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Abstract
Most current cross-lingual transfer learning methods for Information Extraction (IE) have been applied to local sequence labeling tasks.
To tackle more complex tasks such as event extraction, we need to transfer graph structures (event trigger linked to multiple arguments
with various roles) across languages. We develop a novel share-and-transfer framework to reach this goal with three steps: (1) Convert
each sentence in any language to language-universal graph structures; in this paper we explore two approaches based on universal
dependency parses and fully-connected graphs, respectively. (2) Represent each node in these graph structures with a cross-lingual word
embedding so that all sentences, regardless of language, can be represented within one shared semantic space. (3) Using this common
semantic space, train event extractors on English training data and apply them to languages that do not have any event annotations.
Experimental results on three languages (Spanish, Russian and Ukrainian) without any annotations show this framework achieves
comparable performance to a state-of-the-art supervised model trained on more than 1,500 manually annotated event mentions.
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1. Introduction
Event Extraction is an important task in Information Extrac-
tion (IE) that aims to identify event triggers and arguments
from unstructured texts and classify them into predefined
categories. Compared to other IE tasks such as name tag-
ging, the annotations for Event Extraction are more costly
because they are structured and require a rich label space;
full event structure annotation consists of its trigger span
and type label as well as each of its one or more argu-
ment spans and role labels. Publicly available annotations
for event extraction exist for only a few languages, such
as English, Spanish, Chinese, and Arabic (Doddington et
al., 2004; Getman et al., 2018). We propose a novel share-
and-transfer framework to project training data for English
only and test data for zero-event-resource languages into
one common semantic space, so that we can train an event
extractor on English annotations and apply it to target lan-
guages.
Currently most successful cross-lingual transfer approaches
for IE are limited to sequence labeling (Feng et al., 2018a;
Xie et al., 2018; Zhang et al., 2018a; Lin et al., 2018).
In contrast, event extraction requires transferring complex
graph structures that contain triggers and arguments. For
example, in Figure 1, the words fire/ fired combined with
different arguments indicate different event types. A trans-
fer approach to IEwith a typical sequence-based Long Short
Term Memory (LSTM) encoder will incorporate language-
specific characteristics, such as word order, into word rep-
resentations, reducing its effectiveness in transfer between
two languages with quite different word orders.
In this paper, we explore cross-lingual event transfer learn-
ing in a zero-resource setting where there is no annotation
available for the target language. We propose to transfer
language-universal structures instead of surface features.
Specifically, we adopt two language-universal structures to
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troopsAbout 300 people were injured after fired tear gas
at protesters.

Manchester United has Jose Mourinho following fired

Two police patrol cars were apparently set on fire in 
northeast Miami-Dade early Friday morning.

the club's worst ever Premier League start.

Figure 1: Disambiguating trigger (‘fire/d’ bolded) to obtain
the correct type entails understanding argument structures.

represent sentences: dependency trees and fully connected
graphs. Then, we use encodermechanisms to generate word
representations in a latent space: Tree-LSTM for depen-
dency trees and Transformer (Vaswani et al., 2017) for com-
plete graphs. Finally, we treat event trigger labeling and ar-
gument role labeling as mappings from the latent space to
the event type and argument role respectively.
By using English as the source language, experimental re-
sults on Spanish, Russian and Ukrainian show that the
model based on the fully connected graph-Transformer en-
coder not only has better performance than the model based
on the dependency tree-LSTM encoder, it also achieves per-
formance comparable to a state-of-the-art supervised model
trained on more than 1,500 manually annotated event men-
tions. In this work we make the following novel contribu-
tions:

• We show, for the first time, how cross-lingual event
representations may be transferred between languages.

• We explore the use of structured representations for
this transfer based on language-specific linguistic an-
notation and unsupervised structure discovery, and
find a consistent benefit from the latter.
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Figure 2: Overall Framework for Cross-lingual Event
Structure Transfer.

In this section, we describe our approach to cross-lingual
event structure transfer (Figure 2).

2.1. Encoder
We construct two language-universal graph structure repre-
sentations for each input sentence: universal dependency
trees and fully connected graphs for the edges, and cross-
lingual word embeddings for the nodes (words). We train
a BiAffine Dependency Parser (Dozat and Manning, 2016)
for a particular language using the Universal Dependency
treebanks (Nivre et al., 2016), and then apply the depen-
dency parser to sentences to obtain universal dependency
trees. For fully connected graphs, we regard each token in a
sentence as a node in the graph and there’s an edge between
each pair of nodes. Then we apply Tree-LSTM encoder
and Transformer encoder to generate word representations
in the latent space, respectively.
Tree-LSTM Encoder. We exploit the Child-Sum Tree-
LSTMs proposed by Tai et al. (2015). In contrast to the
standard LSTM, here the memory cell updates of the Tree-
LSTM unit are dependent on the states of all children units.
The Tree-LSTM unit selectively incorporates information
from each child.
Transformer Encoder. Our multi-layer bidirectional
Transformer encoder is based on the architecture proposed
in Vaswani et al. (2017), composed of a stack of N identi-
cal layers, where each layer has a multi-head self-attention
sub-layer and a position-wise feed-forward sub-layer. Our
implementation is identical to the original, except that here,
crucially, we do not include positional encodings because
word order is language-specific.

2.2. Event Trigger Labeling
Given an input sentence {w1, w2, ..., wi}, where wi is the
ith word, the encoder generates representations in the la-
tent space for each word: hi = Encoder(wi). We regard

event trigger labeling as learning a mapping function from
the latent space to event types. This model is composed of
a linear layer (Mt) and a Softmax transformation σ. The
objective function is as follows:

Ltrigger =

N∑
i=1

yi log(σ(Mt · hi) (1)

where yi is a one-hot vector activated for wi’s correct label.

2.3. Event Argument Role Labeling
To predict the role of a candidate argument (warg

j ) for an
event trigger (wtri

i ), we first use the encoder to generate
the trigger and argument representations in the latent space:
htri
i = Encoder(wtri

i ), harg
j = Encoder(warg

j ). The
mapping function from the latent space to argument roles
is composed of a concatenation operation ([ai; aj ]), a lin-
ear layer (Ma) and a Softmax output layer. The objective
function for argument role labeling is as follows:

Larg =

N∑
i=1

Li∑
j=1

yij log(σ(Ma · [htri
i ;harg

j ])) (2)

Note that we do not fine-tune the parameters of the encoder
during this step.

3. Experiments
3.1. Data

Language Source Train Test

English ERE 25,168 –
Spanish ERE – 5,164
Russian AIDA – 3,604
Ukrainian AIDA – 3,763

Table 1: Data statistics (Number of sentences).

We use the Entity, Relation and Event (ERE) (Getman et al.,
2018) 2014-2016 English corpora for training the trigger la-
beling component, and only the 2016 English event corpus
for training the argument labeling component because the
2014 and 2015 ERE corpora do not include annotations for
arguments. We then test our approach to structure transfer
on three target languages for which pre-existing, indepen-
dently ground-truth annotations were available: Spanish,
Russian and Ukrainian. The Spanish data is from ERE 2016
event corpus. The Russian and Ukrainian datasets are sub-
sets1 of the seedling corpus (LDC catalog: LDC2018E64)
from the DARPA AIDA program2, and they are annotated
by a native speaker with the AIDA event ontology. We
choose these languages because they are the only multilin-
gual event datasets whose annotations can be mapped into
the same schema. ACE (Walker et al., 2006) datasets in-
clude event annotations for English, Chinese and Arabic,
but annotated following a different ontology. Table 1 shows
the statistics of the datasets. Table 2 shows the distribution

1Refer to the Appendix for the list of document IDs
2https://www.darpa.mil/program/active-interpretation-of-

disparate-alternatives
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Language
Event type Justice Contact Conflict Transaction Life Movement Personnel Business Manufacture

English 4,134 3,542 2,613 2,411 1,956 1,688 1,340 279 158
Spanish 65 824 346 301 207 275 146 0 58
Russian 114 549 539 53 116 651 58 14 9
Ukrainian 40 869 453 52 86 225 43 8 5

Table 2: Distribution of event types in various datasets (Number of event mentions). The statistics for English are from the
training split, and the statistics for Spanish, Russian and Ukrainian are from testing splits.

of event types for each language. We follow the criteria in
previous work (Ji and Grishman, 2008; Li et al., 2013) for
evaluation.

3.2. Training Details
Treebanks. We use the Version 2.3 treebanks released by
Universal Dependencies 3 to train the dependency parsers.
Tokenization. We use Spacy tokenization (Honnibal and
Montani, 2017) for English and Spanish and the NLTK tok-
tok tokenizer (Dehdari, 2014) for Russian and Ukrainian.
Word Embedding. We use multilingual word embeddings
released by Facebook Research (Lample et al., 2017) 4. The
algorithm aligns word embeddings of various languages,
which are pre-trained fromWikipedia articles (Joulin et al.,
2016) 5, in a single vector space. It learns a mapping from
the source space to the target space using Procrustes align-
ment by bilingual dictionaries. We do not fine-tune them
during training.
Optimization. We use Adam optimizer (Kingma and Ba,
2014), which is based on adaptive estimates of lower-order
moments, with warmup of 500, factor of 2.
Table 3 shows the hyperparameters to train the Tree-LSTM
encoder and Table 4 shows the hyperparameters to train the
Transformer encoder.

Hyperparameter Value
word embedding size 300
hidden dimension size 150

dropout 0.5
learning rate 0.001

learning rate decay 0.001
batch size 1

Table 3: Hyperparameters of Tree-LSTM encoder.

3.3. Results
We compare several representations, each of which is used
to train event recognition models as described in Sections
2.2 and 2.3. Each model is trained on annotated English
examples but evaluated in Spanish, Russian, or Ukrainian,
using no event annotation in these languages. The represen-
tations compared are:

3https://universaldependencies.org/
4https://github.com/facebookresearch/MUSE
5https://github.com/facebookresearch/fastText

Hyperparameter Value
word embedding size 300
hidden dimension size 768

filter size 768
number of head 12
number of layer 12

dropout 0.2
learning rate 0.003
batch size 16

Table 4: Hyperparameters of Transformer encoder.

(1) Bi-LSTM, a baseline, using Bi-LSTM as the encoder to
generate word representations based on flattened input se-
quences.
(2) Tree-LSTM, using Child-Sum Tree-LSTM as the en-
coder to generate word representations based on depen-
dency trees.
(3) Transformer, using Transformer as the encoder to gen-
erate word representations based on fully-connected graph.
Table 5 shows the overall performance. We can see that both
structure transfer methods significantly outperform the Bi-
LSTM baseline, and the Transformer-based encoder gener-
ally outperforms Tree-LSTM, especially on trigger label-
ing, because universal dependency parsers are imperfect,
with accuracy 57.2%-95.3% (Nivre et al., 2018). When
the target language and source language are closer, such
as Spanish and English, the gap between Bi-LSTM base-
line and proposed models is smaller. For argument label-
ing, the Tree-LSTM-based encoder actually has better per-
formance, which results in reduced gap with Transformer-
based model. It is because that structural information is im-
portant for argument labeling and Tree-LSTM-based model
benefits more from the explicit information derived from
universal dependency parsing.

3.4. Comparison with Supervised Models

We also compare our approach with supervised event ex-
tractors trained from manual annotations. In the supervised
setting, we use an LSTM-based sequence labeling model.
Figure 3 shows the learning curves of these supervisedmod-
els. We can see that without using any annotations for the
target language, our best model achieves comparable per-
formancewith the supervisedmodels trained on about 1,500
manually annotated event mentions.
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Dataset Model Trigger Labeling (%) Argument Labeling (%)
P R F1 P R F1

ERE Spanish
Bi-LSTM 45.16 25.83 32.87 39.51 10.70 16.84
Tree-LSTM 53.56 28.44 37.15 32.12 11.89 17.35
Transformer 44.75 39.15 41.77 23.09 13.55 17.08

AIDA Russian
Bi-LSTM 60.64 13.55 22.15 36.65 6.24 10.57
Tree-LSTM 59.44 20.21 30.16 28.95 7.81 12.30
Transformer 40.02 50.00 44.46 16.26 12.09 13.87

AIDA Ukrainian
Bi-LSTM 86.81 8.87 16.10 41.69 6.42 11.12
Tree-LSTM 77.74 14.71 24.74 30.09 8.89 13.72
Transformer 44.61 39.34 41.81 14.85 12.87 13.79

Table 5: Comparison on Various Representations for Cross-lingual Event Transfer Learning.

Figure 3: Comparison with Learning Curves for Supervised
Bi-LSTM models on trigger labeling.

3.5. Visualization of Attentions
Figure 4 shows an example of visualized attention weights
from the first head of the multi-head attention layer. In the
Russian sentence “одно ранение он получил в спину пуля
пробила правое” (he received one wound in the back, a
bullet pierced his right lung), “ранение” (wound) is a trig-
ger for an Life.Injure event. From the visualized attention
weights, we can clearly see when the model generates the
representation for the word “ранение (wound)”, “спину
(back)” also contributes besides the word “ранен” itself.
And “спину (back)” is an argument of the event mention
triggered by “ранение (wound)” here. It indicates that the
model successfully transfers structural information from the
source language to the target language.

4. Related Work
A large number of supervised machine learning techniques
have been used for event extraction, including traditional
techniques based on symbolic features (Ji and Grishman,
2008; Liao and Grishman, 2011), joint inference models (Li
et al., 2014; Yang and Mitchell, 2016), and recently with
neural networks (Nguyen and Grishman, 2015; Nguyen et
al., 2016; Chen et al., 2015; Nguyen and Grishman, 2018;
Liu et al., 2018b). These approaches incorporate language-
specific information, and thus require a substantial amount
of annotations when adapted to a new language.
Traditional multilingual approaches (Li et al., 2012; Wei et

Figure 4: Visualization of Attention Weights for the First
head of the Multi-head Attention Sublayer.

al., 2017) to event extraction were all based on feature en-
gineering. Recently, (Agerri et al., 2016; Danilova et al.,
2014; Feng et al., 2018b) demonstrate methods for build-
ing multilingual event extraction systems. Hsi et al. (2016)
have used language-independent features for event extrac-
tion for low-resource languages. (Lu and Nguyen, 2018)
show that word sense disambiguation helps event detec-
tion via neural representation matching. (Liu et al., 2018a;
Zhang et al., 2018b) propose event extraction by attention
mechanism, e.g. the former use a gated multi-lingual atten-
tion technique. To the best of our knowledge, this is the first
work to design a cross-lingual structure transfer framework
to enable event extraction for a language without any event
training data.

5. Conclusions and Future Work
In this paper, we propose a novel cross-lingual structure
transfer framework for zero-resource event extraction. Ex-
periments on three languages show promising results with-
out using any annotation. In the future, we plan to conduct
research on joint language-universal structure learning and
event extraction.
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