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Abstract
In this paper, we investigate paraphrase generation in the colloquial domain. We use state-of-the-art neural machine translation models
trained on the Opusparcus corpus to generate paraphrases in six languages: German, English, Finnish, French, Russian, and Swedish.
We perform experiments to understand how data selection and filtering for diverse paraphrase pairs affects the generated paraphrases.
We compare two different model architectures, an RNN and a Transformer model, and find that the Transformer does not generally
outperform the RNN. We also conduct human evaluation on five of the six languages and compare the results to the automatic evaluation
metrics BLEU and the recently proposed BERTScore. The results advance our understanding of the trade-offs between the quality
and novelty of generated paraphrases, affected by the data selection method. In addition, our comparison of the evaluation methods
shows that while BLEU correlates well with human judgments at the corpus level, BERTScore outperforms BLEU in both corpus and
sentence-level evaluation.
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1. Introduction
Paraphrases are a set of sentences or phrases that have the
same meaning. The study of paraphrases has both theo-
retical and practical implications: On the one hand, it is
possible to explore semantic representations that go deeper
than surface-level features. Two expressions may carry the
same meaning, although they may not contain the same
words or their syntactic structures may be completely dif-
ferent. These two expressions could have an identical or
similar underlying semantic representation or there could
be a mapping that transforms one surface form to another.
On the other hand, there are practical applications of para-
phrase models. Such models can be useful in information
retrieval or data mining for discovering expressions with
the intended meaning but with totally different surface re-
alization than the original query (Riezler et al., 2007). In
addition, paraphrasing is used in abstractive summarization
as part of summarization models (Nayeem et al., 2018), as
well as for evaluation (Vadapalli et al., 2017). Paraphrases
can also be used for proofing or grammar checking, produc-
ing suggested corrections. Similarly, someone perfecting
their skills in a second language, or someone looking for
alternate, possibly more idiomatic, expressions may benefit
from paraphrase models. For instance, to pick one word,
to corroborate, in a few contexts, we can find the follow-
ing paraphrase pairs: “She’ll corroborate my story.” →
“She’ll back me up.”, “Can you corroborate that?” → “I
need proofs.”, “Will people corroborate your account?” →
“Is there anybody who can vouch for that?”
In this paper, we focus on paraphrase generation using neu-
ral machine translation methods. In paraphrase generation
we are interested in models that take in an arbitrary in-
put sentence and generate an output with the same mean-
ing but different surface form. We apply traditional recur-
rent encoder-decoder networks with attention (Luong et al.,
2015) as well as Transformer based models (Vaswani et al.,
2017), which are the state of the art of modern machine
translation. Previous work has already addressed para-
phrase generation through machine translation trained on

monolingual data (Quirk et al., 2004; Hasan et al., 2016;
Prakash et al., 2016). Variants integrating variational au-
toencoders into the models (Gupta et al., 2018) or different
learning schemes based on reinforcement learning (Li et al.,
2017) have also been proposed. Roy and Grangier (2019)
propose a method based on variational autoencoders and
unlabeled monolingual data. A closely related approach
uses machine translation models to generate paraphrases
via backtranslation (Mallinson et al., 2017; Suzuki et al.,
2017; Wieting and Gimpel, 2018), where a sentence is first
translated into one or more target languages and then back
into the source language. In addition to machine translation
models, rule-based systems (Meteer and Shaked, 1988) and
methods based on lexical substitution (Kauchak and Barzi-
lay, 2006) have previously been used for paraphrase gener-
ation.

There are other approaches to finding paraphrases beside
paraphrase generation. Pivot methods rely on parallel cor-
pora (Bannard and Callison-Burch, 2005) whereas para-
phrase detection and extraction can be based on sentence
embeddings (Wieting and Gimpel, 2018; Wieting and Gim-
pel, 2017; Sjöblom et al., 2018) or semantic matching
models (Lan and Xu, 2018). With arbitrary input sen-
tences, these methods are intuitively unappealing because
they search for a closest match in the available data, and
no amount of data guarantees that a correct paraphrase is
found for any given input. For this reason, we adopt the
generation approach. Naturally, generation models are still
dependent on suitable training data, and generalization out-
side the training set is a problem that needs to be tackled.
However, massive data sets beyond the training data are not
needed in this approach.

We are interested in paraphrase generation specifically in
less formal, colloquial style language. A less formal do-
main can be especially useful when paraphrasing is used
in a language learning context for suggesting alternatives
and more idiomatic expressions to second-language learn-
ers. This is in contrast to many of the common paraphrase
data sets such as the Microsoft Research Paraphrase Cor-
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pus consisting of news text (Dolan et al., 2004; Dolan and
Brockett, 2005), PPDB (Ganitkevitch et al., 2013), which
covers many formal domains, in addition to some more col-
loquial data, or Quora Question Pairs (Iyer et al., 2017),
which covers a variety of topics but is limited to questions.
In addition, most of the work on paraphrase generation has
been for English, while we are interested in broadening the
work to multiple languages. We focus on the Opusparcus
corpus for our experiments (Creutz, 2018). Opusparcus
consists of sentential paraphrases in six languages extracted
from subtitles of movies and TV shows. The English subset
of Opusparcus has been previously used in paraphrase gen-
eration (Ampomah et al., 2019; Hämäläinen and Alnajjar,
2019), but to our knowledge, no previous work has used all
six languages in the corpus.
We perform systematic evaluation and analysis of para-
phrase generation. To assess semantic adequacy of the gen-
erated paraphrases, we compute scores from manual anno-
tations, which we compare to BLEU (Papineni et al., 2002)
and a recently proposed, so-called BERTScore (Zhang et
al., 2020). Furthermore, we quantify the novelty of the
phrases using PINC scores (Chen and Dolan, 2011).
Major contributions of the present work are experiments in
data selection to understand the trade-off between semantic
adequacy and novelty in paraphrase generation, as well as
the validation of BERTScore in the colloquial domain us-
ing manual evaluation. In contrast to much of the previous
work, we also perform experiments in multiple languages.

2. Data
Opusparcus (Creutz, 2018) is a sentential paraphrase cor-
pus consisting of pairs of sentences extracted automat-
ically from the OpenSubtitles corpus (Lison and Tiede-
mann, 2016). Opusparcus is publicly available1 and con-
tains training, development and test sets for six European
languages: German (de), English (en), Finnish (fi), French
(fr), Russian (ru), and Swedish (sv).

Training sets: The Opusparcus training sets consist of
millions of sentence pairs. These sentence pairs have not
been annotated manually, but a ranking function has been
used for sorting, such that the sentence pairs that are most
likely to be true paraphrases are in the beginning of the data
set and the least likely paraphrase pairs are last. This al-
lows us to pick cleaner and smaller training sets or larger
but noisier sets. In the present work, we use a threshold
such that 70% of the sentence pairs are estimated to be true
paraphrases. This threshold has been shown earlier to per-
form well in paraphrase detection experiments (Sjöblom et
al., 2018).

Test sets: For each language, Opusparcus provides a test
set of approximately 1000 sentence pairs that have been
verified to be “Good” or “Mostly good” paraphrases by hu-
man annotators (Creutz, 2018; Aulamo et al., 2019). None
of these sentence pairs occur in the training sets. However,
around half of the test sentences do occur in the training
set, although paired with some other sentence than in the
test set. This makes sense in a paraphrase detection sce-
nario, where a classifier predicts whether a given (unseen)

1http://urn.fi/urn:nbn:fi:lb-2018021221

sentence pair consists of paraphrases or not. In a paraphrase
generation scenario, however, it is unsatisfactory to evalu-
ate performance on sentences that have been observed dur-
ing training, because appropriate paraphrases could be pro-
duced by memorizing the training set.
We therefore divide the test set into two subsets of approx-
imately the same size: the seen test set, which consists of
sentence pairs where the source sentence is part of the train-
ing set, as well as the unseen test set, which consists only of
sentences that have not been present during training. Most
of the evaluation will focus on the unseen test set, which is
the most interesting scenario.

3. Paraphrase Generation Models
We use two different neural machine translation architec-
tures in our experiments. Our first model is a standard
sequence-to-sequence network with general attention (Lu-
ong et al., 2015). The encoder first encodes the input sen-
tence into a sequence of vectors using a recurrent neural
network (RNN), and the decoder RNN then selectively pays
attention to the encoded vectors to generate the output sen-
tence. We use LSTM units in both the encoder and the
decoder, with a 3-layer bidirectional encoder and a 3-layer
unidirectional decoder. We train separate encoder and de-
coder word embeddings with 512 dimensions and use 1024
dimensions in the encoder and decoder layers. The total
number of parameters in the model is approximately 110
million. A dropout probability of 0.3 is used between the
LSTM layers. The parameters were kept constant for all
languages.
Our second model is the Transformer model by Vaswani et
al. (2017). The Transformer has been successfully adapted
to a wide variety of sequence problems and has specifically
achieved state-of-the-art results in machine translation. In-
stead of recurrent connections present in the RNN model,
the Transformer is based purely on self-attention within the
encoder and the decoder, as well as attention between the
encoder and the decoder. We use 6 layers in both the en-
coder and the decoder, with hidden state and word embed-
ding dimensionalities of 512, separate word embeddings
for encoder and decoder, 8 attention heads, and a feed-
forward dimensionality of 2048 within the layers. The to-
tal number of parameters in the model is approximately 90
million. A dropout of 0.1 is used between layers. These
and the rest of the hyperparameters for the Transformer fol-
low the recommended setup of OpenNMT-py (Klein et al.,
2017), which we use for all experiments.
All models are trained for 400k steps or until convergence,
with a validation score as the convergence criterion. The
data is preprocessed using byte pair encoding (BPE) (Sen-
nrich et al., 2016) with 30k operations to avoid out-of-
vocabulary tokens. We use the Adam optimizer (Kingma
and Ba, 2014) to train both models with a learning rate of
0.0001. For the RNN model, the learning rate is halved
every 40k steps starting after 200k steps, and for the Trans-
former, the recommended noam decay is used. We use a
batch size of 256 samples for the RNN model and a token
batch size of 4096 for the Transformer. At inference time
we ensemble the last three checkpoints to produce the out-
puts and use beam search with beam size 10.

http://urn.fi/urn:nbn:fi:lb-2018021221
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de en fi fr ru sv
Large 12.0 40.0 7.0 26.0 10.0 3.6
Unidirectional 6.0 20.0 3.5 13.0 5.0 1.8
Edit distance 6.2 18.3 2.6 12.5 3.9 1.1

Table 1: Training set sizes [million sentence pairs].

4. Experiments
Our goal is to generate correct paraphrases for a set of
source sentences. However, mere correctness is only part
of the story, since generated paraphrases can be very close
to the input sentence and as such not that interesting. In
the extreme, the output can be identical or almost identi-
cal to the input, for instance, “It is fine.” → “It’s fine.”.
Our aim is to produce correct paraphrases, but ideally also
paraphrases that are different from their source sentences.
To promote dissimilarity between input source sentences
and predicted output sentences, we produce three different
versions of the training data:

Large: Our first setup for creating training sets produces
the largest number of training examples. For every sentence
pair in the training set, we symmetrically train paraphrase
generation in both directions, with both sentences as source
and target, for instance: “It stopped raining.” → “The rain
stopped.” and “The rain stopped.” → “It stopped raining.”.

Unidirectional: In an attempt to reduce similarity be-
tween source and prediction, we use every training sentence
pair in one direction only, with random selection of one sen-
tence as the source and the other as the target, for instance:
“The rain stopped.” → “It stopped raining.”

Edit distance: In a further attempt to promote dissimi-
larity, we filter the training data to only contain sentence
pairs with a minimum edit distance (Levenshtein distance)
of 10 or higher.2 This setup is symmetric, such that both
sentences serve as both source and target, for instance: “I
will not let you down.” → “I won’t disappoint you.” and “I
won’t disappoint you.” → “I will not let you down.”.
The training set sizes are shown in Table 1. The unidirec-
tional sets are half has large as the large sets, because every
sentence pair occurs in one direction only. The edit distance
sets are similar in size to the unidirectional sets.

4.1. Manual annotation
As part of the evaluation, the authors annotated samples
of predicted paraphrases. The task was to decide on a
four-grade scale how well the predicted sentence was a
paraphrase of the input source sentence. The scale con-
sists of the following categories: 1 (Bad), 2 (Mostly bad),
3 (Mostly good), 4 (Good). The same approach was used in
the annotation of the Opusparcus development and test sets
(Creutz, 2018; Aulamo et al., 2019).

2For filtering we use the edit distance figures provided in the
Opusparcus data, described in the corpus release: “This adjusted
edit distance is computed without taking into account the ‘tails’
of the longer of the two sentences. For instance, the adjusted edit
distance between the sentences ‘Frankfurt , Germany .’ vs. ‘Oh ,
Frankfurt , Germany .’ is zero, because the first shorter sentence
fits within the second longer one without any modifications.”

de en fi fr sv
RNN Large 98.6 100.0 96.6 98.6 100.0
RNN Unidirectional 98.3 100.0 90.5 93.8 97.9
RNN Edit distance 96.3 98.0 97.7 96.1 79.3
Transformer Large 98.5 100.0 92.9 91.9 98.4
Transf. Edit Dist. 92.3 96.0 97.6 96.0 74.9

Table 2: Seen test sets: Proportion [%] of predictions an-
notated as correct (“Good” or “Mostly good” paraphrases).
The best result for each language is shown in bold-face font.
The methods compared are a traditional encoder-decoder
architecture with attention (RNN) on the Large, Unidirec-
tional and Edit distance training sets, and the Transformer
on the Large and Edit distance sets.

de en fi fr ru sv
RNN Large 29.3 34.4 21.0 30.8 27.0 18.8
RNN Unidir. 28.7 36.6 21.7 29.0 22.8 14.9
RNN Ed. Dist. 9.5 13.7 5.1 7.7 4.7 1.1
Transf. Large 30.1 36.7 29.3 28.3 25.8 25.4
Tr. Ed. Dist. 11.0 11.7 7.1 8.4 10.8 1.7

Table 3: Seen test sets: Proportion [%] of predictions which
are identical copies of the source sentences (the fewer the
better).

For each language, two hundred sentence pairs were drawn
randomly for annotation, 50 pairs from the seen test set and
150 sentence pairs from the unseen test set (the latter being
more interesting). Manual annotations took place for five
languages (all Opusparcus languages except Russian), in
five experimental setups: the recurrent architecture with at-
tention trained in turn on the Large, Unidirectional and Edit
distance training sets, as well as the Transformer trained on
the Large and Edit distance sets.
English and Finnish were annotated independently by two
persons. Sentence pairs with too high inter-annotator dis-
agreement were discarded, following the guidelines for
the Opusparcus development and test sets (Creutz, 2018;
Aulamo et al., 2019). German, French and Swedish were
annotated by one person only, so the results for these lan-
guages should be seen as indicative at this point.

4.1.1. Seen test sets
Table 2 presents the accuracies of the generated sentences
in the seen test sets. Since the input sentences have been
seen during training, the accuracies should be high, which
is indeed the case in most setups. However, the training
sets are noisy. As already mentioned, only 70 % of the sen-
tence pairs that are trained on are estimated to be true para-
phrases, so the models are expected to produce errors. In
light of this, the accuracies are in fact surprisingly good.
The results in Table 2 suggest that the large (bidirectional)
training sets are slightly better than the unidirectional ones.
The Transformer does not outperform the RNN on the large
sets. The edit distance sets do not reach the same level as
the large sets, except for Finnish.
Closer inspection of the results shows that large proportions
of the predictions are in fact copies of the source sentence
(see Table 3). For English, where we reach 100 % accuracy
in theory, more than one third of the predicted outputs are
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de en fi fr sv
RNN Large 72.4 92.9 67.4 63.9 78.1
RNN Unidir. 70.6 93.8 52.5 55.9 66.8
RNN Ed. Dist. 63.6 84.1 55.7 50.4 57.9
Transf. Large 74.0 90.8 57.4 60.0 72.2
Transf. Ed. Dist. 68.9 88.8 62.2 54.1 60.5

Table 4: Unseen test sets: Proportion [%] of predictions
annotated as correct.

de en fi fr ru sv
RNN Large 2.1 0.9 2.2 3.9 2.8 3.4
RNN Unidir. 2.8 1.0 1.4 3.2 1.8 3.6
RNN Ed. Dist. 0.0 0.2 0.8 0.2 0.6 0.5
Transf. Large 2.7 2.2 1.9 2.3 0.9 3.0
Tr. Ed. Dist. 0.2 1.1 0.5 0.4 0.9 0.0

Table 5: Unseen test sets: Proportion [%] of predictions
which are identical copies of the source sentences (the
fewer the better).

identical to the inputs. The number of copies is clearly re-
duced when the edit distance training sets are used, as these
models do not encounter output sentences that are very sim-
ilar to the inputs during training.

4.1.2. Unseen test sets
Tables 4 and 5 show the accuracies of the unseen test sets
and the proportions of predictions that are identical copies
of the inputs. Compared to the seen test sets, the unseen
sentences are naturally more challenging and accuracies are
lower. Interestingly, the proportion of copies is also clearly
lower. In particular, when trained on the edit distance data,
copies almost never occur.
The “RNN Large” setup still produces the highest accura-
cies on three languages (fi, fr, sv). The Transformer is the
best model for German. Unidirectional data seems to work
best for English, probably because the English training set
is so large that we can afford not duplicating and swapping
every sentence pair. Otherwise the unidirectional training
approach does not appear too promising, as it mostly does
not manage to reduce the proportion of copies compared to
the large sets, neither for the unseen (Table 5) nor the seen
test data (Table 3). The edit distance models do not reach
the accuracy levels of the large models for any language,
not even if the copies in Table 5 were to be subtracted from
the accuracy figures in Table 4.
Table 6 illustrates another aspect of the paraphrases gener-
ated from the unseen test sentences. The figures indicate

de en fi fr ru sv
RNN Large 14.7 4.8 19.1 21.0 14.8 16.2
RNN Unidir. 13.3 7.2 20.9 19.2 14.6 25.8
RNN Edit Dist. 6.9 4.9 26.5 12.6 20.1 36.9
Transf. Large 16.1 5.9 13.6 21.9 13.6 20.8
Tr. Ed. Dist. 10.6 5.8 29.5 14.0 22.5 34.2

Table 6: Unseen test sets: Proportion [%] of predictions
which are new, i.e. not seen in the training set (the higher,
the more “creative” the model is).

the proportion of entirely new sentences produced by the
models. The values are not particularly high, ranging from
4.8 % (en) to 36.9 % (sv). This means that in the majority of
the cases the models are conservative. Rather than invent-
ing a new paraphrase of the source sentence, a target sen-
tence seen during training will be picked. In other words,
even if the source sentence is previously unseen, the model
will propose a paraphrase from the training set. As the ac-
curacies are rather high (Table 4), this approach often seems
to pay off. For instance, the following test source sentences
have been paired with a paraphrase observed during train-
ing: “Blew a tire is all.” → “I got a flat tire.”, “Things are
all changed.” → “Things are different now.”, and “I am a
citizen of the Federation.” → “I’m an American citizen.”
By contrast, for the following test source sentences new,
previously unseen, paraphrases have been created: “I’ll see
you, Walter.” → “See you, Walter.”, “We thought you ran
away from us.” → “We thought you’d gone.”, “Point the
beam over here.” → “Give me the beam.”

4.2. Automatic evaluation
In addition to manual annotation, automatic evaluation has
been performed, using three different metrics. Two metrics
are designed to measure the semantic adequacy of the out-
put (BLEU and BERTScore), while the third one measures
the novelty of the output (PINC). Automatic evaluation of
text generation poses a difficult challenge and the choice of
an appropriate evaluation metric is not always clear. Conse-
quently, we test how well BLEU and BERTScore correlate
with the human annotations described in the previous sec-
tion to guide future evaluation choices.

BLEU: BLEU is an evaluation metric based on ngram-
overlap between the generated candidate sentence and one
or more reference sentences (Papineni et al., 2002). It has
remained the standard evaluation metric in machine trans-
lation. However, in the absence of multiple reference sen-
tences, BLEU can penalize interesting paraphrases that are
completely different on the surface despite the same or sim-
ilar meaning. We report BLEU using both the source and
the target sentences from the test data as references. We
choose to use the source sentence as reference as well, be-
cause similarity to the source can indeed signal semantic
adequacy, despite being undesirable in our case.

BERTScore: To remedy the shortcomings of BLEU, we
test a recently proposed metric BERTScore that is based
on deep contextualized embeddings (Zhang et al., 2020).
BERTScore uses a pre-trained BERT model (Devlin et al.,
2018) to compute contextualized embeddings for each to-
ken. It then calculates pairwise cosine similarities between
all candidate and reference tokens, weighted using inverse
document frequency. Finally, greedy matching based on the
weighted cosine similarities is used for the final score. The
process produces three scores: precision, recall, and F1. We
use the F1 score in all experiments, as it was found to per-
form reliably across setups (Zhang et al., 2020). To obtain
comparable results across languages, we use the multilin-
gual BERT for our experiments.3

3We used version 0.1.2 of the BERTScore implementation at
https://github.com/Tiiiger/bert_score with the

https://github.com/Tiiiger/bert_score
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de en fi fr ru sv
RNN Large 34.9 46.6 25.5 33.4 33.1 37.7
RNN Unidir. 32.4 46.4 22.3 30.2 29.2 35.9
RNN Ed. Dist. 24.7 36.0 16.9 18.6 2 2.5 21.7
Transf. Large 35.9 49.0 22.6 28.3 29.6 39.4
Tr. Ed. Dist. 26.5 40.9 18.7 19.3 24.2 22.9

Table 7: BLEU scores on the unseen test sets for all models
and languages.

de en fi fr ru sv
RNN Large 84.8 84.8 82.1 82.7 85.5 84.2
RNN Unidir. 84.3 88.4 80.7 82.2 84.1 83.1
RNN Ed. Dist. 81.8 86.1 78.5 78.4 82.1 79.1
Transf. Large 84.7 88.6 81.3 82.1 84.0 83.8
Tr. Ed. Dist. 82.5 86.6 78.9 78.8 82.3 79.4

Table 8: BERTScores on the unseen test sets for all models
and languages.

PINC: While BLEU and BERTScore aim to measure
the semantic adequacy of the candidate, PINC measures
how dissimilar the candidate is from the source (Chen
and Dolan, 2011). It calculates the percentage of non-
overlapping ngrams, essentially being the opposite of
BLEU. By combining PINC with the two other metrics we
can make sure that models which simply copy the input or
perform trivial transformations are penalized.

Automatic evaluation results: Tables 7 and 8 show the
BLEU and BERTScores for all models and languages. A
look at the tables shows that both metrics rank the mod-
els within languages similarly. If we compare the choices
of top models based on BLEU and BERTScore, the met-
rics differ on two languages: In comparison to human judg-
ments, BLEU ranks German correctly and Swedish incor-
rectly, and BERTScore vice versa. Both metrics rank En-
glish incorrectly.
Table 9 shows the PINC scores for all models. As ex-
pected, the PINC scores are significantly higher for the edit
distance-filtered setups than for the non-filtered ones. A
comparison with the BLEU and BERTScores in Tables 7
and 8 shows a trade-off between the semantic adequacy and
novelty of the generated paraphrases. For a single evalua-
tion score assessing both the adequacy and novelty, PINC
can be combined with one of the other two metrics, for ex-
ample by calculating an average of the scores. Different
weighting schemes for the combination can be used de-
pending on the relative importance of adequacy and novelty
for the use case.

Comparison with human judgments: Simply looking
at the evaluation scores does not reveal a large discrepancy
between BLEU and BERTScore. Therefore we need to an-
alyze more in depth how the metrics compare to human
judgments.
First, on corpus-level, that is, the scores in Tables 4, 7 and
8 we find that both metrics correlate well with human eval-
uation. Using Spearman’s rank correlation, we find corre-
lation coefficients of ρ = 0.898 for BLEU and ρ = 0.921

bert-base-multilingual-cased model.

de en fi fr ru sv
RNN Large 71.2 63.1 80.0 66.4 72.8 67.3
RNN Unidir. 70.7 63.7 78.4 66.6 74.4 68.1
RNN Ed. Dist. 85.1 81.1 90.8 84.2 85.7 86.0
Transf. Large 68.4 62.4 78.1 67.3 73.6 65.4
Tr. Ed. Dist. 84.6 80.7 88.8 84.8 84.6 88.0

Table 9: PINC scores on the unseen test sets for all models
and languages.

for BERTScore. Although the difference is not massive,
BERTScore clearly outperforms BLEU.

In addition to corpus-level correlation, we test for dif-
ferences at the sentence level between the two metrics.
Figure 1 shows box plots for sentence-level BLEU and
BERTScores aggregated from all models for each anno-
tation category. The plots seem to confirm our intuition
about the shortcomings of BLEU: While it gives reason-
able scores for the lowest category (1: “Bad”), it also gives
the full range of scores for paraphrases in the two highest
categories (3: “Mostly good” and 4: “Good”). In contrast
to BLEU, BERTScore gives few low scores to paraphrases
in the higher categories. However, BERTScore generally
seems to give higher scores across categories. The lack of
lower scores in the lower annotation categories, as well as
the similar general trends in scores can also be seen in the
plots for Finnish in Figure 2. Overall, the behavior of the
two metrics is very different.

In order to quantify the differences between the evaluation
metrics on sentence level, we perform two sets of tests.
First, we test how well the metrics discriminate between ad-
jacent annotation categories. The Wilcoxon rank-sum test
indicates that almost invariably, for both metrics and all ad-
jacent categories, higher scores are given for the higher cat-
egory (p < 0.01). Only two exceptions occur: The BLEU
scores for categories 2 and 3 for English and Swedish do
not show statistically significant differences at the 0.01 sig-
nificance level. Based on this, no strong conclusions can
be made, although the two non-significant results hint that
BERTScore might be a more appropriate sentence-level
evaluation metric.

Because the previous test shows no clear difference be-
tween the two evaluation metrics, we further test for cor-
relation between the metrics and human judgments using
each individual test sentence as a data point. While in
the previous test we considered the four annotation cate-
gories 1 to 4, we will now include the fine-grained cate-
gories 1.5, 2.5 and 3.5 in order to approximate a continu-
ous scale. These categories are the result of two annotators
choosing different but adjacent categories for a paraphrase
pair. We report results on English and Finnish, since those
languages have two annotations for each pair. Using Pear-
son’s r, we find that BERTScore correlates better with hu-
man judgments (English: r = 0.44, Finnish: r = 0.51)
than BLEU (English: r = 0.27, Finnish: r = 0.40). Based
on these results, we conclude that BERTScore is a more
suitable evaluation metric both on corpus level and in the
sentence-level scenario.
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Figure 1: Box plots of BLEU (left) and BERTScore (right) for English showing the distribution of sentence-level scores
for each annotation category. The annotation categories are introduced in Section 4.1.
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Figure 2: Box plots of BLEU (left) and BERTScore (right) for Finnish showing the distribution of sentence-level scores for
each annotation category.

Source sentence Large model prediction Edit distance model prediction

de
Fahren Sie langsamer. Fahr langsamer. Nicht so schnell.
Haben Sie ein gute Nacht. Gute Nacht. Schönen Abend noch.

en

Sound familiar? Does that sound familiar? Does that ring a bell?
That’s the same thing. It’s the same thing. Same difference.
That was my general impression as well. That’s what I was thinking. I thought so too.
I did that because it does good to us It’s good for us. It’s very helpful.
We thought you ran away from us. We thought you’d gone. I thought you were dead.
So, what brings you to New York? What brings you to New York? What brings you to this part of the island?

fi
Haluaisitko jotain? Haluatko jotain? Voinko tuoda sinulle jotain?
En löydä kenkää. En löydä niitä. Sain potkut.

fr
Depuis quand tu es revenu? Depuis quand tu es là? Tu es rentré quand?
Contente de vous revoir. Ravi de vous revoir. Bienvenue à la maison.

ru
Мне с тобой скучно. Мне скучно с тобой. Ты утомляешь меня.
Я деловая женщина. Я же женщина. Я - бизнес.

sv
Nu går jag och lägger mig. Jag går och lägger mig. Jag går till sängs.
Visst gör det ont? Det gör ont, va? Man blir sårad.

Table 10: Examples of paraphrases generated by the RNN Large and RNN Edit Distance models for all six languages
(de, en, fi, fr, ru, sv). In general, the edit distance predictions differ more from the source sentences than the large model
predictions do. This creativity can be beneficial, but also sometimes a source of errors or far fetched associations.
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5. Discussion and Conclusion
Our experiments have shown that our RNN model (recur-
rent encoder-decoder with attention trained on bidirectional
data) produces the most accurate paraphrase predictions in
most cases. We have also shown that it is possible to pro-
duce paraphrases that are different from their source sen-
tences, which is a valuable feature for many downstream
applications. However, the accuracies obtained for the
paraphrases trained on the edit distance training sets are not
quite on par with the models trained on the large training
sets. Table 10 compares examples of predictions produced
by the RNN Large and the RNN Edit Distance models. It
appears that the paraphrases produced by the edit distance
models can be more interesting, but also semantically more
loosely related to the source sentences.
With substantial differences in performance between lan-
guages, accuracies range from 64 % to 94 % on unseen data
(Table 4). The models turn out to be conservative in the
sense that they suggest paraphrases seen during training,
whenever appropriate paraphrases can be found in the train-
ing set. Completely new sentences are created in roughly
20 % of the cases on average (Table 6).
Our experiments with two metrics for measuring semantic
adequacy, BLEU and BERTScore, show good correlations
with human assessment especially in corpus-level evalua-
tion. BERTScore, in particular, can be a valuable replace-
ment or complement to labor-intensive manual annotation
efforts.
In contrast with recent findings in machine translation, the
Transformer-based models did not generally outperform
the RNN-based ones in our experiments. This could be par-
tially due to the fact that the RNN models have a slightly
higher number of parameters and that the training sets are
big enough to learn them reliably. Another possible rea-
son could be that the Transformer output is more creative
and would get penalized by BLEU or BERTScore, but this
hypothesis is rejected by the PINC results in Table 9.
Comparisons with existing literature on paraphrase gener-
ation is difficult because of different data sets and a large
variety of evaluation practices. Differences in test sets, for
example in terms of the number of available reference sen-
tences, have a large impact on evaluation metrics such as
BLEU. While Opusparcus has been used in paraphrase gen-
eration before, previous work has used either non-standard
train-test splits (Ampomah et al., 2019) or the training sets
only (Hämäläinen and Alnajjar, 2019), making their results
incomparable to ours. The highest BLEU score reported by
Ampomah et al. (2019) for English is 20.1, whereas our
corresponding result is 49.0 (Table 7). In a more compara-
ble setting where we calculate BLEU without the source
sentence as a reference, our best model still achieves a
higher score of 30.3.
Generalization across domains and styles is an open prob-
lem, and leveraging multiple data sets from different do-
mains to improve paraphrase generation performance is
left for future work. For instance, our best English model
trained on Opusparcus scores very low when tested on the
Quora Question Pairs corpus (BLEU 10.3) compared to the
same model trained on the Quora data (BLEU 34.8). Con-
versely, a model trained on the Quora data fares even worse

on Opusparcus (BLEU 4.84).
In general, we believe that there is still plenty of room for
further research on paraphrasing, in particular on natural,
colloquial-style data and on languages other than English.
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