evaluate Babelfy (Moro et al., 2014b) for EL and WSD
of the scientific entities in our corpus.
In summary of our contributions, we: 1) release a novel
multidisciplinary STEM corpus of scientific entities under
a generic conceptual formalism bridging STEM scientific
domains; where the entities are further enriched with EL
and WSD annotations, thus, both disambiguating their sci-
entific sense and grounding them in the real world, thereby
enabling additional semantic extensions of the entities; and

2) provide benchmark performances from state-of-the-art
systems on our STEM data. For further research, the
STEM-ECR v1.0 corpus can be downloaded at the follow-
ing link: https://doi.org/10.25835/0017546 (ISLRN 749-
555-840-571-2).
The remaining paper is organized in two main parts: 1) an-
notating scientific entities in a STEM setting; and 2) linking
and sense disambiguation of the selected entities. We begin
with a discussion on related work to ours.

2. Related Work
Early initiatives in semantically structuring scholarly pub-
lications focused on sentences as the basic unit of anal-
ysis using data from one or two scientific domains. To
this end, ontologies and vocabularies were created (Teufel
et al., 1999; Soldatova and King, 2006; Constantin et al.,
2016; Pertsas and Constantopoulos, 2017), corpora were
annotated (Liakata et al., 2010; Fisas et al., 2016), and
machine learning methods were applied (Liakata et al.,
2012). Recently, scientific IE has targeted search technol-
ogy, thus newer corpora have been annotated at the phrasal
unit of information with three or six types of scientific con-
cepts (Handschuh and QasemiZadeh, 2014; Augenstein et
al., 2017; Luan et al., 2018) facilitating machine learning
system development (Ammar et al., 2017; Luan et al., 2017;
Beltagy et al., 2019). But, again these corpora are from a
single or at most three domains.
In this work, while we continue to address scientific IE at
the phrasal unit, unlike existing work, by explicitly situat-
ing our task in the wide-ranging STEM scholarly commu-
nication setting, we do not impose a domain restriction on
the task. Additionally, we enrich our entities with semantic
EL and WSD annotations.
On this related note, the SemEval 2015 Task 13 (Moro and
Navigli, 2015) corpus exists with joint EL and WSD an-
notations for entities. However, theirs isn’t a scientific IE
task since the genre of text they annotate does not comprise
scholarly publications. Further, their annotations differs
from ours based on the knowledge source they use, where
ours is identical to theirs on the encyclopedic front but a
subset of theirs on the lexical knowledge since their lexical
knowledge is derived from at least three different sources.
Nevertheless, restricting ourselves to just one lexicographic
source, lets us test its coverage uniformly.
It was recently noted that the guidelines clarifying the in-
clusion or exclusion of entities take on an implicit inclusion
criteria which only becomes apparent when noting the dif-
ferences between the entities in datasets that share a com-
mon creation objective (Rosales-Méndez et al., 2019). In
this work, we adopt a fine-grained annotation strategy fol-
lowing a safer maximal inclusion route.

3. Scientific Entity Annotations
By starting with a STEM corpus of scholarly abstracts for
annotating with scientific entities, we differ from existing
work addressing this task since we are going beyond the
domain restriction that so far seems to encompass scien-
tific IE. For entity annotations, we rely on existing scien-
tific concept formalisms (Liakata et al., 2010; Constantin
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et al., 2016; Augenstein et al., 2017) that appear to pro-
pose generic scientific concept types that can bridge the do-
mains we consider, thereby offering a uniform entity selec-
tion framework. In the following subsections, we describe
our annotation task in detail, after which we conclude with
benchmark results.

PROCESS Natural phenomenon, or independent/dependent
activities. E.g., growing (Bio), cured (MS), flooding (ES).
METHOD A commonly used procedure that acts on enti-
ties. E.g., powder X-ray (Che), the PRAM analysis (CS),
magnetoencephalography (Med).
MATERIAL A physical or digital entity used for scientific
experiments. E.g., soil (Agr), the moon (Ast), Doppler li-
dars (Eng).
DATA The data themselves, or quantitative or qualitative
characteristics of entities. E.g., rotational energy (Eng), ten-
sile strength (MS), the Sylow p-groups (Mat).

Table 1: The four scientific concepts studied

3.1. Our Annotation Process
The corpus for computing inter-annotator agreement was
annotated by two postdoctoral researchers in Computer Sci-
ence.2 To develop annotation guidelines, a small pilot an-
notation exercise was performed on 10 abstracts (one per
domain) with a set of surmised generically applicable sci-
entific concepts such as TASK, PROCESS, MATERIAL, OB-
JECT, METHOD, DATA, MODEL, RESULTS, etc., taken
from existing work. Over the course of three annotation tri-
als, these concepts were iteratively pruned where concepts
that did not cover all domains were dropped, resulting in
four finalized concepts, viz. PROCESS, METHOD, MATE-
RIAL, and DATA as our resultant set of generic scientific
concepts (see Table 1 for their definitions).3 The subse-
quent annotation task entailed linguistic considerations for
the precise selection of entities as one of the four scientific
concepts based on their part-of-speech tag or phrase type.
PROCESS entities were verbs (e.g., “prune” in Agr), verb
phrases (e.g., “integrating results” in Mat), or noun phrases
(e.g. “this transport process” in Bio); METHOD entities
comprised noun phrases containing phrase endings such as
simulation, method, algorithm, scheme, technique, system,
etc.; MATERIAL were nouns or noun phrases (e.g., “forest
trees” in Agr, “electrons” in Ast or Che, “tephra” in ES);
and majority of the DATA entities were numbers otherwise
noun phrases (e.g., “(2.5±1.5)kms−1” representing a ve-
locity value in Ast, “plant available P status” in Agr). Sum-
marily, the resulting annotation guidelines hinged upon the
following five considerations:

1. To ensure consistent scientific entity spans, entities
were annotated as definite noun phrases where pos-
sible. In later stages, the extraneous determiners and
articles could be dropped as deemed appropriate.

2We use BRAT (Stenetorp et al., 2012) for annotating entity
spans and their categories.

3We do not consider nested span concepts in this study, hence
we leave out TASK, OBJECT, and RESULTS since they were al-
most always nested with the other scientific entities. However, we
found them as valid generic categories as well.

2. Coreferring lexical units for scientific entities in the
context of a single abstract were annotated with the
same concept type.

3. Quantifiable lexical units such as numbers (e.g., years
1999, measurements 4km) or even as phrases (e.g.,
vascular risk) were annotated as DATA.

4. Where possible, the most precise text reference (i.e.,
phrases with qualifiers) regarding materials used in
the experiment were annotated. For instance, “carbon
atoms in graphene” was annotated as a single MA-
TERIAL entity and not separately as “carbon atoms,”
“graphene.”

5. Any confusion in classifying scientific entities as one
of four types was resolved using the following concept
precedence: METHOD > PROCESS > DATA > MA-
TERIAL, where the concept appearing earlier in the list
was preferred.

After finalizing the concepts and updating the guidelines,4

the final annotation task proceeded in two phases

1. In phase I, five abstracts per domain (i.e. 50 ab-
stracts) were annotated by both annotators and the
inter-annotator agreement was computed using Co-
hen’s κ (Cohen, 1960). Results showed a moderate
inter-annotator agreement at 0.52 κ.

2. Next, in phase II, one of the annotators interviewed
subject specialists in each of the ten domains about
the choice of concepts and her annotation decisions on
their respective domain corpus.5 The feedback from
the interviews were systematically categorized into er-
ror types and these errors were discussed by both an-
notators. Following these discussions, the 50 abstracts
from phase I were independently reannotated. The an-
notators could obtain substantial overall agreement of
0.76 κ after phase II.

In Table 2, we report the IAA scores obtained per domain
and overall. The scores show that the annotators had a sub-
stantial agreement in seven domains, while only a moder-
ate agreement was reached in three domains, viz. Agr, Mat,
and Ast.

κ κ κ
Med 0.94 Eng 0.79 Mat 0.58
MS 0.90 Che 0.77 Ast 0.57
CS 0.85 Bio 0.75

Overall 0.76
ES 0.81 Agr 0.60

Table 2: Per-domain and Overall inter-annotator agreement
(Cohen’s Kappa κ) for PROCESS, METHOD, MATERIAL,
and METHOD scientific concept annotation

4The annotation guidelines are released with the corpus.
5The concepts were generally well received as generically ap-

plicable, except in Engineering where the subject specialist men-
tioned the need for an additional category TOOL for phrases which
our scheme captures as MATERIAL.
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Ast Agr Eng ES Bio Med MS CS Che Mat
# Tokens overall 3711 3134 2917 3065 2579 2558 2597 2383 1991 1334

Avg. # Tokens/Abstract 382 333 303 321 273 274 282 253 217 140
# Gold scientific concept phrases 791 741 741 698 649 600 574 553 483 297

# Unique gold scientific concept phrases 663 631 618 633 511 518 493 482 444 287
# PROCESS 241 252 248 243 281 244 178 220 149 56
# METHOD 19 28 27 9 15 33 27 66 27 7

# MATERIAL 296 292 208 249 291 191 231 102 188 51
# DATA 235 169 258 197 62 132 138 165 119 183

Table 3: The annotated corpus characteristics in terms of size and the number of scientific concept phrases
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Figure 1: A text graph of the abstract of the article ‘The Cassini Enceladus encounters 2005–2010 in the view of energetic
electron measurements’ (Krupp et al., 2012). Nodes are color-coded by concept type: orange corresponds to PROCESS,
green to MATERIAL, and blue to DATA. No METHOD concepts were identified in this abstract.

Annotation Error Analysis We discuss some of the
changes the interviewer annotator made in phase II after
consultation with the subject experts.
In total, 21% of the phase I annotations were changed:
PROCESS accounted for a major proportion (nearly 54%)
of the changes. Considerable inconsistency was found in
annotating verbs like “increasing”, “decreasing”, “enhanc-
ing”, etc., as PROCESS or not. Interviews with subject ex-
perts confirmed that they were a relevant detail to the re-
search investigation and hence should be annotated. So
61% of the PROCESS changes came from additionally an-
notating these verbs. MATERIAL was the second predomi-
nantly changed concept in phase II, accounting for 23% of
the overall changes. Nearly 32% of the changes under MA-
TERIAL came from consistently reannotating phrases about
models, tools, and systems; accounting for another 22% of
its changes, where spatial locations were an essential part
of the investigation such as in the Ast and ES domains, they
were decided to be included in the phase II set as MATE-
RIAL. Finally, there were some changes that emerged from
lack of domain expertise. This was mainly in the medical
domain (4.3% of the overall changes) in resolving confu-
sion in annotating PROCESS and METHOD concept types.
Most of the remaining changes were based on the treatment
of conjunctive spans or lists.
Subsequently, the remaining 60 abstracts (six per domain)
were annotated by one annotator. This last phase also in-
volved reconciliation of the earlier annotated 50 abstracts
to obtain a gold standard corpus.

Annotated Corpus Characteristics Table 3 shows our
annotated corpus characteristics. Our corpus comprises a

total of 6,127 scientific entities, including 2,112 PROCESS,
258 METHOD, 2,099 MATERIAL, and 1,658 DATA entities.
The number of entities per abstract directly correlates with
the length of the abstracts (Pearson’s R 0.97). Among the
concepts, PROCESS and MATERIAL directly correlate with
abstract length (R 0.8 and 0.83, respectively), while DATA
has only a slight correlation (R 0.35) and METHOD has no
correlation (R 0.02).
In Figure 1, we show an example instance of a manually
created text graph from the scientific entities in one ab-
stract. The graph highlights that linguistic relations such
as synonymy, hypernymy, meronymy, as well as OpenIE
relations are poignant even between scientific entities.

3.2. Performance Benchmark
In this section, we report the performance of a state-of-the-
art neural system for extracting scientific entities from our
STEM corpus. Specifically, we leverage SciBERT (Belt-
agy et al., 2019), a pretrained language model based on
BERT (Devlin et al., 2019) but trained on a large corpus
of scientific text, as frozen embedding features in a NER
task-specific neural model comprising BiLSTM layers and
a CRF-based sequence tag decoder (Ma and Hovy, 2016).
Models. Using the above architecture implemented in the
AllenNLP framework (Gardner et al., 2018), we train one
model with data from all domains combined. We call this
the domain-independent scientific entity extraction system.
To test robust models, we performed five-fold cross vali-
dation experiments. In each fold experiment, we trained a
model on 8 abstracts per domain (i.e. 80 abstracts; >4000
entities), tuned hyperparameters on 1 abstract per domain
(i.e. 10 abstracts; >500 entities), and tested on the remain-



2196

ing 2 abstracts (i.e. 20 abstracts; >1000 entities) ensuring
that data splits were not identical between folds.

Results and Discussion. This system achieves 64.3%
precision, 66.7% recall, and 65.5% overall task F1 at a
stable 0.0140 standard deviation per fold. For it, MATE-
RIAL was the easiest concept to extract at 71% F1, fol-
lowed by PROCESS at 66.8%, followed by DATA at 59.8%,
and METHOD the hardest at 43% F1. Of note, METHOD is
also the most underrepresented in our corpus which could
in part account for its poor extraction performance.
Further, in Table 4, we report the performance of this sys-
tem per domain. It demonstrates highest performance on
the Eng and Bio domains at 0.71 F1 and shows signifi-
cantly lower performance on Mat at 0.48 F1. Again, com-
pared to the remaining 9 domains in our corpus, Mat has
the least annotated entities, which we attribute as the cause
for the low extraction performance. We hypothesize that
more training instances could improve performance. For
more detailed machine learning results, we refer the reader
to our related work (Brack et al., 2020).

F1 F1 F1
Eng 0.71 Ast 0.66 Med 0.61
Bio 0.71 CS 0.65 Mat 0.48
MS 0.69 Che 0.64

Overall 0.65
Agr 0.68 ES 0.63

Table 4: The domain-independent scientific entity extrac-
tion system results per-domain

In the second stage of the study, we perform word sense dis-
ambiguation and link our entities to authoritative sources.

4. Scientific Entity Resolution
Aside from the four scientific concepts facilitating a com-
mon understanding of scientific entities in a multidisci-
plinary setting, the fact that they are just four made the hu-
man annotation task feasible. Utilizing additional concepts
would have resulted in a prohibitively expensive human an-
notation task. Nevertheless, there are existing datasets (par-
ticularly in the biomedical domain, e.g., GENIA (Kim et
al., 2003)) that have adopted the conceptual framework in
rich domain-specific semantic ontologies. Our work, while
related, is different since we target the annotation of multi-
disciplinary scientific entities that facilitates a low annota-
tion entrance barrier to producing such data. This is bene-
ficial since it enables the task to be performed in a domain-
independent manner by researchers, but perhaps not crowd-
workers, unless screening tests for a certain level of scien-
tific expertise are created.
Nonetheless, we recognize that the four categories might
be too limiting for real-world usage. Further, the scientific
entities from stage 1 remain susceptible to subjective in-
terpretation without additional information. Therefore, in
a similar vein to adopting domain-specific ontologies, we
now perform entity linking (EL) to the Wikipedia and word
sense disambiguation (WSD) to Wiktionary.

4.1. Our Annotation Process
The same pair of annotators as before were involved in this
stage of the study to determine the annotation agreement.

start

end

entity

linkable

Google or Wiki
Search for Entity

Split
Entity

Resolve each
split to Wiki

Resolve entity
to Wiki

Resolved
entity(ies) or

NIL

noyes

yes no

Figure 2: Flowchart depicting our Entity Resolution anno-
tation steps. The boxes shaded in grey represent the steps
where annotator agreement scores are computed.

4.1.1. Annotation Task Tools
During the annotation procedure, each annotator was
shown the entities, grouped by domain and file name, in
Google Excel Sheet columns alongside a view of the cur-
rent abstract of entities being annotated in the BRAT in-
terface (2012) for context information about the entities.6

For entity resolution, i.e. linking and disambiguation, the
annotators had local installations of specific time-stamped
Wikipedia7 and Wiktionary8 dumps to enable future per-
sistent references to the links since the Wiki sources are
actively revised. They queried the local dumps using
the DKPro JWPL tool (Zesch et al., 2008) for Wikipedia
and the DKPro JWKTL tool (Meyer and Gurevych, 2012)
for Wiktionary, where both tools enable optimized search
through the large Wiki data volume.

4.1.2. Annotation Procedure for Entity Resolution
Through iterative pilot annotation trials on the same pilot
dataset as before, the annotators delineated an ordered an-
notation procedure depicted in the flowchart in Figure 2.
There are two main annotation phases, viz. a preprocess-
ing phase (determining linkability, determining whether an
entity is decomposable into shorter collocations), and the
entity resolution phase.
The actual annotation task then proceeded, in which to
compute agreement scores, the annotators worked on the
same set of 50 scholarly abstracts that they had used earlier
to compute the scores for the scientific entity annotations.

Linkability. In this first step, entities that conveyed a
sense of scientific jargon were deemed linkable.
A natural question that arises, in the context of the Link-
ability criteria, is: Which stage 1 annotated scientific en-
tities were now deemed unlinkable? They were 1) DATA
entities that are numbers; 2) entities that are coreference
mentions which, as isolated units, lost their precise sense

6Excel sheets were flexible to incorporate our various ER task
annotations with separate columns reserved for a unique annota-
tion. Existing tools (e.g., INCEpTION (De Castilho et al., 2018))
could not be adapted to our full task.

7https://dumps.wikimedia.org/enwiki/20190920/
8https://dumps.wikimedia.org/enwiktionary/20190920/
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(e.g., “development”); and 3) PROCESS verbs (e.g., “de-
creasing”, “reconstruct”, etc.). Still, having identified these
cases, a caveat remained: except for entities of type DATA,
the remaining decisions made in this step involved a certain
degree of subjectivity because, for instance, not all PRO-
CESS verbs were unlinkable (e.g., “flooding”). Nonethe-
less, at the end of this step, the annotators obtained a high
IAA score at 0.89 κ. From the agreement scores, we found
that the Linkability decisions could be made reliably and
consistently on the data.
Splitting phrases into shorter collocations. While pref-
erence was given to annotating non-compositional noun
phrases as scientific entities in stage 1, consecutive occur-
rences of entities of the same concept type separated only
by prepositions or conjunctions were merged into longer
spans. As examples, consider the phrases “geysers on south
polar region,” and “plume of water ice molecules and dust”
in Figure 1. These phrases, respectively, can be meaning-
fully split as “geysers” and “south polar region” for the first
example, and “plume”, “water ice molecules”, and “dust”
for the second. As demonstrated in these examples, the
stage 1 entities we split in this step are syntactically-flexible
multi-word expressions which did not have a strict con-
straint on composition (Sag et al., 2002). For such expres-
sions, we query Wikipedia or Google to identify their splits
judging from the number of results returned and whether,
in the results, the phrases appeared in authoritative sources
(e.g., as overview topics in publishing platforms such as
ScienceDirect). Since search engines operate on a vast
amount of data, they are a reliable source for determining
phrases with a strong statistical regularity, i.e. determining
collocations.
With a focus on obtaining agreement scores for entity res-
olution, the annotators bypass this stage for computing
independent agreement and attempted it mutually as fol-
lows. One annotator determined all splits, wherever re-
quired, first. The second annotator acted as judge by go-
ing through all the splits and proposed new splits in case of
disagreement. The disagreements were discussed by both
annotators and the previous steps were repeated iteratively
until the dataset was uniformly split. After this stage, both
annotators have the same set of entities for resolution.
Entity Resolution (ER) Annotation. In this stage, the
annotators resolved each entity from the previous step to
encyclopedic and lexicographic knowledge bases. While,
in principle, multiple knowledge sources can be leveraged,
this study only examines scientific entities in the context of
their Wiki-linkability.
Wikipedia, as the largest online encyclopedia (with nearly
5.9 million English articles) offers a wide coverage of real-
world entities, and based on its vast community of editors
with editing patterns at the rate of 1.8 edits per second, is
considered a reliable source of information.9 It is perva-
sively adopted in automatic EL tasks (Bunescu and Paşca,
2006; Mihalcea and Csomai, 2007; Rao et al., 2013) to dis-
ambiguate the names of people, places, organizations, etc.,
to their real-world identities. We shift from this focus on
proper names as the traditional Wikification EL purpose has

9https://en.wikipedia.org/wiki/Wikipedia:Statistics

been, to its, thus far, seemingly less tapped-in conceptual
encyclopedic knowledge of nominal scientific entities.
Wiktionary is the largest freely available dictionary re-
source. Owing to its vast community of curators, it rivals
the traditional expert-curated lexicographic resource Word-
Net (Fellbaum, 1998) in terms of coverage and updates,
where the latter evolves more slowly. For English, Wik-
tionary has nine times as many entries and at least five times
as many senses compared to WordNet.10 As a more perti-
nent neologism in the context of our STEM data, consider
the sense of term “dropout” as a method for regularizing the
neural network algorithms which is already present in Wik-
tionary.11 While WSD has been traditionally used WordNet
for its high-quality semantic network and longer prevalence
in the linguistics community (c.f Navigli (2009) for a com-
prehensive survey), we adopt Wiktionary thus maintaining
our focus on collaboratively curated resources.
In WSD, entities from all parts-of-speech are enriched w.r.t.
language and wordsmithing. But it excludes in-depth fac-
tual and encyclopedic information, which otherwise is con-
tained in Wikipedia. Thus, Wikipedia and Wiktionary are
viewed as largely complementary.

ER Annotation Task formalism. Given a scholarly ab-
stract A comprising a set of entities E = {e1, ..., eN},
the annotation goal is to produce a mapping from E to a
set of Wikipedia pages (p1, ..., pN ) and Wiktionary senses
(s1, ..., sN ) as R = {(p1, s1), ..., (pN , sN )}. For entities
without a mapping, the corresponding p or s refers to NIL.
The annotators followed comprehensive guidelines for
ER including exceptions. E.g., the conjunctive phrase
“acid/alkaline phosphatase activity” was semantically
treated as the following two phrases “acid phosphatase ac-
tivity” or “alkaline phosphatase activity” for EL, however,
in the text it was retained as “acid” and “alkaline phos-
phatase activity.” Since WSD is performed over exact
word-forms without assuming any semantic extension, it
was not performed for “acid.” Annotations were also made
for complex forms of reference such as meronymy (e.g.,
space instrument “CAPS” to spacecraft “wiki:Cassini Huy-
gens” of which it is a part), or hypernymy (e.g., “parents”
in “genepool parents” to “wiki:Ancestor”).
As a result of the annotation task, the annotators obtained
82.87% rate of agreement in the EL task and a κ score of
0.86 in the WSD task. Contrary to WSD expectations as a
challenging linguistics task (Ng et al., 1999), we show high
agreement; this we attribute to the entities’ direct scientific
sense and availability in Wiktionary (e.g., “dropout”).
Subsequently, the ER annotation for the remaining 60 ab-
stracts (six per domain) were performed by one annotator.
This last phase also involved reconciliation of the earlier
annotated 50 abstracts to obtain a gold standard corpus.

4.1.3. Annotated Corpus Characteristics
In this stage 2 corpus, linkability of the scientific entities
was determined at 74.6%. Of these, 61.7% were split into
shorter collocations, at 1.74 splits per split entity. Detailed

10https://en.wiktionary.org/wiki/Wiktionary:Statistics versus
https://wordnet.princeton.edu/documentation/wnstats7wn

11https://en.wiktionary.org/wiki/dropout



2198

EL: total, WSD: total,
%indomain, %indomain, Total (%)
%overall %overall

ES 559 (80.3 / 9.9) 380 (54.6 / 6.8) 696 (12.4)
Ast 583 (87.3 / 10.4) 477 (71.4 / 8.5) 668 (11.9)
Agr 556 (83.3 / 9.9) 475 (71.2 / 8.4) 667 (11.9)
Bio 538 (88.2 / 9.6) 319 (52.3 / 5.7) 610 (10.8)
Eng 473 (80 / 8.4) 406 (68.7 / 7.2) 591 (10.5)
Med 476 (82.5 / 8.5) 320 (55.5 / 5.7) 577 (10.3)
MS 484 (85.1 / 8.6) 377 (66.3 / 6.7) 569 (10.1)
Che 381 (76.2 / 6.8) 304 (60.8 / 5.4) 500 (8.9)
CS 391 (81 / 6.9) 285 (59 / 5.1) 483 (8.6)
Mat 226 (85.3 / 4) 150 (56.6 / 2.7) 265 (4.7)

Overall 4667 (82.9 / - ) 3489 (62.0 / -) 5627 ( - )

Table 5: The annotated corpus characteristics in terms of
its Entity Linking (EL) and Word Sense Disambiguation
(WSD) annotations

Wikipedia Wiktionary
POS % POS %
N 49.6 N 75.3
MWE 23.2 R 46.2
SW 11.8 ADJ 16.4
ADJ 9.7 SYM 3.8
SYM 2.8 V 2.3
V 1.3 NNP 1.6
NNP 1.2 INIT 0.2
R 0.3 PREP 0.03
INIT 0.2 PHRASE 0.03

Table 6: Part-of-speech tag distribution in our corpus. N
- Noun; MWE - multiword expression; SW - single word;
ADJ - adjective; SYM - symbol; V - verb; NNP - proper
noun; R - adverb; INIT - initialism; PREP - preposition

statistics are presented in Table 5. In the table, the do-
mains are ranked by the total number of their linkable en-
tities (fourth column). Ast has the highest proportion of
linked entities at 87.3% which comprises 10.4% of all the
linked entities and disambiguated entities at 71.4% form-
ing 8.5% of the overall disambiguated entities. From an
EL perspective, we surmize that articles on space topics are
well represented in Wikipedia. For WSD, Bio, ES, and Med
predictably have the least proportion of disambiguated en-
tities at 52.3%, 54.6%, and 55.5%, respectively, since of
all our domains these especially rely on high degree sci-
entific jargon, while WSD generally tends to be linguisti-
cally oriented in a generic sense. As a summary, linked and
disambiguated entities had a high correlation with the total
linkable entities (R 0.98 and 0.89, respectively).
In Table 6, the ER annotation results are shown as POS
tag distributions. The POS tags were obtained from Wik-
tionary, where entities that couldn’t be disambiguated are
tagged as SW (Single Word) or MWE (Multi-Word Expres-
sion). These tags have a coarser granularity compared to
the traditionally followed Penn Treebank tags with some
unconventional tagging patterns (e.g., “North Sea” as NNP,
“in vivo” as ADJ). From the distributions, except for nouns
being the most EL and WSD instances, the rest of the ta-
ble differs significantly between the two tasks in a sense
reflecting the nature of the tasks. While MWE are the sec-
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Figure 3: Percentage P , R, and F1 per domain of the Ba-
belfy system for disambiguating to BabelNet (as shaded
blue bars BP, BR, and BF) and for linking to DBpedia (as
shaded orange bars DP, DR, DF)

ond highest EL instances, its corresponding PHRASE type
is least represented in WSD. In contrast, while adverbs are
the second highest in WSD, they are least in EL.

4.2. Evaluation
We evaluate Babelfy (Moro et al., 2014a), a domain-
agnostic, graph-based unified approach to EL and WSD.
Since it is an unsupervised system, we do not retrain it on
our data. We evaluate it for joint EL and WSD performance
on multidisciplinary scientific entities.
Evaluation 1.1: Splitting phrases into substrings The
first step of an end-to-end ER system like Babelfy is spot-
ting the candidate text fragments to resolve. Babelfy
domain-agnostically follows a substring matching heuris-
tic which either at sentence-unit or phrase-unit has the
same operating principle, i.e. fragmenting the input into
non-overlapping longest matching linkable spans and re-
cursively splitting each span to smaller content-word parts.
Babelfy splits 96.2% of entities from stage 1 as opposed
to 61.7% of them split by humans. Further, the annota-
tors split entities at 1.74 parts per entity. On the other
hand, Babelfy split them at 2.46 parts per entity (2.16 for
non-overlapping fragments). Thus, evidently our human
annotators have taken a conservative stance since they fo-
cused only on scientific entities, differing from the Babelfy
approximately-all linkable domain-agnostic fragmentations
(e.g., given “pearl millet”, the annotators link it as it is,
whereas Babelfy links it for “pearl” and “pearl millet”).
In addition, Babelfy has a recall of 63.2% at precision
37.8% of the human-split entities. Thus, despite Babelfy’s
approximately-all linkable fragmentation, it shows a rela-
tively low recall for our entities, since we note that Babelfy
in most cases operates on at least partial lexical matches
whereas several of our entities required inference decisions.
Evaluation 1.2: Entity Resolution In Figure 3, we depict
the Babelfy ER performance in terms of the classical preci-
sion (P ), recall (R) and F1 scores.12

EL versus WSD For all domains, EL is better than WSD in
line with the claim that WSD is generally deemed a harder
linguistics task than EL.13 The highest EL score is obtained

12We provide details about our calculations in the Appendix.
13For EL, DBpedia and Wikipedia are equivalent resources; for
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on Agr (at 51.9% F1), and the highest WSD score is on Ast
and Agr (at 45.6% F1).
Most ambiguous resolution domain(s) CS and Mat were
the most ambiguous resolution domains for Babelfy. This
finding is consistent with that reported in the Semeval 2013
shared task (Moro and Navigli, 2015) for these two do-
mains which are common in our datasets, albeit on different
genre of text.
Finally, we did not find any consistent trend in the auto-
matic resolution results to infer the influence of domain-
specific terms on the performance.
Evaluation 2: EL and WSD baseline system accuracies
for only the linked split entities
For EL, we select multiple baselines including the exact
title match heuristic and four popular online systems that
demonstrate state-of-the-art performance on non-scientific,
open domain data. The baseline scores are: exact title
match heuristic at 37.8% accuracy, and from the four auto-
mated systems, viz. Babelfy (2014a) to DBpedia at 52.6%,
TagMe (Ferragina and Scaiella, 2010) at 40.5%, DBpedia
Spotlight (Mendes et al., 2011) at 38.1%, and Falcon (Sakor
et al., 2019) at 33.8%. Further in Figure 4, we show the
performances of these systems obtained per domain. Of
all four systems, Babelfy consistently has highest recall of
the linked entities owing to its maximal linking objective,
i.e. linking longest phrase matches and their sub-parts. Per-
domain, Babelfy has highest recall on MS, TagME on Agr,
DBpedia Spotlight on Bio, and Falcon on Ast, respectively.
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Figure 4: Percentage recall per domain of four popu-
lar online Entity Linking systems, viz. Babelfy (2014a),
TagMe (Ferragina and Scaiella, 2010), DBpedia Spot-
light (Mendes et al., 2011), and Falcon (Sakor et al., 2019)

For WSD, our baseline is just the first sense heuristic, since
it is seen hard-to-beat for this task. It demonstrates 68.8%
disambiguation accuracy.
We do not observe a significant impact of the long-tailed list
phenomenon of unresolved entities in our data (c.f Table 5
only 17% did not have EL annotations). Results on more
recent publications should perhaps serve more conclusive
in this respect for new concepts introduced–the abstracts in
our dataset were published between 2012 and 2014.

WSD, BabelNet draws from more than one source including Wik-
tionary which we consider.

Figure 5: Wikipedia categories cloud on scientific entities

5. Conclusion
The STEM-ECR v1.0 corpus of scientific abstracts offers
multidisciplinary PROCESS, METHOD, MATERIAL, and
DATA entities that are disambiguated using Wiki-based en-
cyclopedic and lexicographic sources thus facilitating links
between scientific publications and real-world knowledge
(see the concepts enrichment we obtain from Wikipedia
for our entities in Figure 5). We have found that these
Wikipedia categories do enable a semantic enrichment of
our entities over our generic four concept formalism as
PROCESS, MATERIAL, METHOD, and DATA (as an illustra-
tion, the top 30 Wiki categories for each of our four generic
concept types are shown in the Appendix). Further, consid-
ering the various domains in our multidisciplinary STEM
corpus, notably, the inclusion of understudied domains like
Mathematics, Astronomy, Earth Science, and Material Sci-
ence makes our corpus particularly unique w.r.t. the in-
vestigation of their scientific entities. This is a step to-
ward exploring domain independence in scientific IE. Our
corpus can be leveraged for machine learning experiments
in several settings: as a vital active-learning test-bed for
curating more varied entity representations (Brack et al.,
2020); to explore domain-independence versus domain-
dependence aspects in scientific IE; for EL and WSD ex-
tensions to other ontologies or lexicographic sources; and
as a knowledge resource to train a reading machine (such
as PIKES (Corcoglioniti et al., 2016) or FRED (Gangemi
et al., 2017)) that generate more knowledge from massive
streams of interdisciplinary scientific articles. We plan to
extend this corpus with relations to enable building knowl-
edge representation models such as knowledge graphs in a
domain-independent manner.
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Appendix: Supplemental Material
A.1. Proportion of the Generic Scientific Entities
To offer better insights to our STEM corpus for its scien-
tific entity annotations made in part 1, in Figure 6 below,
we visually depict the proportion of PROCESS, METHOD,
MATERIAL, and DATA entities per domain.
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Figure 6: Percentage proportion of scientific entities in our
STEM corpus per domain and per generic concept type

The Figure serves a complementary view to our corpus
compared with the dataset statistics shown in Table 3. It
shows that the Ast domain has the highest proportion of
scientific entities overall. On the other hand, per generic
type, Bio has the most PROCESS entities, CS has the most
METHOD entities, Ast has the most MATERIAL closely fol-
lowed by Agr, and Eng has the most DATA.
A.2. Cohen’s κ Computation14 Setup in Section 4.1.2
Linkability. Given the stage 1 scientific entities, the an-
notators could make one of two decisions: a) an entity is
linkable; or b) an entity is unlinkable. These decisions were
assigned numeric indexes, i.e. 1 for decision (a) and -1 for
decision (b) and can take on one of four possible combina-
tions based on the two annotators decisions: (1,1), (1,-1),
(-1,1), and (-1,-1). The κ scores were then computed on
this data representation.
WSD Agreement. In order to compute the WSD agree-
ment, the Wiktionary structure for organizing the words
needed to be taken into account. It’s structure is as follows.
Each word in the Wiktionary lexicographic resource is cate-
gorized based on etymology, and within each etymological
category, by the various part-of-speech tags the word can
take. Finally, within each POS type, is a gloss list where
each gloss corresponds to a unique word sense.
Given the above-mentioned Wiktionary structure, the initial
setup for the blind WSD annotation task entailed that the
annotators were given the same reference POS tags within
an etymology for the split single-word entities in the cor-
pus.15 Next, as data to compute κ scores, each annotator-
assigned gloss sense was given a numeric index and agree-

14Cohen’s κ scores are computed using the following script:
https://github.com/jorgearanda/kappa-stats

15In separate experiments for determining etymological and
POS agreement between the annotators, we found they had an
insignificant disagreement (i.e. in less than 15 instances in ap-
proximately over the 2000 they annotated.)

ment was computed based on matches or non-matches be-
tween indexes.
A.3. Per-domain Inter-annotator Agreement for Entity
Resolution
To supplement the overall Inter-Annotator Agreement
(IAA) scores reported in Section 4.1.2 ‘Entity Resolution
(ER) Annotation’ for the EL and WSD tasks, in Table 7 be-
low, we additionally report the IAA scores for our ER tasks
(i.e., EL and WSD) per domain in the STEM-ECR corpus.
First, considering the domains where the highest ER agree-
ment scores were obtained. For EL, the IAA score was
highest in the MS domain. While for WSD, the IAA score
was highest in the Bio domain. Next, considering the do-
mains where the agreement was least for the two tasks. We
found the the EL agreement was least for CS and the WSD
agreement was least for Mat. In the case of low EL agree-
ment, it can be attributed to two main cases: only one of
the annotators found a link; or the annotators linked to re-
lated pages on the same theme as the entity (e.g., wiki:Rule-
based modeling versus wiki:Rule-based machine learning
for “rule-based system”). And in the case of the low WSD
agreement obtained on Mat, we see that owing to broad
terms like “set,” “matrix,” “groups,” etc., in the domain
which could be disambiguated to more than one Wiktionary
sense correctly, the IAA agreement was low.

Wikipedia roa Wiktionary κ
Agr 83.88 0.88
Ast 79.8 0.85
Bio 84.73 0.93
Che 86.83 0.85
CS 72.58 0.86
ES 82.17 0.83
Eng 78.83 0.84
MS 88.24 0.83
Mat 87.37 0.81
Med 87.89 0.87

Table 7: Per-domain inter-annotator agreement for Entity
Linking to Wikipedia in terms of the percentage rate of
agreement score (roa) and of Word Sense Disambiguation
to Wiktionary in terms of the Cohen’s kappa score (κ)

A.4. Babelfy’s Precision (P ) and Recall (R) Computa-
tion for Entity Resolution in Figure 3
For the P and R scores reported in Figure 3, the true pos-
itives (TP), false negatives (FN), true negatives (TN), and
false positives (FP) were computed as follows:
TP = human-annotated entities that have a EL/WSD match
with Babelfy results (for NIL, a match is considered as no
result from the automatic system);
FN = human-annotated entities that have no EL/WSD
match with Babelfy results;
TN = spurious Babelfy-created strings as entities that do
not have a EL/WSD result; and
FP = spurious Babelfy-created entities that have a EL/WSD
result.
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PROCESS METHOD
PhysicalQuantities ElectricAndMagneticFields-

InMatter
NumericalDifferentialEquations SystemsBiology

Mutation Mechanics ComputationalFluidDynamics Petrology
ConceptsInPhysics GenesOnHumanChromosome ScientificTechniques FiniteDifferences
MathematicalAnd-
QuantitativeMethods

Software Measurement Spectroscopy

Electron ChemicalElements LandManagement Teletraffic
MolecularEvolution QuantumElectrodynamics TransportLayerProtocols DataTransmission
DevelopmentalBiology Aerodynamics Metabolism ProteinStructure
VectorCalculus Spintronics EnzymeInhibitors Optics
RadiationHealthEffects AllAccuracyDisputes NetworkPerformance MolecularBiology
EvolutionaryBiology Oceanography Research OperationsResearch
Rates Dementia MathematicalAnd-

QuantitativeMethods
AllAccuracyDisputes

ChargeCarriers Audiology TechnologicalFailures Stratigraphy
Leptons CognitiveDisorders ModelingAndSimulation SoilImprovers
PsychiatricDiagnosis WaterPollution MathematicalOptimization Solid-stateChemistry
FluidDynamics StructuralProteins MedicinalChemistry Polarization(Waves)

Table 8: Top 30 Wikipedia categories pertaining to PROCESS and METHOD scientific entities in the STEM-ECR corpus

MATERIAL DATA
StemCells NaturalResources PhysicalQuantities OrdersOfMagnitude
CellBiology FluidDynamics ConceptsInPhysics UnitsOfTime
InducedStemCells Matter SIBaseQuantities FluidDynamics
Biotechnology GranularityOfMaterials ContinuumMechanics Geochronology
DevelopmentalBiology ChemboxHavingGHSData SIDerivedUnits Density
Cloning Polymers PyrotechnicFuels PartsOfADay
HorticultureAndGardening CeramicMaterials ChemicalElements UnitsOfLength
BiologyAndPharmacologyOf-
ChemicalElements

Adhesives StateFunctions MathematicalConstants

LandManagement SpacePlasmas ChemicalProperties Length
HumanEyeAnatomy TaxaNamedByCarlLinnaeus Research ImperialUnits
ChemicalElements ChelatingAgents UnitsOfTemperature Symptoms
Soil ChemboxHavingDSDData Metrology Calendars
MedicalTerminology Humans Size UnitsOfLength
ChemboxImageSizeSet Neurons Measurement UnitsOfPlaneAngle
NaturalMaterials E-numberAdditives ChemboxImageSizeSet SolarCalendars

Table 9: Top 30 Wikipedia categories pertaining to MATERIAL and DATA scientific entities in the STEM-ECR corpus

A.5. Top 30 Wikipedia Categories for PROCESS,
METHOD, MATERIAL, and DATA

In part 1 of the study, we categorized the scientific en-
tities by our four generic concept formalism, comprising
PROCESS, METHOD, MATERIAL, and DATA. Linking the
entities to Wikipedia further enables their broadened cat-
egorization. While in Figure 5 is depicted the rich set of
Wikipedia categories obtained overall, here, in Tables 8 and
9, we show the top 30 Wikipedia categories for the scien-
tific entities by their four concept types. we observe the
most of the Wikipedia categories pertinently broaden the
semantic expressivity of each of our four concepts. Fur-
ther that in each type, they are diverse reflecting the un-
derlying data domains in our corpus. As examples, con-
sider the Wikipedia categories for the DATA scientific enti-
ties: “SIBaseQuantities” category over the entity “Kelvin”
in Che; “FluidDynamics” in Eng and MS domains; and
“SolarCalendars” in the Ast domain.
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