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Abstract
Mathematical text is written using a combination of words and mathematical expressions. This combination, along with a specific way
of structuring sentences makes it challenging for state-of-art NLP tools to understand and reason on top of mathematical discourse. In
this work, we propose a new NLP task, the natural premise selection, which is used to retrieve supporting definitions and supporting
propositions that are useful for generating an informal mathematical proof for a particular statement. We also make available a dataset,
NL-PS, which can be used to evaluate different approaches for the natural premise selection task. Using different baselines, we
demonstrate the underlying interpretation challenges associated with the task.
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1. Introduction
Comprehending mathematical text requires evaluating the
semantics of its mathematical structures (such as expres-
sions) and connecting its internal components with the
respective definitions or premises (Greiner-Petter et al.,
2019).
State-of-the-art models for natural language processing,
such as BERT (Devlin et al., 2019), have high scores for
several tasks, such as entity recognition, textual entailment
and machine translation, but they do not encode the intri-
cate mathematical background knowledge needed to reason
over mathematical discourse.
The language of mathematics is composed of a combina-
tion of words and symbols, where symbols follow a dif-
ferent set of rules and have a specific alphabet. Nonethe-
less, word and symbols are interdependent in the context
of mathematical discourse. This phenomenon is exclusive
to mathematical language, not found in any other natural,
or artificial, language (Ganesalingam, 2013), providing a
unique and challenging application for semantic evaluation
and natural language processing.
Understanding mathematical discourse has been ex-
plored before as a Mathematical Knowledge Extraction
task (Aizawa et al., 2014); however, several aspects of the
mathematical discourse related to deeper and more granu-
lar reasoning over mathematical discourse has not yet been
investigated. There is a lack of datasets in the literature
needed for exploring and studying mathematical discourse
and its associated interpretation and reasoning.
We propose the task of natural premise selection, inspired
by the field of automated theorem processing. Premise se-
lection appeared initially as a task of selecting a (useful)
part of an extensive formal library in order to limit the
search space for an Automated Theorem Proving (ATP) sys-
tem, increasing the chance of finding a proof for a given
conjecture (Blanchette et al., 2016). Premises considered
relevant are the ones that ATPs use for the automatic de-
duction process of finding a proof for a conjecture. The
premise selection task is defined as: Given a collection of
premises P , an ATP system A with given resource limits,

and a new conjecture c, predict those premises from P that
will most likely lead to an automatically constructed proof
of c by A (Irving et al., 2016).
Natural premise selection is based not on formally struc-
tured mathematics, but on human-generated mathematical
text. It takes as input mathematical text, written in natural
language and outputs relevant mathematical statements that
could support a human in finding a proof for that mathemat-
ical text. The premises are composed by a set of supporting
definitions and supporting propositions, that act as explana-
tions for the proof process.
For example, the famous Fermat’s Little Theorem (Warner,
1990) has different possible proofs, one of them using the
Euclid’s Lemma. In this example, Euclid’s Lemma would
be considered useful for a human trying to prove Fermat’s
Little Theorem; therefore, it is a premise for the conjecture
that Fermat’s Little Theorem presents.
In order to evaluate this task, we propose a new dataset:
NL-PS (Natural Language - Premise Selection), using as a
basis the human-curated website ProofWiki1. This dataset
opens possibilities of applications not only for the premise
selection task but also for evaluating semantic representa-
tions for mathematical discourse (including embeddings),
textual entailment for mathematics and natural language in-
ference in the context of mathematical texts.
The contributions of this paper can be summarised as fol-
lows:

• Proposal of a new NLP task: natural language premise
selection.

• A novel dataset, NL-PS, to support the evaluation of
premise selection methods using natural language cor-
pora.

• Comparison of different baselines for the natural
premise selection task.

2. Related Work
NLP has been applied before in the context of general
Mathematics. Chaganty and Liang (2016) proposes a new

1https://proofwiki.org/wiki/Main Page



2176

task for semantic analysis, the task of perspective gener-
ation, i.e., generating description to numerical values us-
ing other values as reference. Huang et al. (2016) analyze
different approaches to solve mathematical word problems
and concludes that it is still an unsolved challenge.
Ganesalingam and Gowers (2017) propose a program that
solves elementary mathematical problems, mainly in met-
ric space theory, and presents solutions similar to the ones
proposed by humans. The authors recognize that their sys-
tem is operating at a disadvantage because human language
involves several constraints that rule out many sound and
effective tactics for generating proofs.
Wang et al. (2018) propose an approach to automatically
formalize informal mathematics using statistical parsing
methods and large-theory automated reasoning. The idea
is to convert from an informal statement to a formal one,
using Mizar as the output language. After the statement
has been correctly translated, it can be checked using an
automatic tool.
Naproche (Natural language Proof Checking) (Cramer et
al., 2009) is a project focused on the development of a con-
trolled natural language (CNL) for mathematical texts and
adapting proof checking software to work with this lan-
guage in order to check syntactical and mathematical cor-
rectness.
Zinn (2003) proposes proof representation structures to rep-
resent mathematical discourse using discourse representa-
tion theory and also proposes a prototype that could be used
to automate the process of generating proofs.
Approaches for creating embeddings of mathematical text
have applied variations of the Skip-gram model (Mikolov et
al., 2013), extending it with a specific tokenization strategy
for equations and mathematical terms. Most tokenization
strategies will use the tree structure of an equation to define
the target tokens and can range from considering the full
equation (Krstovski and Blei, 2018) as a single token or
decomposing its component expressions or at the individual
symbol-level (Gao et al., 2017). Greiner-Petter et al. (2019)
developed a skip-gram-based model using as a reference
corpus a set of arXiv papers in HTML format using a term-
level tokenization granularity. The authors found that the
induced vector space did not produce meaningful semantic
clusters.
Premise selection is an approach generally used for se-
lecting useful premises to prove conjectures in Automated
Theorem Proving (ATP) systems (Alama et al., 2014a).
Irving et al. (2016) propose a neural architecture for
premise selection using formal statements written in Mizar.
Other authors have used machine learning approaches such
as Kernel-based Learning (Alama et al., 2014b), k-NN
algorithm (Gauthier and Kaliszyk, 2015) and Random
Forests (Färber and Kaliszyk, 2015). However, the neural
approaches previously presented (Irving et al., 2016) have
obtained higher scores at the premise selection task.

3. Linguistic Considerations
In this section, we describe some of the linguistics features
present in a mathematical corpus. Our aim is to examine
its discourse in combination with natural language. The
following definitions are not of mathematical objects since

Let a ∈ R>0 be a strictly positive real number.

Let f : R→ R be the real function defined as:
f (x) = ax where ax denotes a to the power of x.

Then f is convex.

Figure 1: Theorem with three definiendums and six
definiens, where the content inside the boxes are definien-
dums and the underlined content are definiens.

those already have established mathematical definitions; in
this work, we are interested in how the different mathemat-
ical objects are presented inside the mathematical text.

Definition 1. A mathematical expressionM, in a math-
ematical text, is defined by a set Σ = {s1, s2, s3, ..., sn}
where si ∈ S, and S is the set of symbols present in a cer-
tain mathematical domain of discourse, such as variables,
constants and functions. A variable, for example, is consid-
ered an expression.

Definition 2. An equation E is defined as a combination
of mi,mj ∈ M and an (in)equality predicate p ∈ {>,<
,≤,≥, 6=,=}.

Definition 3. A mathematical statement µ can be:

• A sequence of words (from the mathematical domain)
or;

• A sequence of words and expressions and/or equations
or;

• A sequence of only equations.

Definition 4. A mathematical text τ is a sequence
{µ1, µ2, µ3, ..., µn} of mathematical statements.

In the mathematical text, words, expressions and equations,
can be directly related through a relationship of definien-
dum and definiens, where an expression, the definiendum,
is defined by a mathematical statement or part of a math-
ematical statement, the definiens is also used to determine
the set of values and properties associated with an expres-
sion.

Definition 5. A mathematical definiens στi is the set of
tuples composed by e and the set of (part of) mathematical
statements that declares and/or quantifies e in the mathe-
matical text τi. Figure 1 presents an example where the
definiens and the definiendum are highlighted. A definien-
dum can have more than one definiens, for example, the
expression “f : R → R” is declared by the equation
“f (x) = ax”, and has the property “real function”. There-
fore:

στexample
={(“f : R→ R”, “f (x) = ax”),

(“f : R→ R”, “real function”), ...}

Different mathematical texts can also be related, since
mathematical knowledge is often incremental, where one
element depends on others. For example, in Figure 1, in



2177

Let x, y ∈ R.
Note that, from Power of Positive Real
Number is Positive: Real Number :
∀t ∈ R : at > 0.
So:

a(x+y)/2 =
√
ax+y ( Exponent Combination Laws )

=
√
axay ( Exponent Combination Laws )

≤ ax + ay

2
( Cauchy’s Mean Theorem )

Figure 2: Example of part of a proof, where four mathe-
matical supporting facts are present.

order to understand the meaning of the presented text, we
need to understand the definition of a real function, which
is defined in another mathematical text.

Definition 6. A mathematical supporting definition δτi
is the set of mathematical texts {τj , τk, τl, ...}, where all
elements in δτi contains a definition of a concept presented
in τi. For example, the theorem in Figure 1 is connected to
the mathematical text that defines what is a real function.

Definition 7. A definition D is composed by a 4-tuple
(τ, c, στ , δτ ), where τ is the definition text, c is the set of
categories that the definition belongs to, στ is the set of
definiens in the text and δτ is the set definitions that is refer-
enced in D. If δτ is empty, we call it an atomic definition.

A mathematical proof is a particular mathematical text that
tries to convince the reader that a specific hypothesis can
lead to a conclusion (Solow, 2002). Proofs often contain
mathematical bindings. They can also be connected to other
propositions, such as lemmas, theorems and corollaries, as
we will define next.

Definition 8. A mathematical supporting proposition
ωτi is the set of propositions that helps support the argu-
ment proposed in the mathematical text τi of a proof. It
is often used as an explanation for certain statements used
for the construction of the proof. Figure 2 presents part
of the proof, where the name of the supporting facts is
highlighted. For example, the mathematical statement of
Cauchy’s Mean Theorem is a supporting fact for the proof
shown.

Definition 9. The set of premises φτi of a mathematical
text τi of a proof is the set of supporting facts ωτi and the
set of supporting definitions δτi , i.e., φτi = ωτi ∪ δτi .

Definition 10. A mathematical proof P is defined is com-
posed by a tuple (τ, φτ ), where τ is the proof text and φτ is
the set of premises for P .

Definition 11. A theorem T is composed by a tuple
(τ, c, στ ,P), where τ is the theorem’s text, c is the set
of categories that the theorem belongs to, στ is the set of
definiens in the text, P is the set of proofs for the theorem
(one theorem can have more than one possible proof).

Definition 12. Similarly, we can define a lemma L. L is
composed by a 5-tuple (τ, c, στ ,P, t). With the addition of
t, theorem where the lemma occurs.

Definition 13. A corollary C is composed by a 5-tuple
(τ, c, στ ,P, t), where t is the theorem that derives C.

4. Dataset Construction: NL-PS
In this section, we present our dataset, NL-PS, and
detail the steps we took in order to construct it.
Our dataset is available as a set of JSON files in
http://github.com/debymf/nl-ps. A summary of the process
is presented in Figure 3.

Parsing the corpus
The proposed dataset was extracted from the source code of
ProofWiki. ProofWiki is an online compendium of math-
ematical proofs, with a goal to collect and classify math-
ematical proofs. ProofWiki contains links between theo-
rems, definitions and axioms in the context of a mathe-
matical proof, determining which dependencies are present.
ProofWiki is manually curated by different collaborators;
therefore, there are different styles of mathematical text and
many elements cannot be extracted automatically.

Cleaning wiki tags
ProofWiki has wikimedia tags; however, ProofWiki has
also specific tags related to the mathematical domain.
Therefore, we cannot use default wiki extraction tools. A
bespoke tool was developed to comply with ProofWiki’s
tagging scheme. For example, there is a particular tag for
referring to another mathematical text, using passages from
other texts in order to support a claim (Figure 4).

Proof curation
Several pages in ProofWiki are not directly related to math-
ematical propositions or definitions, such as users pages,
help pages, and pages about specific talks. We manually
analysed the pages and removed the ones that are not defi-
nitions, lemmas, theorems or corollaries. Some pages also
contained tags to indicate that

Extraction of categories
ProofWiki has associated categories for each page. How-
ever, the categories are not harmonised across definitions
and propositions. We merged different categories that be-
longed to the same mathematical branch and selected the
categories that contained at least 100 different entries. The
categories selected are: Analysis, Set Theory, Number The-
ory, Abstract Algebra, Topology, Algebra, Relation Theory,
Mapping Theory, Real Analysis, Geometry, Metric Spaces,
Linear Algebra, Complex Analysis, Applied Mathematics,
Order Theory, Numbers, Physics, Group Theory, Ring The-
ory, Euclidean Geometry, Class Theory, Discrete Mathe-
matics, Plane Geometry and Units of Measurement

Extracting supporting facts
The pages in ProofWiki are connected using hyperlinks.
We leverage this structure to extract supporting proposi-
tions and supporting definitions. From the definition math-
ematical text, we extract the hyperlinks connecting to other
definitions and these links are the supporting definitions.
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Obtain Source Code Clean Wiki tags

Extract
categoriesPage curation

Annotation of
statements

Extract supporting
propositions and

definitions

Structure entries
NL-PS

Figure 3: Pipeline used to build the NL-PS dataset.

Let $\xi \in \C$.
Let $\displaystyle S \paren z = \sum_{n \mathop = 0}^\infty a_n \paren
{z - \xi}^n $ be a complex power series about $\xi$.
Let $R$ be the radius of convergence of $S \paren z$.

<onlyinclude>
Let $B_R \paren \xi$ denote the open $R$-ball of $\xi$.
Let $z \in B_R \paren \xi$.
Then $S \paren z$ converges absolutely.
If $R = +\infty$, we define $B_R \paren \xi = \C$.
</onlyinclude>

reference

...
{{:Existence	of	Radius	of	Convergence	of	Complex
Power	Series/Absolute	Convergence}}
...

Mathematical text 1

Mathematical text 2

Figure 4: An example where Mathematical text 1 refer-
ences a passage in Mathematical text 2 using the name of
the passage to be referenced between curly brackets. Only
the part highlighted is being referenced.

From the mathematical text of proofs, we extract the hyper-
links to other propositions and we consider these as sup-
porting propositions. For example, Figure 5 presents a
theorem and its respective proof. The proof contain links
(highlighted) to other propositions, these are supporting
propositions needed in order to support the proof.

For every integer n such that n > 1, n can be expressed as the 
product of one or more primes, uniquely up to the order in which 
they appear.

In Integer is Expressible as Product of Primes it is proved that every 
integer n such that n > 1, n can be expressed as the product of one 
or more primes.

In Prime Decomposition of Integer is Unique, it is proved that this 
prime decomposition is unique up to the order of the factors.

Theorem 

Proof

Figure 5: Example of supporting propositions for a theo-
rem.

Annotating mathematical text
The entries in ProofWiki are often divided in sections, for
NL-PS, we are only interested in the sections that present
a definition, a proposition or a proof. Proofs were curated
(combining manual and automatic annotation) to contain
only mathematic discourse, removing satellite discourse
such as Historical Notes. Because some propositions can
be proved in different ways, we also annotated the different
proofs which can be found inside one single page.

Structuring the entries
Finally, the dataset is structured as follows:

• Definitions entries are composed by a mathematical
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text and a set of supporting definitions.

• Lemmas and Theorems have a mathematical text, a
proof and a set of premises.

• Corollaries are composed by a mathematical text, a
proof, a set of premises and the theorem that derives
the corollary.

5. Dataset Analysis
NL-PS has a total of 20,401 different entries, composed of
definitions, lemmas, corollaries and theorems, as shown in
Table 5..

Type Number of entries

Definitions 5,633
Lemmas 327
Corollaries 292
Theorems 14,149
Total 20,401

Table 1: Types of mathematical documents in NL-PS

Figure 6 presents the distribution of different categories in
the dataset.

Figure 6: Distribution of documents per category in the
dataset.

Figure 7 presents a histogram with the frequency of the dif-
ferent number of premises. We can observe that the state-
ments usually have a small number of premises, with 8, 046
statements containing between one and five premises. The
highest number of premises for one theorem is 32 (text for
the theorem “The Sorgenfrey line is Lindelöf.”).
Similarly, the histogram in Figure 8 shows the frequency of
the different number of dependencies.
We also computed how many times each statement is used
as a premise, and we observed that most of the state-
ments are used as dependencies for only a small subset of
premises. A total of 6, 866 statements has between one and
three dependants. On average, statements contain a total of
289 symbols (characters and mathematical symbols). The

Figure 7: Distribution of the number of premises in the
ProofWiki corpus.

Figure 8: Number of times a statement is referred as a
premise.

specific number of tokens will depend on the type of to-
kenisation used for the mathematical symbols.

We can also represent the connections (premises) between
different mathematical texts as a graph. This graph has a
total of 14,393 nodes (the number of nodes is smaller than
the number entries, since some of the entries are discon-
nected, and we do not consider those for the graph) and
34,874 edges.

The dataset provides a specific semantic modelling chal-
lenge for natural language processing as it requires specific
tokenization, co-reference resolution and the modelling of
specific discourse structures tailored towards mathematical
text. One crucial challenge is how to resolve the semantics
of variables in mathematical expressions, which requires
a particular binding method. As shown in Figure 9, vari-
ables that refer to the same set can often have different
names. For example, in the definition of sine, the vari-
able being used is x, but a and b refers to the same set.
Basically, variables serve as a mathematical alternative to
anaphora (Ganesalingam, 2013).
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Cosine of sum equation

Definition of sine

Figure 9: Variables with different symbols, but referring to
the same set.

6. Experiments
In order to identify the challenges of the task of natural
premise selection using NL-PS, we performed initial ex-
periments using two baselines: TF-IDF and PV-DBOW (Le
and Mikolov, 2014). We use both techniques to create vec-
tor representations for all the mathematical texts. Then
compute the cosine similarity between each entry and rank
the results by proximity. We then compute the Mean Aver-
age Precision (MAP) for each baseline, ranking all possible
premises, computed as:

MAP =

∑N
i=1 AveP(τi)

N

where N is the total number of documents, τi is the i-th
mathematical text and AveP is the average precision.
Table 6. presents the initial results. We compare three dif-
ferent types of tokenisations for the mathematical elements.
Initially, we treat the expressions and equations as single
tokens; for example, the expression “x + y + z” would be
considered a single word. We also considered tokenised ex-
pressions, tokenising operations and operators, the expres-
sion “x+y+z” would be tokenised as [‘x’,‘+’,‘y’,‘+’,‘z’].
Finally, we tokenise the whole text as a sequence of charac-
ters. We run PV-DBOW with the default parameters, com-
paring different sizes of embeddings, with the best results
obtained with an embedding size of 100.
From these initial results, we can conclude that the task is
semantically non-trivial and cannot be solved with retrieval
strategies such as lexical overlap. We can also notice that
we obtain better results when we tokenise the expressions,
hinting that the elements inside the expressions have se-
mantic properties that are relevant for determining the rele-
vant premises. For the following experiments, we are using
the tokenised expressions and PV-DBOW with an embed-
ding size of 100.
In Table 6. we compare the results for different sizes of
the dataset. We consider the full dataset and three differ-
ent subsets with different categories. We can notice that for
smaller datasets, both baselines perform better. This result
was expected since with smaller datasets there are less pos-
sible premises, and elements from the same categories tend
to be more uniform between themselves.
We can also consider the fact that the premises are transi-
tive, i.e., if one a mathematical text τi has a premise x and a

TFIDF PV-DBOW
50 100 200

Expression as words 0.073 0.048 0.051 0.046
Tokenised expressions 0.089 0.069 0.073 0.072
Char level 0.051 0.059 0.065 0.061

Table 2: MAP results for TF-IDF and PV-DBOW compar-
ing tokenisation of expressions. We compare the results for
PV-DBOW for different dimension values.

TFIDF PV-DBOW

All Categories 0.089 0.076
Algebra (1,241) 0.183 0.177
Analysis (1,102) 0.191 0.212
Number Theory (741) 0.242 0.188

Table 3: Comparing results for different categories (the
number between parenthesis indicates the number of en-
tries for that category).

mathematical text τj has τi as a premise, then x should also
be a premise of τj . In this case, the task becomes even more
challenging, as we present in Table 6., where we consider
the transitivity with two and three hops of distance. From
the results, we notice that the more hops needed to obtain
the premise, the worse our baselines perform.

TFIDF PV-DBOW

1-hop premises 0.089 0.073
2-hop premises 0.052 0.047
3-hop premises 0.038 0.031

Table 4: Comparing number of hops needed for obtaining
premises.

We also verify on how state-of-the-art embedding models
perform with such specific dataset. BERT (Devlin et al.,
2019) is reported to have performed in different NLP tasks,
including understanding numeracy (Wallace et al., 2019).

In order to use BERT, we formulate the problem as a pair-
wise relevance classification problem, where we aim to
classify if one mathematical text is connected to another.
We do not perform any pre-processing for the expressions.

For this experiment, we used the pre-trained BERT model
bert-base-uncased and SciBERT (Beltagy et al., 2019)
model scibert-scivocab-uncased, fine-tuning for our task
with a sequence classifier, adding a linear layer on top of the
transformer vectors. The results are presented in Table 6..
Even though BERT is not pre-trained using a mathemati-
cal corpus, it performs better than TF-IDF and PV-DBOW.
SciBERT perform slightly better than BERT, since it was
trained in a scientific corpus, but not in a mathematical cor-
pus. This hints that BERT trained from scratch in a mathe-
matical corpus could have even better results, however, this
is outside the scope of this work.
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Model MAP

SciBERT 0.383
BERT 0.377

Table 5: Results for BERT and SciBERT.

7. Conclusion
In this paper we proposed a new task for mathematical lan-
guage processing: natural language premise selection. We
also made a new dataset available for the evaluation of the
task and we analysed how the dataset works with the task
on different baselines.
From our experiments we identified that handling math-
ematical symbols are crucial for solving the task, taking
into consideration more specific semantics of operators and
variables: such semantics are not captured using PV-DM
or BERT. This provides evidence on the need for specific
embeddings and representation for mathematical formulas
and discourse, which could most certainly improve the pre-
diction of future work in the natural language premise se-
lection task.
We also identify that the task becomes more challenging
when we consider that the premises are transitive, suggest-
ing that the task could benefit from graph-based represen-
tations.
Our dataset can be used in a different set of natural mathe-
matical reasoning tasks, aiding researchers on the creation
of mechanisms for improving the way machines understand
mathematical text.
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Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., and
Urban, J. (2014b). Premise selection for mathematics
by corpus analysis and kernel methods. Journal of Auto-
mated Reasoning, 52(2):191–213, Feb.

Beltagy, I., Lo, K., and Cohan, A. (2019). Scibert: A
pretrained language model for scientific text. In Pro-
ceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3606–3611.

Blanchette, J. C., Kaliszyk, C., Paulson, L. C., and Urban, J.
(2016). Hammering towards qed. Journal of Formalized
Reasoning, 9(1):101–148.

Chaganty, A. and Liang, P. (2016). How much is 131 mil-
lion dollars? putting numbers in perspective with compo-
sitional descriptions. In Proceedings of the 54th Annual

Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 578–587.

Cramer, M., Fisseni, B., Koepke, P., Kühlwein, D.,
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