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Abstract
We present a comparison between deep learning and traditional machine learning methods for various NLP tasks in Italian. We carried
on experiments using available datasets (e.g., from the Evalita shared tasks) on two sequence tagging tasks (i.e., named entity recognition
and nominal entity recognition) and four classification tasks (i.e., lexical relations among words, semantic relations among sentences,
sentiment analysis and text classification). We show that deep learning approaches outperform traditional machine learning algorithms
in sequence tagging, while for classification tasks that heavily rely on semantics approaches based on feature engineering are still
competitive. We think that a similar analysis could be carried out for other languages to provide an assessment of machine learning /
deep learning models across different languages.
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1. Introduction
In the recent years, the so called ”deep learning revolution”
has influenced and changed many fields of Artificial Intelli-
gence (e.g., machine learning and computer vision) and has
also affected all areas related to human language technolo-
gies. Initial results have been obtained with the adoption
of deep neural networks in speech recognition, with a sig-
nificant boost of performance in automatic speech recogni-
tion systems (Graves et al., 2013). In Machine Translation,
starting from 2013, the phrase-based statistical approaches
that were at the state of the art have been gradually substi-
tuted with neural machine translation, based on deep learn-
ing architectures, which have been proven to obtain bet-
ter performance (Bahdanau et al., 2014). The main reason
for this increase in performance is that, as more training
data are available both for speech recognition and machine
translation, large neural networks have been proven to be
superior to traditional machine learning (ML) algorithms,
such as support vector machines.
However, if we consider tasks related to semantic analy-
sis of text, the limited availability of semantically anno-
tated data, typically requiring specialized human effort, has
slowed the adoption of neural approaches. It is only in the
last few years that deep learning has obtained high perfor-
mance across different NLP tasks. These models can often
be trained with a single end-to-end model and do not re-
quire task-specific feature engineering, thus they not only
tend to perform better than traditional ML, but they do re-
quire less human effort, making their adoption convenient.
In this paper we provide a
comparison between traditional approaches and deep learn-
ing applied to NLP tasks in the area of information extrac-
tion from Italian texts. We carried on experiments using
available datasets on both sequence tagging (i.e., named
entity recognition, nominal entity recognition) and classi-
fication tasks (i.e., lexical relations among words, semantic
relations among sentences, sentiment analysis, text classifi-
cation).

We consider this paper as a contribution in the direction of
developing benchmarks encompassing a variety of tasks in
order to favour models that share general linguistic knowl-
edge across tasks. This is very much in the spirit of GLUE,
the General Language Understanding Evaluation (Wang et
al., 2018), a collection of resources for training, evaluating,
and analyzing natural language understanding systems.
The paper is structured as follows. Section 2 reports ba-
sic notions about deep learning for NLP that will be used
for our experiments. Sections 3 and 4 focus on sequence
tagging tasks, named entity recognition and nominal entity
recognition, respectively. Sections 4-7 report on classifica-
tion tasks: lexical relations, textual entailment, sentiment
analysis and text classification. Finally, Section 9 discusses
our achievement and proposes work for the future.

2. Deep Learning for NLP
This section provides basic notions on deep learning for
NLP, which will be used in the rest of the paper. We in-
troduce word vector representations, pre-trained language
models, and long-short-term-memory architectures.

2.1. Word Embeddings
Word embeddings are essentially vector representations of
words, that are typically learnt by an unsupervised model
when fed with large amounts of text (e.g., Wikipedia, sci-
entific literature, news articles, etc.). These representations
capture semantic similarity between words among other
properties. They are hence very useful to represent words
in downstream NLP tasks such as POS tagging, NER etc.
Three families of word embeddings can be identified:

• Bag of words based. The original word order indepen-
dent models like Word2vec (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014).

• Attention (Transformer) based. Embeddings gener-
ated by BERT (Devlin et al., 2018), which has pro-
duced state-of-the-art results to date in downstream
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tasks like NER, Q&A, classification etc. BERT takes
into account the order of words in a sentence but is
based on attention mechanism as opposed to sequence
models like ELMo.

• RNN family based. Sequence models (ELMo) that
produce word embeddings (Peters et al., 2018). ELMo
uses stacked bidirectional LSTMs to generate word
embeddings that have different properties based on the
layer that generates them.

2.2. BERT
BERT (Devlin et al., 2018) is a deep learning model that
has given state-of-the-art results on a wide variety of nat-
ural language processing tasks. It stands for Bidirectional
Encoder Representations for Transformers. It has been pre-
trained on Wikipedia and BooksCorpus and requires task-
specific fine-tuning.
BERT is available pre-trained on domain-specific corpora.
E.g., Clinical BERT (BERT pre-trained on a corpus of clin-
ical notes) and sciBERT (Pre-Trained Contextualized Em-
beddings for Scientific Text). BioBERT (Lee et al., 2019)
(Bidirectional Encoder Representations from Transformers
for Biomedical Text Mining) is a domain-specific language
representation model pre-trained on large-scale biomedical
corpora. With almost the same architecture across tasks,
BioBERT largely outperforms BERT and previous state-of-
the-art models in a variety of biomedical text mining tasks
when pre-trained on biomedical corpora. While BERT ob-
tains performance comparable to that of previous state-of-
the-art models, BioBERT significantly outperforms them
on the following three representative biomedical text min-
ing tasks: biomedical named entity recognition (0.62% F1

score improvement), biomedical relation extraction (2.80%
F1 score improvement) and biomedical question answering
(12.24% MRR improvement).
BERT is also available for languages other than English1.
In particular, it is provided a model for Chinese and a single
model for all the other languages, including Italian.

2.3. A Sequence Labeling Neural Architecture:
NeuroNLP2

In this section we introduce NeuroNLP2 (Ma and Hovy,
2016), a reference neural architecture for sequence label-
ing in NLP that achieved state-of-the-art performance for
named entity recognition for English on the ConLL-2003
dataset. Specifically, we describe the most recent imple-
mentation of the system in Pytorch distributed by the au-
thors2. We selected this system not only for its state-of-
the-art performance and for code availability, but also for
the peculiar structure of the network, which is common
to other works, including (Lample et al., 2016). The sys-
tem is composed of three layers (Figure 1): (i) a CNN that
allows to extract information from the input text without
any pre-processing; (ii) a bidirectional LSTM layer that
presents each sequence forwards and backwards to two sep-

1https://github.com/google-research/bert/
blob/master/multilingual.md

2https://github.com/XuezheMax/NeuroNLP2

Figure 1: The main NeuroNLP2 structure. Dashed arrows
indicate dropout layers applied on both the input and output
vectors of BLSTM.

arate LSTMs; (iii) a CRF layer that decodes the best label
sequence.
NeuroNLP2 constructs a neural network model by feeding
the output vectors of BLSTM into a CRF layer, as it is de-
picted in Figure 1. For each token in the input sequence,
first a character-level representation is computed by a CNN
with character embeddings as inputs. Then the character-
level representation vector is concatenated with the word
embedding vector to feed the BLSTM network. The CNN
for Character-level Representation is an effective approach
to extract morphological information (like the prefix or suf-
fix of a word) from characters of words and encode it into
neural representations. In NeuroNLP2 the CNN is similar
to the one proposed in (Chiu and Nichols, 2016), except
that it uses only character embeddings as inputs, without
character type.
At the second layer each input sequence is presented
both forwards and backwards to a bidirectional LSTM,
whose output allows to capture past and future information.
LSTMs (Hochreiter and Schmidhuber, 1997) are variants
of recurrent neural networks (RNNs) designed to cope with
gradient vanishing problems. A LSTM unit is composed of
three multiplicative gates which control the proportions of
information to forget and to pass on to the next time step.
The basic idea is to present each sequence forwards and
backwards to two separate LSTMs and then to concatenate
the output to capture past and future information, respec-
tively.
The LSTM’s hidden state takes information only from the
past, knowing nothing about the future. However, for many
tasks it is beneficial to have access to both past (left) and fu-

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/XuezheMax/NeuroNLP2
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ture (right) contexts. A possible solution, whose effective-
ness has been proven by previous work (Dyer et al., 2015),
is provided by bi-directional LSTMs (BLSTM). (Ma and
Hovy, 2016) apply a dropout layer on both the input and
output vectors of the BLSTM.
Finally, the third layer implemented in NeuroNLP2 is a
Conditional Random Fields (CRF) based decoder, which
considers dependencies between entity labels in their con-
text and then jointly decodes the best chain of labels for a
given input sentence. For example, in NER with standard
IOB annotation, an I-token can not follow an O, a constraint
which is captured by the CFR layer. Conditional Random
Fields (Lafferty et al., 2001) offer several advantages over
hidden Markov models and stochastic grammars for such
tasks, including the ability to relax strong independence
assumptions made in those models. For a sequence CRF
model (only interactions between two successive labels are
considered), training and decoding can be solved efficiently
by adopting the Viterbi algorithm.

3. Named Entity Recognition
Named entities are proper names referring to persons, loca-
tions and organizations. A reference paper for the applica-
tion of deep learning techniques to Named Entity Recog-
nition is Ma and Hovy (2016), whose approach, Neu-
roNLP2, has been presented in Section 2.3.. The sys-
tem is truly end-to-end, requiring no feature engineering
or data pre-processing, thus making it applicable to a wide
range of sequence labeling tasks. They evaluate the system
on two datasets for two sequence labeling tasks — Pen-
nTreebank WSJ corpus for part-of-speech tagging and the
CoNLL 2003 corpus for named entity recognition (NER).
They obtain state-of-the-art performance on both datasets
— 97.55% accuracy for part-of-speech tagging and 91.21%
F1 for NER.
Neural architectures for Italian NER have been already in-
vestigated by several works. Bonadiman et al. (2015) in-
troduce a Deep Neural Network (DNN) for Named Entity
Recognizers (NERs) in Italian. The network uses a sliding
window of word contexts to predict tags. It relies on a sim-
ple word-level log-likelihood as a cost function and uses a
new recurrent feedback mechanism to ensure that the de-
pendencies between the output tags are properly modeled.
The evaluation on the Evalita 2009 benchmark (Speranza,
2009) shows that the DNN performs on par with the best
NERs, outperforming the state of the art when gazetteer
features are used.
Basile et al. (2017) propose a Deep Learning architec-
ture for sequence labeling based on a state-of-the-art model
that exploits both word- and character-level representations
through the combination of bidirectional LSTM, CNN and
CRF. They evaluate the proposed method on three NLP
tasks for Italian: PoS-tagging of tweets, Named Entity
Recognition and Super-Sense Tagging. Results show that
the system is able to achieve state-of-the-art performance
in all the tasks and in some cases overcomes the best sys-
tems previously developed for Italian.
Magnolini et al. (2019) provide experimental evidences on
two datasets (named entities and nominal entities) and two
languages (English and Italian), showing that extracting

features from a rich model of a gazetteer and then concate-
nating such features with the input embeddings of a neu-
ral model is the best strategy in all experimental settings,
significantly outperforming more conventional approaches.
For the experiments they used exactly the same network
parameters described in Ma and Hovy (2016) and provided
as default by the available implementation. As input em-
beddings they use Stanford’s publicly available GloVe 100-
dimensional embeddings trained on 6 billion words from
Wikipedia and web texts for English (in the same way as
Ma and Hovy (2016)); for Italian they use Stanford’s GloVe
50-dimensional embeddings trained on a Wikipedia’s dump
3 with the default setup. For out-of-vocabulary words they
use a unique randomly generated vector for every word.

dataset BERT Best Evalita 2009 SotA
NER Evalita 2009 85.05 82.00 84.33

Table 1: Application of BERT fine-tuning for Named Entity
Recognition.

In Table 1 we report the results we obtained applying BERT
(multilingual model) to the NER Evalita 2009 (Speranza,
2009) task. The BERT model is compared against the sys-
tem that obtained the best result at Evalita 2009, (Zanoli et
al., 2009) and the state of the art for Italian NER (Nguyen
et al., 2010).
As suggested by BERT developers, for sequence labeling
BERT-NER4 was used simply performing some fine tuning
on the training data with default parameters. However, in
order to obtain this result the default parameters are differ-
ent from the ones used for classification. Another impor-
tant detail is the great difference in performance among the
case sensitive and the case insensitive model: the former
one outperforms in a significant way the latter one.
It can be noticed that the purpose of the experiment is not
to obtain a new state of the art (even if in this case it was
achieved), but to investigate how deep learning performs
on a different task in a language that is not English. In fact,
BERT-NER is not the implementation presented in Devlin
et al. (2018), but a third party implementation slightly less
performing than the one presented in the paper, that is not
freely available.

4. Nominal Entity Recognition
Nominal entities are noun phrase expressions describing an
entity. They can be composed by a single noun (e.g., pasta,
carpet, parka) or by more than one token (e.g., capri sofa
bed beige, red jeans skinny fit, light weigh full frame cam-
era, grilled pork belly tacos). Differently from named en-
tities, nominal entities are typically compositional, as they
do allow morphological and syntactic variations (e.g., for
food names, spanish baked salmon, roasted salmon and hot
smoked salmon), which makes it possible to combine to-
kens of one entity name with tokens of another entity name
to generate new names (e.g., for food names, salmon tacos
is a potential food name given the existence of salmon and
tacos).

320/04/2018
4https://github.com/kyzhouhzau/BERT-NER

https://github.com/kyzhouhzau/BERT-NER
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I would like to order a salami pizza and two mozzarella cheese sandwiches
O O O O O O B-FOOD I-FOOD O O B-FOOD I-FOOD I-FOOD

Table 2: Example of IOB annotation of food nominal entities.

Nominal entity recognition has been approached with sys-
tems based on linguistic knowledge, including morpho-
syntactic information, chunking, and head identification
(Pianta and Tonelli, 2010). In the framework of the ACE
program (Doddington et al., 2004) there has been several
attempts to develop supervised systems for nominal enti-
ties (Haghighi and Klein, 2010), which, however, had to
face the problem of the scarcity of annotated data, and, for
this reason, were developed for few entity types.
Similarly to what is done for named entities, nominal en-
tity recognition has been approached as a sequence label-
ing task. Given an utterance U = {t1, t2, ..., tn} and a
set of entity categories C = {c1, c2, ..., cm}, the task is
to label the tokens in U that refer to entities belonging
to the categories in C. As an example, using the IOB
format (Inside-Outside-Beginning, (Ramshaw and Marcus,
1995)), the sentence “I would like to order a salami pizza
and two mozzarella cheese sandwiches” could be labeled as
shown in Table 2. It is worth to mention that the IOB for-
mat does not allow to represent nested entities, a potential
limitation for nominal entities.

4.1. Datasets for Nominal Entity Recognition
We use DPD – Diabetic Patients Diary – a dataset in Ital-
ian made of diary entries of diabetic patients. Each day the
patient has to write down what s/he ate in order to keep
track of his/her dietary behavior. In DPD all entities of
type FOOD have been manually annotated by two annota-
tors (inter-annotator agreement is 96.75 dice coefficient).
Sentences in the dataset have a telegraphic style, e.g. the
main verb is often missing, resulting in a list of foods like
the following:
“<risotto ai multicereali e zucchine>FOOD

<insalata>FOOD e <pomodori>FOOD” (“<risotto with
multigrain and zucchini> <salad> and <tomatoes>”).

Entity Gazetteers. In Table 3 we describe the gazetteers
that we have used in our experiments for two datasets (DPD
for nominal entities and CoNNL for named entities), re-
porting, for each entity type, sizes in terms of number of
entity names, the average length of the names (in number
of tokens), plus the length variability of such names (stan-
dard deviation). We also report additional metrics that try
to grasp the complexity of entity names in the gazetteer: (i)
the normalized type-token ratio (TTR), as a rough measure
of how much lexical diversity is in the nominal entities in
a gazetteer, see Richards (1987); (ii) the ratio of type1 to-
kens, i.e. tokens that can appear in the first position of an
entity name but also in other positions, and type2 tokens,
i.e. tokens appearing at the end and elsewhere; (iii) the ra-
tio of entities that contain another entity as sub-part of their
name. With these measures we are able to partially quan-
tify how difficult it is to recognize the length of an entity
(SD), how difficult it is to individuate the boundaries of an
entity (ratio of type1 and type2 tokens), how much com-
positionality there is starting from basic entities (i.e., how

many new entities can be potentially constructed by adding
new tokens - sub-entity ratio).

4.2. Experiments on Nominal Entity Recognition
In our experiments we compare nominal entity recognition
on the DPD dataset against named entity recognition on the
CoNNL dataset. In both cases we show four configurations:
(i) NeuroNLP2, the neural architecture presented in Sec-
tion 2.3; (ii) NeuroNLP2 with the use of gazetteer features
(single-token) as reported in Table 3; (iii) NeuroNLP2 with
the use of gazetteer features (multi-token); (iv) NeuroNLP2
with the use of gazetteer features based on a dedicated neu-
ral model (NNg).
Table 4 shows the results of gazetteer integration as embed-
ding. The NeuroNLP2 model benefits significantly from
the gazetteer representation of NNg , especially for the DPD
dataset (with an increment of 2.54 in terms of F1). The
combination of NeuroNLP2 and NNg reaches state-of-the-
art performance on ConNLL-2003 when it is added as em-
bedding feature, while both the single token and the multi-
token approaches do not improve the overall results. Using
gazetteer features as part of embedding dimensions helps
the model to adapt better when the training data are very
few, like in the DPD dataset. Furthermore, the results on
the DPD dataset of NeuroNLP2 + NNg , compared to the
others, show that NNg correctly generalizes nominal enti-
ties from the gazetteer, improving both Recall and Precision
with respect to the multi-token approach.

5. Lexical Relations among Words
This section addresses the capacity of neural models
to detect semantic relations (e.g., synonymy, semantic
similarity, entailment, compatibility) between words (or
phrases, like the nominal expressions described in Section
4.2). We focus our experiments on the compatibility re-
lation, and adopt the definition of compatibility proposed
by Kruszewski and Baroni (2015): two linguistic expres-
sions w1 and w2 are compatible iff, in a reasonably normal
state of affairs, they can both truthfully refer to the same
thing. If they cannot, then they are incompatible. Under
this definition compatibility is a symmetric relation, which
is different both from subsumption, which in not symmet-
ric, from semantic similarity (Agirre et al., 2012) (two ex-
pressions can be compatible although not semantically sim-
ilar, like aperitif and chips, and from textual entailment
(Dagan et al., 2005), as entailment is not a symmetric re-
lation.

5.1. Task definition
The task is defined as follows: given a lexicon L and a
query q, the system should retrieve and order all the terms
li in L such that q and li are compatible. L is a finite set
of n terms, and both terms li and the query q are nominal
expressions composed of one or more words. Accordingly,
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dataset Gaz. #entities #tokens length ± SD TTR type1(%) type2(%) sub-entity(%)

CoNNL

PER 3613 6454 1.79 ±0.54 0.96 19.00 04.63 23.60
LOC 1331 1720 1.29 ±0.69 0.97 04.66 04.33 10.14
ORG 2401 4659 1.94 ±1.16 0.91 09.35 15.06 19.44
MISC 869 1422 1.64 ±0.94 0.89 08.61 08.73 19.85

DPD FOOD 23472 83264 3.55 ±1.87 0.75 17.22 22.97 11.27

Table 3: Gazetteers used in the experiments for Nominal Entity Recognition. Description is provided in terms of number
of entity names, total number of tokens, average length and standard deviation (SD) of entities, type-token ratio (norm
obtained by repeated sampling of 200 tokens), type1 and type2 unique tokens ratio and sub-entity ratio.

CoNLL DPD
Accuracy Precision Recall F1 Accuracy Precision Recall F1

NeuroNLP2 98.06 91.42 90.95 91.19 88.47 77.17 74.79 75.96
NeuroNLP2 + single token 98.06 91.53 90.51 91.02 88.29 75.63 77.19 76.40
NeuroNLP2 + multi token 98.08 91.41 90.76 91.08 88.98 78.90 76.33 77.59
NeuroNLP2 + NNg 98.05 91.41 91.02 91.22 89.89 79.68 77.36 78.50

Table 4: Results on Nominal Entity Recognition using gazetteers as features together with embeddings.

the expected output is a (possibly empty) list of compatible
terms ordered by relevance with respect to q.
In practical scenarios (e.g., ontology matching) the lexicon
L can be composed of thousands, or tens of thousand of
terms (e.g., all concept names in DBPedia, all the names of
products in a catalogue, all word forms in WordNet, or all
the entry names in a dictionary). In our definition we do not
consider any relation among terms (e.g., semantic relations
such as IS-A), so that terms can be considered as indepen-
dent. Finally, the problem is treated as in information re-
trieval (IR), assuming that queries are nominal expressions
(as they are in most cases in IR) and that the document col-
lection (i.e., our lexicon L) is composed of documents con-
sisting of a single term (i.e., a nominal expression). Com-
patibility is formulated as a binary classification problem,
as two expressions can be either compatible or incompati-
ble. While Kruszewski and Baroni (2015) use a continuous
scale from 1 (low compatibility) to 7 (high compatibility)
and then estimate a compatibility threshold, in our work we
use a three-value scale (from 1 to 3).

5.2. Datasets on compatibility relation
We focused our experiments on compatibility relations
among food names. We adopted an existing ontology in the
food domain, the HeLiS ontology (Bailoni et al., 2016)5,
which we use as the lexicon L. As for the queries q, we built
a set of 100 query terms that are completely independent of
those contained in HeLiS; in fact, we extracted them from
among the dishes or types of food annotated in the Diabetic
Patients Diary6, a corpus of above 1,000 meal descriptions
written by diabetic patients (for example, wholemeal pasta
with raw ham and tomatoes, cucumbers).
For each query, the annotator was presented with a list of
5 to 10 terms in alphabetical order. The annotator had to
annotate each term for compatibility with the query it was
associated with, which means they had to decide whether

5http://w3id.org/helis.
6https://hlt-nlp.fbk.eu/technologies/dpd.

Dev Test Total
Total queries 50 50 100
Tokens/query 2.58 2.76 2.67
1 terms 223 (54.9%) 261 (60.7%) 484 (57.9%)
2 terms 156 (38.4%) 135 (31.4%) 291 (34.8%)
3 terms 27 (6.7%) 34 (7.9%) 61 (7.3%)
Total terms 406 430 836
Tokens/term 4.01 4.21 4.12
Terms/query 8.12 8.6 8.36

Table 5: Statistics about the dataset for compatibility rela-
tion (n terms indicates the terms with compatibility rating
equal to n).

the two given expressions could or could not refer to the
same dish or food. More specifically, the task consisted of
assigning to each term a compatibility rating on a 3-point
scale where 3 means that they were fully convinced that the
two expressions could refer to the same dish or food, while
1 means that they thought that it was impossible that the
two expressions referred to the same dish or food. In the
case of chicken with mushrooms and onions and chicken
with mushrooms, for example, the expected compatibility
rating is 3, since the two expressions can (easily) refer to
the same dish (when mentioning a dish, people can easily
omit secondary ingredients). On the other hand, annotators
would assign a compatibility rating of 1 to the cod fillet and
pork fillet pair, since a cod fillet cannot be a pork fillet. Fi-
nally, a compatibility rating of 2 would be assigned to pairs
like cod fillet with asparagus and rice cod fillet with fennel
and capers; in this case, the secondary ingredients listed
in the query and in the proposed term differ, but they both
refer to cod fillet. Inter-annotator agreement, computed in
terms of kappa statistic on the dual annotation of a subset
of 21 query terms (for a total of 184 terms), is 0.76.

For our experiments, we split the dataset in two parts; half
of the data was used as a development set and half as a test
set (see Table 5 for detailed statistics about the two datasets

http://w3id.org/helis
https://hlt-nlp.fbk.eu/technologies/dpd
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and their annotations).

5.3. Experiments on compatibility relation
We conducted experiments with the algorithms below.

Semantic Similarity. A baseline based on similarity of
word embeddings. A term is considered compatible with
the query if it is ranked in the best 5 terms according to
the cosine similarity of the vector representing the query
and the vector representing the term. More precisely, we
first extract the vector of each token of the query from a
GloVe model (Pennington et al., 2014) and then compute
the average of the extracted vectors (i.e., the centroid vec-
tor). This method partially includes token overlap, in fact
equal tokens have equal vectors, so expressions composed
of the same tokens have the same vector representation.
This baseline exclusively uses the information carried by
GloVe vectors, as all the vectors included in the model are
used with the same weight.

Semantic Similarity with Threshold. The same as the
semantic similarity baseline, with the addition of a compat-
ibility threshold operating over the best 5 terms. A term is
considered compatible with the query if it is ranked above
the compatibility threshold, which is empirically is calcu-
lated on WordNet data.

Semantic Head. An approach based on the automatic
recognition of the semantic head of a term, without any
threshold. A term is considered compatible with the query
if it is ranked in the best 5 terms according to both their re-
spective semantic heads and the similarity of their tokens.

Semantic Head with Threshold. The approach based on
semantic heads, integrated with a compatibility threshold
over the best 5 terms retrieved by the semantic head algo-
rithm.

5.4. Evaluation Metrics
Evaluation is based on Mean Reciprocal Rank (MRR)
(Craswell, 2009), a standard measure to evaluate retrieval
systems (particularly question answering). While MRR is
designed for binary classification of retrieved objects (i.e.,
correct vs incorrect), in our scenario retrieved terms can
assume one value on a 3-point compatibility scale. We
therefore calculate the MRR for each value, thus obtain-
ing MRR1, MRR2 and MRR3, respectively the MRR
of terms that are not compatible with query (value=1), of
terms with low compatibility (value=2) and of terms that
are fully compatible (value=3). Results in Table 6 are
presented using the three metrics MRR1,3, MRR2,3 and
MRR1, as described below.
MRR1,3 is the difference between MRR3 and MRR1,
and indicates the ability of the system to rank compatible
terms higher than the incompatible ones. This metric is
the weighted average of the three MRR, with the MRR2

weight set to 0 (i.e., [-1 0 1]). MRR1,3 is normalized over
[-1 1].
MRR2,3 is the weighted average of the three MRR with
the following respective weights [0 0.5 1], and it is meant
to captures the ability of the algorithm to retrieve only
the terms that compatible (value=3) or almost compatible
(value=2). MRR2,3 is normalized over [0 1].

MRR1 (i.e., [1 0 0]) is meant to capture the capacity
of the system to rank incompatible terms lower than all
other terms. Although this information is also captured
by MRR1,3, MRR1 alone highlights the effect that differ-
ent algorithms have on the reduction of misclassifications.
MRR1 is normalized over [0 1].

5.5. Results on compatibility relation
Results (see Table 6) show that the semantic head approach
systematically outperforms the semantic similarity base-
line, both when the threshold is used and when it is not
used. The algorithms with the threshold strongly reduce
MRR1, with a beneficial effect also on MRR1,3; this is
actually an expected effect of the threshold, as it enables
the system to better distinguish between compatible and in-
compatible terms. On the other hand, a drawback of in-
troducing the threshold is that it reduces MRR2,3, i.e., the
capability of the system to retrieve related terms. It is also
interesting to notice that the decrease in MRR2,3 is greater
in the semantic similarity baseline, which is due to the fact
that it implements only the relatedness threshold.
As a final consideration, we point out that the decrease in
performance on the test set as compared to the development
set is consistent for the semantic head approach in terms of
all the metrics; this shows that the compatibility threshold
is not overfitted on the development data, but it is general
and has the same effect on the development and the test
data.
Finally, in the last line of Table 6 we report the results
obtained applying the multilingual model of BERT to the
compatibility task. BERT was applied through fine-tuning
of the multilingual model over the data of the compatibil-
ity task. In addition, some fine tuning for the task was
performed on the generic model using the parameters sug-
gested in Devlin et al. (2018). BERT performs better
than the previous approaches based on semantic similarity
among vectors, confirming the high capacity of the BERT
model to capture semantic relations among words, even for
Italian.

6. Textual Entailment
Driven by the assumption that language understanding cru-
cially depends on the ability to recognize semantic relations
among portions of text, several text-to-text inference tasks
have been proposed in the last decade, including recogniz-
ing paraphrasing (Dolan and Brockett., 2005), recognizing
textual entailment (RTE) (Dagan et al., 2005), and semantic
similarity (Agirre et al., 2012). A common characteristic of
such tasks is that the input are two portions of text, let’s
call them Text1 and Text2, and the output is a semantic
relation between the two texts, possibly with a degree of
confidence of the system. For instance, given the following
text fragments:

Example 1. Text1: George Clooney’s longest relationship
ever might have been with a pig. The actor owned Max, a
300-pound pig.
Text2: Max is an animal.

a system should be able to recognize that there is an ”en-
tailment” relation among Text1 and Text2.
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Development Test
Metric MRR1,3 MRR2,3 MRR1 MRR1,3 MRR2,3 MRR1

Weights [-1 0 1] [0 0.5 1] [1 0 0] [-1 0 1] [0 0.5 1] [1 0 0]
Semantic similarity -0.236 0.345 0.398 -0.213 0.346 0.407
Semantic similarity with Threshold -0.011 0.259 0.174 -0.028 0.231 0.179
Semantic head -0.114 0.396 0.274 -0.184 0.356 0.357
Semantic head with Threshold 0.034 0.357 0.111 -0.015 0.298 0.165
BERT - - - -0.018 0.318 0.132

Table 6: Results on the development and test sets for compatibility relation detection.

6.1. Datasets used for Textual Entailment
We have tested the performance of a neural approach, based
on BERT, on two RTE datasets available for Italian.

RTE3 Italian. This is the Italian translation of the RTE-3
dataset carried out during the EU project EXCITEMENT 7.
The RTE-3 dataset for English (Giampiccolo et al., 2007)
consists of 1600 text-hypothesis pairs, equally divided into
a development set and a test set. While the length of the
hypotheses (h) was the same as in the RTE1a and RTE2
datasets, a certain number of texts (t) were longer than in
previous datasets, up to a paragraph. Four applications –
namely IE, IR, QA and SUM – were considered as settings
or contexts for the pairs generation, and 200 pairs were se-
lected for each application in each dataset.

RTE Evalita 2009. This is the dataset developed for
Evalita 2009 (Bos et al., 2009) tasks. Pairs of texts have be
taken from Italian Wikipedia articles, and are constructed
by manually annotating contrasting texts taken from the
version history as provided by Wikipedia. The following
is a pair where Text1 entails Text2:

Example 2. Text1: Parla di attivita’ nei panni di direttore
commerciale e, dopo sei mesi, di direttore generale.
Text2: Parla di attivita’ di direttore commerciale e, dopo
sei mesi, di direttore generale

6.2. Results for textual entailment
In Table 7 we report the results obtained applying a neural
model, BERT (multilingual), over the two datasets.

BERT Multilingual. This approach makes use of the
BERT multilingual language model (Devlin et al., 2018)
in order to establish as many as possible relations between
Text1 and Text2. A threshold is then estimated on the train-
ing data, and used to separate entailment and no-entailment
on the test data. As suggested by the BERT developers
for classification tasks, some fine tuning for the task was
performed on the generic model using the parameters sug-
gested in Devlin et al. (2018).

State of the Art: EDITS. The system used for the exper-
iments is the EDITS package (Edit Distance Textual En-
tailment Suite) (Kouylekov and Magnini, 2005) . EDITS
implements a distance-based approach for recognizing tex-
tual entailment, which assumes that the distance between

7https://sites.google.com/site/
excitementproject/results/RTE3-ITA_V1_
2012-10-04.zip

Text1 and Text2 is a characteristic that separates the posi-
tive sentence pairs, for which the entailment relation holds,
from the negative pairs, for which the entailment relation
does not hold. More specifically, EDITS is based on edit
distance algorithms, and computes the T-H distance as the
overall cost of the edit operations (i.e., insertion, deletion
and substitution) that are necessary to transform Text1 into
Text2.
In this case we have a mixed situation. In fact, while BERT
achieves a significant improvement over the state of the art
(i.e., the EDITS system - (Kouylekov and Magnini, 2005)),
it is largely below the state of the art in the Evalita 2009
dataset. This is probably due to the fact that the variations
between Text1 and Text2 in the Evalita dataset are only par-
tially due to semantic phenomena, and as a consequence
they are not captured by the BERT language model. On the
other hand, the RTE3 dataset contains much more semantic
lexical relations between the two sentences, and the BERT
model seems to better capture such relation with respect to
EDITS (+3.5), which is based on word relations in Word-
Net.

dataset BERT (multilingual) SotA
RTE 3 (ita) 69.25 63.50
RTE Evalita 2009 55.00 71.00

Table 7: Application of BERT to Textual Entailment.

7. Sentiment Analysis
Three shared tasks on sentiment analysis from Italian
tweets were organized in the context of the EVALITA
evaluation campaigns. SENTIPOLC (SENTIment POLar-
ity Classification) was organized at EVALITA 2014 &
2016 (Basile et al., 2014; Barbieri et al., 2016). In 2016 the
focus was on Italian texts from Twitter and there was a set
of related tasks with an increasing level of complexity. The
main task concerns sentiment polarity classification at the
message-level. Sentiments expressed in tweets are typically
categorized as positive, negative or neutral, but a message
can contain parts expressing both positive and negative sen-
timent (mixed sentiment), a feature that should be tackled.
ABSITA (Aspect-Based Sentiment analysis at EVALITA)
was organized at EVALITA 2018 (Basile et al., 2018), as
an evolution of Sentiment Analysis aiming at capturing the
aspect-level opinions expressed in natural language texts.
Aspect-based Sentiment Analysis is approached as a se-
quence of two subtasks: Aspect Category Detection (ACD)
and Aspect Category Polarity (ACP).

https://sites.google.com/site/excitementproject/results/RTE3-ITA_V1_2012-10-04.zip
https://sites.google.com/site/excitementproject/results/RTE3-ITA_V1_2012-10-04.zip
https://sites.google.com/site/excitementproject/results/RTE3-ITA_V1_2012-10-04.zip
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In Table 8 we report the results obtained applying BERT
(multilingual) to SENTIPOLC 2016 (task 2) and to AB-
SITA 2018 (tasks ACD and ACP). As suggested for classi-
fication tasks, some fine tuning for the task was performed
on the generic model using the parameters suggested in De-
vlin et al. (2018). In particular, some aspects of the SEN-
TIPOLC 2016 dataset are difficult to address with BERT.
For example, the fact that the dataset is strongly unbal-
anced, usually an important aspect to take into account with
a supervised system like BERT. To reduce this effect we
down-sample the most common polarity, but even in this
case, the result is not competitive with the state of the art.
On the other hand, is important to notice that in both cases
(SENTIPOLC 2016 and ABSITA 2018), the models were
not fine-tuned on Italian, but only on the task. According
to the paper by Pires et al. (2019), multilingual BERT is
able to perform some cross-lingual adaptation but it is rea-
sonable to think that in a task more related to semantic a
deeper process of fine-tuning is needed.

dataset BERT SotA
SENTIPOLC 2016 - Task 2 52.17 66.38
ABSITA 2018 - Task ACD 74.05 81.08
ABSITA 2018 - Task ACP 68.13 76.73

Table 8: Application of BERT to Sentiment Analysis.

8. Text Classification
Finally, we focus on text classification applied to radiolog-
ical reports in Italian. Radiological reporting generates a
large amount of free-text clinical narratives, a potentially
valuable source of information for improving clinical care
and supporting research. The use of automatic techniques
to analyze such reports is necessary to make their content
effectively available to radiologists in an aggregated form.
In (Gerevini et al., 2018) the focus is on the classification of
chest computed tomography reports according to a classifi-
cation schema proposed for this task by radiologists of the
Italian hospital ASST Spedali Civili di Brescia. The system
is built exploiting a training dataset containing reports an-
notated by radiologists. Each report is classified according
to the schema developed by radiologists and textual evi-
dences are marked in the report. The annotations are then
used to train different machine learning based classifiers. A

Annotation Deep Learning
Acc FM Acc FM

Exam type 96.0 95.8 96.2 96.0
Result (First Exam) 77.3 76.1 78.3 76.3
Result (Follow-Up) 73.9 65.6 81.9 71.9
Lesion Nature 66.3 62.3 73.2 71.2
Site Lung 93.2 71.9 90.9 76.6
Site Pleura 93.2 75.5 94.4 75.8
Site Mediastinum 92.9 81.0 88.3 72.9

Table 9: Classification of radiological reports. Compari-
son between the approach based on standard ML techniques
and textual annotations and the model based on deep learn-
ing. In boldface the best results.

method based on a cascade of classifiers which make use of
a set of syntactic and semantic features is presented. The
resulting system is a novel hierarchical classification sys-
tem for the given task, that was experimentally evaluated.
As a follow-up of the work reported in (Gerevini et al.,
2018), in (Putelli et al., submitted) deep learning techniques
and in particular Long Short Term Memory (LSTM) net-
works (currently, the state-of-the-art method for many Nat-
ural Language Processing tasks) are applied to the same
task, without the use of textual annotations. Each report is
classified using a combination of neural network classifiers
which make use of syntactic and semantic features. The re-
sulting system is a novel hierarchical classification system
for the given task. In Table 9, there is a comparison with
the performance of the system based on standard machine
learning techniques and annotations of relevant snippets.

9. Discussion and conclusions
We have presented a comparison between deep learning
and traditional machine learning methods for various NLP
tasks in Italian. We carried on experiments using available
datasets on two sequence tagging tasks (i.e., named entity
recognition and nominal entity recognition) and four clas-
sification tasks (i.e., lexical relations among words, seman-
tic relations among sentences, sentiment analysis and text
classification). Our experiments show that deep learning
approaches outperform traditional machine learning algo-
rithms in sequence tagging, while for classification tasks
that heavily rely on semantics approaches based on feature
engineering are still competitive. More in detail:

• BERT outperforms previous approaches both for
named entities, textual entailment (RTE dataset) and
text classification on clinical reports;

• on nominal entity recognition, a task much more com-
plex than NER, we have shown that the NeuroNLP2
model can be extended with terms contained in a
gazetteer, achieving state-of-the-art performance;

• on the three datasets for sentiment analysis on tweets
traditional machine learning outperforms BERT, indi-
cating that more accurate fine tuning is still necessary;

• on lexical relations (i.e., compatibility among words)
a simple BERT fine tuning achieves results compara-
ble to those obtained by more complex architectures
using linguistic features (e.g., the semantic head of the
term).

We think that a similar analysis could be carried out for
other languages to provide an assessment of machine learn-
ing / deep learning models across different languages.
As for future work, we do believe that progress on language
technologies need benchmarks encompassing a variety of
tasks in order to favour models that share general linguis-
tic knowledge across tasks. This is very much in the spirit
of GLUE, the General Language Understanding Evaluation
(Wang et al., 2018), a collection of resources for training,
evaluating, and analyzing natural language understanding
systems. Our next step will be to collect the Italian re-
sources used in this paper and propose them as a single
benchmark for NLP tasks on the Italian language.
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