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Abstract
The synthesis process is essential for achieving computational experiment design in the field of inorganic materials chemistry. In this
work, we present a novel corpus of the synthesis process for all-solid-state batteries and an automated machine reading system for
extracting the synthesis processes buried in the scientific literature. We define the representation of the synthesis processes using flow
graphs, and create a corpus from the experimental sections of 243 papers. The automated machine-reading system is developed by a
deep learning-based sequence tagger and simple heuristic rule-based relation extractor. Our experimental results demonstrate that the
sequence tagger with the optimal setting can detect the entities with a macro-averaged F1 score of 0.826, while the rule-based relation
extractor can achieve high performance with a macro-averaged F1 score of 0.887.
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1. Introduction

With the rapid progress in the field of inorganic materials,
such as the development of all-solid-state batteries (ASSBs)
and solar cells, several materials researchers have noted
the importance of reducing the overall discovery and de-
velopment time by means of computational experiment de-
sign, using the knowledge of published scientific litera-
ture (Agrawal and Choudhary, 2016; Butler et al., 2018;
Wei et al., 2019). To achieve this, automated machine read-
ing systems that can comprehensively investigate the syn-
thesis process buried in the scientific literature is necessary.
In the field of organic chemistry, Krallinger et al. (2015)
proposed a corpus in which chemical substances, drug
names, and their relations are structurally annotated in doc-
uments such as papers, patents, and medical documents,
while composition names are provided in the abstracts of
molecular biology papers. Linguistic resources are avail-
able in abundance, such as the GENIA corpus (Kim et al.,
2003) of biomedical events on biomedical texts and the an-
notated corpus (Kulkarni et al., 2018) of liquid-phase ex-
perimental processes on biological papers. In biomedical
text mining, the detection of semantic relations is actively
researched as a central task (Miwa et al., 2012; Scaria et
al., 2013; Berant et al., 2014; Rao et al., 2017; Rahul et al.,
2017; Björne and Salakoski, 2018). However, the relations
in biomedical text mining represent the cause and effect of
a physical phenomenon among two or more biochemical
reactions, which differs from the procedure of synthesizing
materials.
In the field of inorganic chemistry, only several corpora
have been proposed in recent years. Kononova et al. (2019)
constructed a general-purpose corpus of material synthesis
for inorganic material by aligning the phrases extracted by a
trained sequence-tagging model. However, this corpus did
not include relations between operations, and therefore, it
was difficult to extract the step-by-step synthesis process.
Mysore et al. (2019) created an annotated corpus with re-
lations between operations for synthesis processes of gen-

eral materials such as solar cell and thermoelectric materi-
als. However, the synthesis processes of ASSBs are hardly
included even though the operations, operation sequences,
and conditions also have differences due to the characteris-
tics of the synthesis process for each material category.
In this study, we took the first step towards developing a
framework for extracting synthesis processes of ASSBs.
We designed our annotation scheme to treat a synthesis pro-
cess as a synthesis flow graph, and performed annotation
on the experimental sections of 243 papers on the synthesis
process of ASSBs. The reliability of our corpus was evalu-
ated by calculating the inter-annotator agreements. We also
propose an automatic synthesis process extraction frame-
work for our corpus by combining a deep learning-based
sequence tagger and simple heuristic rule-based relation ex-
tractor. A web application of our synthesis process extrac-
tion framework is available on our project page 1. We hope
that our work will aid in the challenging domain of schol-
arly text mining in inorganic materials science.
The contributions of our study are summarized as follows:

• We designed and built a novel corpus on synthesis pro-
cesses of ASSBs named SynthASSBs, which anno-
tates a synthesis process as a flow graph and consists
of 243 papers.

• We propose an automatic synthesis process extraction
framework by combining a deep learning-based se-
quence tagger and rule-based relation extractor. The
sequence tagger with the best setting detects the en-
tities with a macro-averaged F1 score of 0.826 and
the rule-based relation extractor achieves high perfor-
mance with a macro-averaged F1 score of 0.887 in
macro F-score.

1http://synth-extractor-demo.fusataka-k.
com/

http://synth-extractor-demo.fusataka-k.com/
http://synth-extractor-demo.fusataka-k.com/
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The pure Li4Ti5O12 material, denoted LTO, was ob-
tained from Li2CO3 (99.99 %, Aladdin) and anatase
TiO2 (99.8 %; Aladdin) precursors, mixed, respec-
tively, in a 4:5 molar ratio of Li:Ti. The precursors,
dispersed in deionized water, were ball-milled for
4 h at a grinding speed of 350 rpm, and then calcined
at 800 ◦C for 12 h after drying.

Figure 1: Example of a synthesis process. The underlined
phrases relate to the material synthesis process.

2. Annotated Corpus
In this section, we present an overview of our annotation
schema and annotated corpus, which we named the Syn-
thASSBs corpus.

2.1. Synthesis Graph Representation
We used flow graphs to represent the step-by-step oper-
ations with their corresponding materials in the synthesis
processes. Using the flow graphs, it was expected that we
could represent links that are not explicitly mentioned in
text. In the inorganic materials field, Kim et al. (2019) pro-
posed the representation of the synthesis process using a
flow graph and the definition of annotation labels in experi-
mental paragraphs. In our annotation scheme, we followed
their definition, with three improvements: (1) the property
of an operation is treated as a single phrase, and not as a
combination of numbers and units, (2) each label has been
modified to capture the conditions necessary to synthesize
the ASSB, and (3) a relation label for coreferent phrases
is included to understand the anaphoric relations. A flow
graph for the ASSB synthesis process is represented by a
directed acyclic graph G = (V,E), where V is a set of ver-
tices and E is a set of edges. We provide an example sec-
tion of the paper (Bai et al., 2016) in Figure 1, and the graph
extracted from the sentences in the section in Figure 2.

2.2. Label Set
The labels contain vertices and edges for the synthesis
graph representation in Section 2.2.1., and Section 2.2.2.,
respectively.

2.2.1. Vertices
The following vertex labels were defined to annotate spans
of text, which correspond to vertices in the synthesis graph.
The labels represent the materials, operations, and proper-
ties. For the material labels, we labeled all phrases that rep-
resent materials in the text, while operation and property la-
bels were added only to those phrases related to the synthe-
sis process. We segmented the roles of materials into cat-
egories. Moreover, we introduced multiple property types
for analyzing the structure of the synthesis process. The
defined labels and their examples mostly taken from Fig. 1
are explained in the following.
MATERIAL-START is a raw material used to synthesize
the final material; for example, Li2CO3 or TiO2.
MATERIAL-INTERMEDIUM indicates an intermediate
material produced during the synthesis process; for ex-
ample, “then, LixMo4O6 was obtained from a mixture of
InMo4O6 and LiI.”

Li2CO3 TiO2

99.99 %

mixed 4:5 molar ratio of Li:Ti

dispersed deionized water

ball-milled 4 h 350 rpm

calcined 800 ℃12 h

Li4Ti5O12

Next

Material Operation Property

Condition

anatase 99.8 %Aladdin Aladdin

drying

Coreference

LTO

Figure 2: Example of the synthesis graph generated from
Figure 1.

MATERIAL-FINAL represents the final material (or prod-
ucts) of the material synthesis process; for example,
Li4Ti5O12.
MATERIAL-SOLVENT is liquid that is used to dissolve
substances and create solutions; for example, deionized wa-
ter, ethanol, or methanol.
MATERIAL-OTHERS represents other materials that are
not related to the synthesis process, such as compounds for
thin films or catalysts; for example, “... and then purified
with activated carbon and acid alumina.”
OPERATION represents an individual action performed by
the experimenters. It is often represented by verbs; for ex-
ample, “... were ball-milled for 4 h ...”
PROPERTY-TIME represents a time condition associated
with an operation; for example, “... were ball-milled for
4 h...”
PROPERTY-TEMP represents a temperature condition as-
sociated with an operation; for example, “... and then cal-
cined at 800 ◦C ...”
PROPERTY-ROT indicates a rotational speed condition as-
sociated with an operation; for example, “... at a grinding
speed of 350 rpm ...”
PROPERTY-PRESS represents a pressure condition asso-
ciated with an operation; for example, “The powder was
uniaxially cold pressed at 300 MPa.”
PROPERTY-ATMOSPHERE represents an atmosphere con-
dition associated with an operation; for example, “... was
conducted in Ar atmosphere for 3 h.”
PROPERTY-OTHERS represents other conditions asso-
ciated with an operation or the manufacturer names
and purity associated with a material; for example,
“MgO (purity 99.999%),” “... pressed into pellets
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The pure Li4Ti5O12 material, denoted LTO, was obtained from Li2CO3 (99.99 %, Aladdin) and anatase 

TiO2 (99.8 %; Aladdin) precursors, mixed, respectively, in a 4:5 molar ratio of Li:Ti.

The precursors, dispersed in deionized water, were ball-milled for 4 h at a grinding speed of 350 rpm, and then calcined at 

800 degC for 12 h after drying.
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Figure 3: Screenshot of brat interface annotating synthesis process in Figure 1.

(10 mm diameter, 1 mm thick),” and “the starting materials
in the 1/4 molar ratio.”

2.2.2. Edges
We defined the following three edge labels, which represent
the relations between vertices.
CONDITION indicates the conditions of an operation and
properties of a raw material (for example, the temperature,
time, and atmosphere) for performing an operation. This
label is also used to express the relations between a raw
material and its manufacturer name or purity.
NEXT represents the order of an operation sequence and
indicates the input or output relations between a material
and an operation.
COREFERENCE is a link that associates two or more
phrases when these phrases refer to the same material.

3. Annotation Details and Evaluation
In this section, we explain the annotation details, including
the text preparation, preprocessing, and annotation settings;
thereafter we present the settings and results of the inter-
annotator agreement experiments.

3.1. Annotation Details
We constructed a corpus including the experimental sec-
tions of 243 papers on material synthesis processes in the
following manner.
We collected papers on experimental processes from online
journals. To limit the annotation target to the ASSB, which
is synthesized using the “solid phase method” or “liquid
phase method”. We set the search queries to identify pa-
pers containing “solid electrolyte” or “ionic conductivity”,
but not containing “poly”, “SEI”, and “solid electrolyte in-
terphase” in the titles, abstracts, and keywords. The four
experts in material science are involved in selecting target
journals and keywords.
Thereafter, we manually selected 243 papers that were con-
firmed to include the synthesis process in the “Experimen-
tal”, “Preparation” or “Method” sections, because synthe-
sis processes often appear in these sections. We applied the

PDF Parser2 to extract text from the downloaded PDF pa-
pers. We extracted the texts of the above sections, manually
corrected several typos, and unified certain orthographical
variants in composition formulae and quantitative expres-
sions. For example, a “◦C” was replaced with the token
“degC”.
Finally, we annotated the synthesis graph on the obtained
texts. Three annotators, who were master’s course students
in materials science, were involved in the annotation. An-
notator A tagged 77 papers, annotator B tagged 68 papers,
and annotator C tagged 98 papers. Finally, one professional
in materials science verified the annotations of the three
student annotators and corrected the annotation errors. We
used the brat annotation toolkit (Stenetorp et al., 2012) for
manual annotation. Figure 3 illustrates an annotation inter-
face by brat.

3.2. Inter-Annotator Agreement
The agreement calculations were based on whether the
spans of the labels were precisely matched the three an-
notators in materials science on the spans by using 30 ran-
domly selected synthesis processes from the SynthASSBs
corpus. We calculated the agreements using Cohen’s kappa.
For each pair of two annotators selected from the three an-
notators A, B, and C, the agreement score was calculated
by regarding the labels identified by one annotator as gold
and the labels by the other annotator as the prediction, and
the average of the scores in two directions was determined.
For the vertices, we calculated two agreement scores: the
agreement score of the spans and types (All), and the agree-
ment score of the types on the spans that were annotated by
both annotators (Type). For the edges, we also calculated
two agreement scores on the vertices that were annotated
by both annotators. One score was calculated by compar-
ing the existence of edges and their types (All), while the
other score was calculated by comparing the types on the
edges that were annotated by both annotators (Type). The
inter-annotator agreement results are presented in Table 1.

2https://github.com/allenai/science-parse

https://github.com/allenai/science-parse
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Vertices Edges
Annotators All Type All Type
A–B 0.637 1.000 0.705 0.990
B–C 0.667 1.000 0.671 0.991
A–C 0.608 1.000 0.651 0.990

Table 1: Inter-annotator agreement results using Cohen’s
kappa.

Item Count
Documents 243
Sentences 2,877
Tokens 46,477
Entities 10,995
Vertex types 12
Edge types 3
Avg. sentences/document 12
Avg. tokens/document 191
Avg. entities/document 45

Table 2: SynthASSBs corpus statistics.

We confirmed that the types (Type) of vertices and edges
were almost perfectly matched among the annotators (both
kappa coefficients were over 0.99) and the spans and types
(All) of them were also substantially matched. This demon-
strates that the annotation scheme of the vertices and edges
was clear when selecting types. However, the kappa co-
efficients in the All settings were lower than those in the
Type settings. This indicates that annotation ambiguity was
caused when deciding which phrase should be involved in
the synthesis process. We leave the improvements in the
annotation guidelines to reduce this ambiguity problem for
future work.

3.3. Statistics
Several key statistics of the SynthASSBs corpus, such as
the number of documents, sentences, tokens, and entities,
are summarized in Table 2. The number of vertices or edges
per type is indicated in Table 3. In the statistics, we used
scispaCy (Neumann et al., 2019) 3 to split sentences, per-
form tokenization and extract entities.

4. Synthesis Process Extraction
Our framework performed extraction of synthesis pro-
cesses in a pipeline manner, using two modules: deep
learning-based sequence taggers for extracting the phrases
we defined as vertices, and a rule-based relation extractor
(RE) for connecting the edges that were pairs of extracted
phrases. As illustrated in Figure 4, our framework first per-
formed sequence tagging (a) to extract the phrases related
to the material synthesis process. Thereafter, the relations
between entities were extracted by the rule-based RE (b).

4.1. Sequence Tagging
To train the sequence-tagging model, we employed Bi-
directional Long Short-Term Memory with Conditional

3https://github.com/allenai/scispacy

Vertex / Edge types Count
MATERIAL 2,749
MATERIAL-START 1,319
MATERIAL-INTERMEDIUM 138
MATERIAL-FINAL 532
MATERIAL-SOLVENT 212
MATERIAL-OTHERS 548
OPERATION 1,680
PROPERTY 3,994
PROPERTY-TEMP 704
PROPERTY-TIME 642
PROPERTY-ROT 66
PROPERTY-PRESS 81
PROPERTY-ATMOSPHERE 275
PROPERTY-OTHERS 2,226
CONDITION 4,139
NEXT 3,018
COREFERENCE 759
TOTAL 23,082

Table 3: Statistics of vertices and edges annotated in Syn-
thASSBs corpus.

(a) Sequence Tagging

The pure Li4Ti5O12 material, denoted LTO,
was obtained from Li2CO3 (99.99 %,
Aladdin) and anatase TiO2 (99.8 %; Aladdin)
precursors, mixed, respectively, in a 4:5 molar 
ratio of Li:Ti. The precursors, dispersed in
deionized water, were ball-milled for 4 h at a
grinding speed of 350 rpm, and then calcined
at 800 ℃ for 12 h after drying.

(b) Rule-based RE

Figure 4: Overview of synthesis process extraction. The
red phrases and circles indicate terms related to materials,
green indicates operations, and yellow indicates properties.
The solid and broken arrows represent the next and condi-
tion edges, respectively.

Random Fields (Huang et al., 2015) as a sequence-tagging
model to identify the spans of the vertices. We used six
different base representations in the neural network-based
sequence tagger: character-level embedding (CE) (Zhang
et al., 2015); byte pair encoding (BPE) (Sennrich et al.,
2016); word embeddings for inorganic material science
Mat-WE (Kim et al., 2017) and mat2vec (Tshitoyan et al.,
2019); Mat-ELMo (Kim et al., 2017), which is an embed-
dings from language models (ELMo) (Peters et al., 2018)
model pretrained on materials science texts; and SciB-
ERT (Beltagy et al., 2019), which is a bidirectional encoder
representations from transformers (BERT) model (Devlin
et al., 2019), pretrained on biomedical and computer sci-
ence texts. These representations were fine-tuned during
training on the sequence-tagging task.

4.2. Relation Extraction
We developed the following five rules using the training
portion of the SynthASSBs corpus. The illustrations fol-
lowing the rule descriptions are used for visualization. The

https://github.com/allenai/scispacy
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circles used in the figures represent sequential tokens; the
red, green, yellow, and white circles corresponds to MATE-
RIAL, OPERATION, PROPERTY, and other words/phrases,
respectively. A bounding box around circles represents a
sentence. A solid arrow represents an edge of NEXT, while
a broken arrow represents an edge of CONDITION.
Rule of OPERATION to OPERATION (O-O):
An OPERATION phrase is connected to the next OPERA-
TION phrase in the same sentence or in the next sentences.

Figure 5: Illustration of O-O.

Rule of MATERIAL to OPERATION (M-O):
When an OPERATION phrase appears in brackets, a
MATERIAL-START or MATERIAL-SOLVENT phrase before
the left bracket is connected to the OPERATION. In the
example sentence “Samples were prepared from H3BO3,
AL2O3, SiO2 and either Li2CO3 (dried at 200 degC),” the
OPERATION phrase “dried” written in brackets is connected
to its previous MATERIAL-START phrase, “Li2CO3”, not
“H3BO3”, “AL2O3”, and “SiO2”.
As for other MATERIAL-START or MATERIAL-SOLVENT
phrases, we applied the following rules with ignoring the
OPERATION phrases in brackets. A MATERIAL-START
or MATERIAL-SOLVENT phrase is connected to its closest
OPERATION phrase in a sentence. If two candidates exist
within the same distance, the previous candidate is selected.
If no OPERATION phrase exists in a sentence, the phrase is
connected to the next-closest OPERATION phrase beyond
the sentence boundaries.

Figure 6: Illustration of M-O.

Rule of OPERATION to MATERIAL (O-M):
An OPERATION phrase that appears at the end of the op-
eration sequence is connected to all MATERIAL-FINAL
phrases in the text.

Figure 7: Illustration of O-M.

Rule of PROPERTY-OTHERS to OPERATION or MATE-
RIAL (PO-OM):
When a PROPERTY-OTHERS phrase appears in brackets,
the phrase is connected to the closet previous MATERIAL-
START phrase. In the example phrase “TiO2, GeO2 and
NH4H2PO4 (purity 99.999 %),” “purity 99.999 %” is con-
nected to its closest previous MATERIAL-START phrase,
namely “NH4H2PO4”, and not “TiO2” and “GeO2”.
A PROPERTY-OTHERS phrase is connected to the clos-
est phrase of MATERIAL-START, MATERIAL-FINAL,

MATERIAL-INTERMEDIUM, MATERIAL-SOLVENT,
MATERIAL-OTHERS, or OPERATION. If two candidates
exist with the same distance, the previous candidate is
selected.

Figure 8: Illustration of PO-OM.

Rule of PROPERTY to OPERATION (P-O):
A PROPERTY-TIME, PROPERTY-TEMP, PROPERTY-ROT,
PROPERTY-PRESS, or PROPERTY-ATMOSPHERE (that is,
properties other than PROPERTY-OTHERS) phrase is con-
nected to its closest previous OPERATION phrase in the sen-
tence or before it.

Figure 9: Illustration of P-O.

5. Evaluation
5.1. Evaluation Settings
We evaluated the sequence tagger and rule-based RE in-
dividually. The sequence tagger was implemented using
Flair (Akbik et al., 2019)4, which is a multi-lingual, neu-
ral sequence-labeling framework for state-of-the-art natural
language processing. When training the sequence tagger,
we set the number of training epochs to 200, and used the
default hyper-parameters of Flair.
The sequence tagger was evaluated using two set-
tings of type sets. In the first setting, we ex-
tracted three coarse-grained distinct types of vertices
in the flow graph: the MATERIAL, OPERATION, and
PROPERTY vertices. In the second setting, we ex-
tracted all 12 fine-grained types of vertices in the flow
graph: MATERIAL-START, MATERIAL-INTERMEDIUM,
MATERIAL-FINAL, MATERIAL-SOLVENT, MATERIAL-
OTHERS, OPERATION, PROPERTY-TIME, PROPERTY-
TEMP, PROPERTY-ROT, PROPERTY-PRESS, PROPERTY-
ATMOSPHERE, and PROPERTY-OTHERS.
We divided the SynthASSBs corpus into three subsets: 145
sections for training, 49 for development, and 49 for test-
ing. We used an F1 score as the primary evaluation met-
ric. We also report the macro-averaged F1 score of the
three coarse-grained types (ALL) for the first setting and
the micro-averaged F1 scores for the three coarse-grained
types (MATERIAL, OPERATION, and PROPERTY) and the
macro-averaged F1 score of these three types (ALL) for the
second setting.
We also plot the changes in F1 score of the methods as the
training set is increased in increments of 5% to answer the
question about whether the corpus size is large enough to
train the sequence tagging. The evaluation was performed
on the fine-grained types and the scores were calculated

4https://github.com/zalandoresearch/flair

https://github.com/zalandoresearch/flair
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MATERIAL OPERATION PROPERTY ALL
Model F1 P R F1 P R F1 P R F1
CE (Zhang et al., 2015) 0.686 0.644 0.733 0.741 0.779 0.708 0.571 0.673 0.496 0.666
BPE (Sennrich et al., 2016) 0.860 0.837 0.883 0.799 0.785 0.814 0.706 0.726 0.686 0.788
mat2vec (Tshitoyan et al., 2019) 0.841 0.826 0.858 0.804 0.742 0.877 0.697 0.727 0.668 0.781
Mat-WE (Kim et al., 2017) 0.834 0.816 0.854 0.797 0.769 0.827 0.702 0.703 0.701 0.778
Mat-ELMo (Kim et al., 2017) 0.917 0.897 0.938 0.823 0.768 0.887 0.739 0.761 0.718 0.826
SciBERT (Beltagy et al., 2019) 0.879 0.866 0.893 0.839 0.798 0.884 0.709 0.749 0.673 0.809

Table 4: F1 scores of sequence-labeling models with different base representations on development dataset. Macro-
averaged F1 scores were calculated using all three coarse-grained types (ALL). The highest and second-highest for each
metric are indicated in bold and underline, respectively.

on the development set. We show the micro-averaged F1
scores for the three coarse-grained types and the macro-
averaged F1 score of the three types (ALL) for the plot.
For the rule-based RE, we used 145 sections (used for train-
ing in sequence tagging) in designing rules, whose details
are shown in Sec. 4.2., and 98 sections (used as develop-
ment and testing in sequence tagging) for evaluating the
rules. To evaluate the RE, an F1 score based on an exact
match was used as the primary evaluation metric. We used
COREFERENCE relations in the evaluation: phrase pairs
with COREFERENCE relations were treated as the same
phrase in the RE evaluation. The performance of the rule-
based RE was further analyzed in detail by evaluating the
efficiency of the fine-grained labels in the entities as the
ablation study, and by demonstrating the accuracy and cov-
erage of each rule.

5.2. Sequence-Tagging Results
Table 4 summarizes the sequence-labeling results for ex-
tracting three coarse-grained vertex types over the six base
representations as shown in Sec. 4.1.. The results show rea-
sonably high performance, in which Mat-ELMo achieved
the highest performances, with an F1 score of 0.917 on
MATERIAL, and 0.826 on ALL, while SciBERT achieved
the best score on OPERATION.
The performance of the sequence tagger with Mat-ELMo,
evaluated on the fine-grained types, is presented in Ta-
ble 5. Among the MATERIAL types, MATERIAL-START
achieved the highest F1 score of 0.887. The F1 score of
OPERATION was 0.821, which was higher than the av-
erage. Among the PROPERTY types, PROPERTY-TIME
achieved the highest F1 score of 0.928. However, the F1
score of MATERIAL-INTERMEDIUM was 0.105 in the se-
quence tagging. This may be because it is difficult to
extract MATERIAL-INTERMEDIUM without understanding
the whole structure of the synthesis process.
Changes in F1 score according to training set size are pre-
sented in Figure 10. In this result, we observe that the
curves of ALL remain almost flat after using around 20%
of the training set is used. Therefore, we conclude that the
size of the SynthASSBs corpus is large enough to train the
sequence tagger. In detail, for MATERIAL, the F1 score
gradually increases as the training set size increases be-
cause material phrases often include unknown terms. OP-
ERATION’s performance is flat after 5% of the training set is
used because there are several types of OPERATION verbs

Types F1 P R
MATERIAL 0.661 0.692 0.665
MATERIAL-START 0.887 0.885 0.888
MATERIAL-INTERMEDIUM 0.105 0.286 0.065
MATERIAL-FINAL 0.675 0.591 0.786
MATERIAL-SOLVENT 0.793 0.852 0.742
MATERIAL-OTHERS 0.845 0.845 0.845
OPERATION 0.821 0.792 0.852
PROPERTY 0.780 0.778 0.784
PROPERTY-TEMP 0.842 0.806 0.880
PROPERTY-TIME 0.928 0.932 0.925
PROPERTY-ROT 0.889 0.857 0.923
PROPERTY-PRESS 0.605 0.619 0.591
PROPERTY-ATMOSPHERE 0.775 0.775 0.775
PROPERTY-OTHERS 0.641 0.676 0.609
ALL 0.754 0.754 0.767

Table 5: F1 scores of the sequence labeling models with
Mat-ELMo on the development dataset by type. MATE-
RIAL and PROPERTY indicate micro-averaged F1 scores of
each fine-grained types, respectively. ALL is the macro-
averaged scores of three coarse-grained types (i.e., MATE-
RIAL, OPERATION, and PROPERTY in this table).

used in the synthesis process. Because PROPERTY is also
steady state when 20% or more of the training set is used, it
seems that the properties are described in a regular manner.

5.3. Relation Extraction Results
Table 6 displays the results of the rule-based model as well
as the rule-based RE results obtained by the ablation tests.
The high performance with a macro-averaged F1 score of
0.887 shows the effectiveness of the rules. To confirm the
effectiveness of the fine-grained types or sub-labels, we
compared the F1 score with three settings. In the first set-
ting, we extracted the relations without using material sub-
labels (– MATERIAL-∗), by applying the rule of M-O to
all of the MATERIAL types and ignoring the rule of O-M.
In the second setting, we extracted relations without using
PROPERTY sub-labels (– PROPERTY-∗), by applying the
rule of PO-OM to all of the PROPERTY types and ignoring
the rule of P-O. The final setting was without either MATE-
RIAL or PROPERTY sub-labels (– both sub-levels). Accord-
ing to the ablation tests, the F1 scores were improved by
7.8% on CONDITION and 11.1% on NEXT when applying
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Figure 10: Changes in F1 score according to training set
size which is increased in increments of 5 % until train-
ing set size reaches 145 sections. ALL shows the macro-
averaged F1 score of the three coarse-grained types.

CONDITION NEXT ALL
Rule-based RE 0.914 0.860 0.887
– MATERIAL-∗ 0.914 0.749 0.832
– PROPERTY-∗ 0.836 0.860 0.848
– both sub-levels 0.836 0.749 0.793

Table 6: F1 scores of rule-based system and ablation test
results. Macro-averaged F1 scores were calculated using
CONDITION and NEXT (ALL).

the sub-label rules.
To analyze the effects of the rules in further detail, the
coverage and accuracy for each rule were determined, and
these are presented in Table 7. By comparing the rule cover-
age and accuracy, it could be observed that the rules of PO-
OM and P-O, which exhibited wide coverage and high ac-
curacy (over 25% and 85%, respectively), contributed sig-
nificantly to the extraction performance. This indicates that
the rules for extracting the relation between the PROPERTY
and MATERIAL or OPERATION successfully mimicked the
manner of reading a paper. Although the coverage of the
rule O-M was extremely low and the accuracy was rela-
tively low (4.6% and 48.9%, respectively), this rule was
essential for constructing the synthesis graph and could not
be omitted.

6. Qualitative Evaluation
We present a thorough evaluation on a real-world scien-
tific literature to demonstrate the efficacy of our framework.
A prediction obtained by our framework and the synthesis
graph are shown in Figure 11 and Figure 12, respectively.
In this result, our framework could extract phrases related
to material synthesis almost without error. In detail, the
relations across the sentences were extracted without prob-
lems; for example, our framework created a NEXT edge be-
tween “mixed” written in the first sentence and “dispersed”
written in the second sentence. Moreover, our framework
succeeded in identifying the type of MATERIAL even if
material written in an abbreviation form; for example, our
framework could detect that “Li4Ti5O12” and “LTO” are

Rule Coverage Accuracy
O-O 0.219 0.811
M-O 0.160 0.811
O-M 0.046 0.489
PO-OM 0.322 0.853
P-O 0.254 0.951

Table 7: Coverage and accuracy of our rules applied to
training data.

MATERIAL-FINAL in the first sentence. However, the la-
bel type was wrong in “anatase” in the first sentence, and
OPERATION connection between “calcined” and “drying”
on the second line was different from that labeled by the
annotator. This is because our rule-based RE could not un-
derstand the meaning of “after drying”.

7. Error Analysis
We analyzed 135 errors in the sequence-tagging results.
The over-detection errors constituted 49 cases, which were
often PROPERTY-OTHERS types that were not directly re-
lated to the synthesis process; for example, vessel size
or thickness, and milling machine properties. A total of
49 entities were missing and were often caused by PROP-
ERTY types, were missing due to rare adverbs, adjectives,
or units; for example, “naturally”, “constant”, “mm-thick”,
and, “micrometers”.
In the RE, we identified two major problems when we an-
alyzed the 129 errors. The first problem was caused by
the definition of the distance, which used the number of
words and ignored syntactic structures. For example, in
the sentence “LiNO3 were weighed according to the stoi-
chiometry of the Li3xLa2/3-xTiO3 and dissolved in ethy-
lene,” our distance-based rule predicted that “Li3xLa2/3-
xTiO3” qualifies “dissolved” instead of “weighed”. This
type of problem included 73 errors. The second problem
was complex operation sequences. Where two or more ma-
terial synthesis processes were described in one document,
there were cases in which a synthesis process indicated at
the beginning was omitted in the second and subsequent ex-
planations. In such cases, branching and merging of synthe-
sis processes occurred. Our rules assumed that the opera-
tion sequence was described sequentially, so they could not
identify these processes. This type of complex operation
sequence caused 28 errors. One means of addressing the
above problems is to incorporate additional rules; however,
it is not realistic to create more rules manually, because the
descriptions are sometimes ambiguous, without an under-
standing of the contents. We are considering developing a
deep learning-based extractor that can take syntactic struc-
tures into account.

8. Related Work
Process extraction from procedure texts has been studied in
a wide range of fields. Such studies include an effort to ex-
tract liquid mixing procedures from text (Long et al., 2016),
an annotated corpus of photosynthesis and formation ero-
sion processes (Dalvi et al., 2018), the extraction of re-
sponse processes from guidance texts at the time of disaster
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The pure Li4Ti5O12 material, denoted LTO, was obtained from Li2CO3 (99.99 %, Aladdin) and anatase TiO2 

(99.8 %; Aladdin) precursors, mixed, respectively, in a 4:5 molar ratio of Li:Ti.

The precursors, dispersed in deionized water, were ball-milled for 4 h at a grinding speed of 350 rpm, and then calcined at 

800 degC for 12 h after drying.
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Figure 11: Synthesis process extraction results from the text in Figure 1
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99.99 %

mixed 4:5 molar ratio of Li:Ti

dispersed deionized water

ball-milled 4 h 350 rpm

calcined 800 ℃12 h

Li4Ti5O12

Next

Material Operation Property

Condition

anatase

99.8 %Aladdin Aladdin

drying

Coreference

LTO

Figure 12: Synthesis graph of the extracted synthesis pro-
cess in Figure 11.

occurrence (Guo et al., 2018), and several attempts to struc-
ture and extract a series of cooking-related actions, such as
baking and boiling, from cooking recipe sentences (Mori et
al., 2014; Kiddon et al., 2015; Maeta et al., 2015; Abend
et al., 2015). Numerous language resources exist in the or-
ganic chemistry field (Kim et al., 2003; Krallinger et al.,
2015; Tsubaki et al., 2017; Kulkarni et al., 2018; Tanaka
et al., 2018), which have been annotated with the exper-
imental processes that appear in the papers. Moreover,
an attempt has been made to extract processes by apply-

ing event extraction methods to realize machine-based text
reading for biomedical papers (Miwa et al., 2012; Scaria
et al., 2013; Berant et al., 2014; Rao et al., 2017; Rahul et
al., 2017; Björne and Salakoski, 2018). In the inorganic
chemistry field, several corpus are available for general-
purpose materials (Mysore et al., 2019; Kononova et al.,
2019), while some studies are underway to extract the syn-
thesis process from papers (Mysore et al., 2017; Tamari et
al., 2019); however, no corpus and extraction system exist
for synthesizing ASSBs. Therefore, we have presented a
domain specific corpus of the synthesis process for ASSBs,
and an automated machine-reading system for extracting
the synthesis processes buried in the scientific literature.

9. Conclusion

This study has addressed the problem of the lack of labeled
data, which is a major bottleneck in developing ASSBs. We
constructed the novel SynthASSBs corpus, consisting of
the experimental sections of 243 papers. The corpus anno-
tates synthesis graphs that represent the synthesis process
of ASSBs in text. Moreover, we proposed an automatic
synthesis process extraction framework using our corpus
by combining a deep learning-based sequence tagger and
rule-based relation extractor that mimics the experience in
human reading. As a result, the sequence tagger with the
best setting can detect the entities with a macro-averaged
F1 score of 0.826. Furthermore, the rule-based RE demon-
strates high performance with a macro-averaged F1 score
of 0.887.

In future work, we will develop a deep learning-based re-
lation extractor that incorporates syntactic information into
the model to improve the extraction performance. We will
also apply our extracting framework to existing papers, and,
using the extracted abundant knowledge, we will build a
computational synthesis design framework for discovering
novel material.
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