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Abstract
We consider the orthographic neighborhood effect: the effect that words with more orthographic similarity to other words are read faster.
The neighborhood effect serves as an important control variable in psycholinguistic studies of word reading, and explains variance in
addition to word length and word frequency. Following previous work, we model the neighborhood effect as the average distance to
neighbors in feature space for three feature sets: slots, character ngrams and skipgrams. We optimize each of these feature sets and find
evidence for language-independent optima, across five megastudy corpora from five alphabetic languages. Additionally, we show that
weighting features using the inverse of mutual information (MI) improves the neighborhood effect significantly for all languages. We
analyze the inverse feature weighting, and show that, across languages, grammatical morphemes get the lowest weights. Finally, we
perform the same experiments on Korean Hangul, a non-alphabetic writing system, where we find the opposite results: slower responses
as a function of denser neighborhoods, and a negative effect of inverse feature weighting. This raises the question of whether this is a
cognitive effect, or an effect of the way we represent Hangul orthography, and indicates more research is needed.

Keywords: Cognitive Methods, Lexical Database

1. Introduction
One of the core issues in contemporary models of word
reading is the representation of orthography. Orthography,
in this case, can be understood as the visual information of
a word as it is represented by the brain. It therefore does not
generally refer to the actual visual presentation of a word,
such as the font and case, but to a more abstract visual rep-
resentation (Dehaene et al., 2005; Dehaene, 2009). One of
the reasons orthography is such a core issue is that older
models, such as the Interactive Activation (McClelland and
Rumelhart, 1981) and DISLEX (Miikkulainen, 1993; Mi-
ikkulainen, 1997) models, assumed that words were repre-
sented as an array of slots, an assumption that has recently
been shown to be false. As readers are remarkably flexible
at decoding orthographic information from jumbled strings
(Schoonbaert and Grainger, 2004; Perea et al., 2008), the
positional information in orthographic representations has
to be flexible to some degree; if this were not the case,
readers would not be able to decode transposition neigh-
bors, e.g., JUGDE - JUDGE, efficiently. These, and other,
phenomena have motivated the search for various models
or featurizations of orthography that can accurately capture
empirical data, which has also been dubbed the search for
an orthographic code (Grainger, 2008; Grainger, 2018). Ex-
amples of such feature sets, or orthographic codes, are char-
acter ngrams, or wickelgraphs (Wickelgren, 1969), four-
teen segment coding (Rumelhart and Siple, 1974), slot-
based coding (McClelland and Rumelhart, 1981), and vari-
ous open bigram schemes (Whitney, 2001; Schoonbaert and
Grainger, 2004; Whitney and Cornelissen, 2008).
Another issue related to the representation of orthography
is the discovery that orthographic similarity plays an im-
portant role in how quickly words are identified; words that
look more like other words are, generally, identified more
quickly (Coltheart, 1977; Andrews, 1989; Grainger, 1990;

Yarkoni et al., 2008; Perea, 2015). Orthographic codes, or
feature sets, thus have an important role; they constrain
the inferences models can make about the similarity of
words, while also defining the orthographic similarity be-
tween words. While many feature schemes have been con-
trasted (Davis and Bowers, 2006; Grainger, 2008; Davis,
2010; Kinoshita and Norris, 2013), there is little consensus
about how words are represented, or which orthographic
code is to be preferred over the other. In this paper, we con-
trast various features on their ability to explain variance in
reaction times on lexical decision tasks, and show that op-
timizing these feature sets leads to gains in explained vari-
ance.

1.1. The neighborhood effect
We use the neighborhood effect as a task on which to test
the fit of orthographic codes. As described above, the neigh-
borhood effect is the effect that words which have more
orthographic similarity to other words are read faster (An-
drews, 1989; Perea, 2015). It is often thought to involve
effects related to co-activation between word representa-
tions, a theoretical position mainly inspired by the Interac-
tive Activation model (McClelland and Rumelhart, 1981).
That is, the neighborhood effect elicited by a word such
as PLEAD is a function of the orthographic similarity of
PLEAD to other words in the lexicon. Because the similar-
ity of a space is dependent on the features used, changing
feature sets or feature weighting will then also impact the
neighborhood effect. For example, if a feature set explicitly
models letter order, PLEAD and LEAD have zero similar-
ity, because they do not share any letters in any position.
Similarly, if a feature set allows for transposition, words
such as COLD and CLOD will have higher similarity than
in feature sets that do not model transposition. Hence, the
assumption that the neighborhood effect is highly depen-
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dent on orthographic similarity gives us a way of objec-
tively evaluating different feature sets. Feature sets whose
neighborhoods explain more variance are, in our reasoning,
more plausible.

1.2. Main Contributions
In this paper, we analyze three different feature sets and
their various parameterizations, and show that the way
these feature sets are currently used is suboptimal, for two
reasons: first, the parameterizations of the feature sets used
in other papers are not ideal. Second, the number of nearest
neighbors considered in calculating the neighborhood ef-
fect is not ideal. Furthermore, we show that the optimal pa-
rameters for these metrics differ from the parameters used
in psycholinguistic research on word reading. We directly
compare our results to previous work, i.e., Tulkens et al.
(2018a), and show that the conclusions drawn from this
work are incomplete because the research was carried out
with a suboptimal number of nearest neighbors and param-
eters. We thus conclude that many different orthographic
codes are equally feasible as far as the neighborhood ef-
fect is concerned, but only when properly optimized, which
was not the case before. In a second experiment, we show
that the inverse of mutual information weighting improves
the explained variance of the neighborhood effect for all
feature sets, and that weighing with regular mutual infor-
mation almost removes the neighborhood effect. This im-
plies that features that frequently occur with a smaller set of
words are less important for calculating the neighborhood
effect. We show that these features generally correspond to
bound morphemes, such as plural suffixes. Additionally, we
present the first results on modeling the orthographic code
of Korean, a non-alphabetic language.

2. Materials and Methods
In this section, we introduce the metric we use to measure
the similarity of words in feature space, the features, and
the corpora used in this study.

2.1. Metrics for Measuring Neighborhoods
The standard metric for measuring neighborhoods is
OLD20 (Yarkoni et al., 2008), which is defined as the mean
Levenshtein distance (Levenshtein, 1966) to the 20 closest
neighbors. As OLD20 operates on string representations,
alternative feature representations can not be easily adapted
to, or incorporated in, OLD20. Features sets, on the other
hand, are more flexible, and can represent, for example, dis-
continuous regularities in words, transpositions, alignment,
or lack thereof (Whitney, 2001). To bridge the neighbor-
hood effect and string metrics, Tulkens et al. (2018a) intro-
duced rd, a metric that calculates the neighborhood density
for arbitrary feature spaces. Mathematically, rd is similar to
OLD20 (Yarkoni et al., 2008), as it is the sum of the cosine
distances to the k closest featurized neighbors.1

Following Tulkens et al. (2018a), rd is described as follows:

1Although OLD20 uses the mean distance, instead of the sum,
this does not have any bearing on the fit to the data, as the de-
nominator in the mean is k for all items. The sum has the further
advantage of not arbitrarily leaving out the item itself; which is
required in the definition of OLD20.

rd(x,X, k) =

k∑
i=1

cos(x,X)i (1)

Where cos is the cosine distance, x is featurized item, and
X is the set of all featurized items, which may or may not
include x. We assume that the output of cos is sorted, so
that the function returns the sum over the k closest items.
In their original experiments, Tulkens et al. (2018a) set k
to 20, to explicitly compare to OLD20. In this paper, we
relax this requirement, and investigate whether different
values of k work better for different neighborhoods. Be-
cause Tulkens et al. (2018a) showed that rd outperformed
OLD20, and because OLD20 can not be feature weighted
in Experiment 2, we leave it out of the current discussion.2

2.2. Featurizations and Their Parameterizations
We use several existing feature sets, all of which have been
implemented in Wordkit (Tulkens et al., 2018b). An over-
looked aspect of these feature sets in psycholinguistic re-
search is that almost all of them are amenable to parameter-
ization. As an example, consider the well-known open bi-
gram encoding (Schoonbaert and Grainger, 2004; Grainger
and Van Heuven, 2004; Whitney, 2001). There is no reason,
be it computational, cognitive, empirical, or otherwise, to
restrict ourselves to using bigrams instead of, say, trigrams.
We show that, for most implemented feature sets, there ex-
ist multiple parameter settings which can be explored.

2.2.1. Slot-based Encoding
A slot-based encoding consist of orthogonal vectors,
aligned in slots. Such an encoding is identical to the let-
ter layer used in the original Interactive Activation model
(McClelland and Rumelhart, 1981). This encoding as-
sumes that all characters are completely orthogonal, in
the sense that any character is equally different to any
other character, regardless of its visual characteristics. Re-
search has shown that transposition (Perea and Lupker,
2004; Perea et al., 2008) and deletion (Van Assche and
Grainger, 2006) neighbors are more easily decoded than
substitution neighbors. As slot-based codes assigns equal
similarity to transposition and substitution neighbors, e.g.,
sim(PAWN,PWAN) = sim(PAWN,PXYN), slot-based
codes are thought to be insufficient. Nevertheless, Tulkens
et al. (2018a) showed that this encoding can still account
for the most explained variance when its neighborhood is
entered into a linear regression.

2.2.2. ngrams
We also consider character ngrams, also known as wick-
elgraphs (Wickelgren, 1969) as a feature set. The wickel-
graph encoding decomposes a word into a set of character
ngrams, where n is a free parameter. ngrams do not en-
code order, which causes words that are embedded in other
words, e.g. PAN and SPAN, to still share some of similar-
ity. All words are padded before calculating the ngrams, be-
cause otherwise words shorter than n can not be accurately
featurized. In all our experiments, we use n ∈ {2, 3, 4}.

2We did carry out experiments, and separately optimized k,
using OLD, but this did not show anything interesting; rd using
one hot encoded strings still outperforms OLD
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FR SP NL UK US
# words 38,335 44,853 24,530 28,480 30,639

Table 1: The number of words left in each of the corpora
after preprocessing.

FR SP NL UK US
ngram n 4 4 4 4 4
Open ngram n 3 3 3 3 3

w 3 3 3 4 3

Table 2: The optimal parameters for the two feature sets
that had parameters to optimize. Note the lack of variation
across parameterizations.

FR SP NL UK US
Slots 6 8 4 2 6
ngram 4 6 5 5 7
Open ngram 3 6 5 2 6

Table 3: The optimal values of k for the optimized models.

Note that we explicitly model ngrams as multisets, and the
generated vectors thus contain the count of each feature.
This is necessary, because otherwise ngrams would not be
able to represent the difference between, for example, BA-
NANA and BANANANANA, as these contain the same
ngram types, but in different frequencies.

2.2.3. Constrained Open ngrams
The constrained open ngram encoding (Schoonbaert and
Grainger, 2004) is a refinement of the open ngram encoding
(Whitney, 2001; Grainger and Van Heuven, 2004). An open
ngram encoding is defined as the set of n-combinations of
letters a word, where the letters within a combination are
ordered by their occurrence in the word. That is, the word
SWAN generates the following open 2-gram (or bigram)
features: {SW, SA, SN, WA, WN, AN}. One issue with
the original open ngram encoding is that it does not put
a constraint on generated combinations, which is an issue,
both theoretical and practically. As an example, the word
QUARANTINE, in the unconstrained setting, generates 45
bigrams, many of which are separated by more than 4 in-
tervening letters. Because of these bigrams with wide gaps,
performance with unconstrained open ngrams tends to suf-
fer.3 To remedy this, constrained open ngrams were intro-
duced; these only allow for the construction of an ngram
with some pre-specified window, which we call w.
We use n ∈ {2, 3} and w ∈ {2, 3, 4, 5}, with the added
constraint that w must be smaller than n. When w =
(n−1), constrained open ngrams reduce to regular ngrams.
Constrained open ngram encoding leads to more parsimo-
nious representations, especially for larger values of n, as
the number of possible ngrams decreases because of the
window constraints. Like the ngrams above, we also repre-
sent these as multisets, and add padding.

3This is also what we observed in our experiments, where reg-
ular open ngrams performed far worse than their constrained al-
ternatives.

2.3. Corpora
Following previous research into the neighborhood effect,
e.g., Yarkoni et al. (2008), we measure the neighborhood ef-
fect using Reaction Times (RT) on a lexical decision task,
while controlling for log frequency and length, two other
control variables. We use various corpora from five differ-
ent languages: British English, US English, Dutch, French,
and Spanish. In all cases, we start from a megastudy of
lexical decision RT measurements, to which we then add
frequency measurements from subtitle corpora, if neces-
sary. For all corpora, we apply the following preprocessing
steps: first, we remove all words which are not lower-cased,
and words without RT or frequency measurements. We re-
move the non-lower-cased words because not all databases
have mixed-case words, and because we have no easy way
of determining what to do uppercase letters with regards
to the neighborhood effect. Second, we remove all words
which contain non-alphabetic characters, such as the geni-
tive marker, space, or dash.
The American English corpus was constructed using the
English Lexicon Project (ELP) (Balota et al., 2007) and the
the SUBTLEX-US database (Brysbaert and New, 2009).
The British English corpus was constructed using the
British Lexicon Project (BLP) (Keuleers et al., 2012) and
the SUBTLEX-UK database (Van Heuven et al., 2014). The
French corpus was constructed from the Lexique database
(New et al., 2001; New et al., 2007), and the French
Lexicon Project (Ferrand et al., 2010). The Dutch corpus
was constructed using the Dutch Lexicon Project (DLP)
(Keuleers et al., 2010b) and SUBTLEX-NL (Keuleers et
al., 2010a). Finally, the Spanish corpus was constructed
from the SPALex database (Aguasvivas et al., 2018). Be-
cause SPALex already includes frequency counts, we did
not need an auxiliary corpus for frequency counts. Note
that, while SPALex involves lexical decision, the task used
in the construction of that corpus did not explicitly ask par-
ticipants to respond as quickly as possible. Nevertheless,
the results can be reinterpreted as being largely equivalent
to those of lexical decision (Aguasvivas et al., 2018).
For the French and Spanish corpora, we had to decide
whether to keep or remove words that contained letters
with diacritic markers, such as TRÉS, as the status of these
markers with regard to their orthographic decomposition is
unclear. As the removal of diacritic markers led to the loss
of a lot of words, and created the conundrum of us having
to decide what to do with duplicate forms, we chose to keep
them.

3. Experiment 1: Optimization
In the first experiment, we consider all possible featur-
izations and their parameterizations. We then use cross-
validation to estimate the optimal parameters for the var-
ious feature sets we have. Similarly, we also use the same
search procedure to estimate the optimal number of nearest
neighbors for each feature set. The search procedure is per-
formed on a training set, which consists of 90% of our data.
The other 10% is held out as a test set, and is only used to
test our final models, and not in any of the optimization pro-
cedures. Both the cross-validation and initial train-test split
were stratified by length and binned log frequency.
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Slots ngrams Open ngrams
Reg Opt Reg Opt Reg Opt

FR .391 .402 .371 .390 .355 .386
SP .600 .603 .590 .595 .572 .588
NL .321 .324 .307 .322 .283 .310
UK .356 .367 .357 .360 .350 .366
US .506 .506 .501 .509 .481 .501

Table 4: The testR2 on the base and optimized models. The
R2 scores in italics denote the best unoptimized (regular)
models, while the bold-faced scores denote the best models
for each language.

3.1. Model Selection
As noted above, RD has a parameter, k, that determines
the number of nearest neighbors to take into consideration.
In previous work, e.g., Yarkoni et al. (2008) and Tulkens
et al. (2018a) and the papers that deploy these metrics as
control variables, k has been set to 20. As we do not know
what the effect of k is for our different feature sets, we use
cross-validation and held-out test-data to search for the op-
timal value of k for each feature set on each dataset. For all
ngram feature sets, we also use the same cross-validation
loop to find the best feature set parameters, e.g., the opti-
mal value of window and n. We use a 90% - 10% train-test
split, stratified by log frequency and length. Then, for each
model, we perform 10-fold cross-validation, again stratified
by log frequency and length, on the training set to estimate
the best k and other parameters. Within each fold, we fit the
following regression model:

rt ≈ log10(frequency) + length + rd +ε

Where rd is the representation distance from each word
to the k closest neighbors, as detailed above. Using the fit
model, we calculate theR2 on the held-out data of that fold.
We compare all our models to a baseline model:

rt ≈ log10(frequency) + length + ε

That is, the model above but without the neighborhood ef-
fect added in.

3.2. Results
For each feature set, we selected the version with the lowest
mean test R2 over all folds, and ran this model on the test
data. As noted above, we jointly select k and the optimal
parameters for both feature sets. The selected parameters
are listed in Table 2, while the optimal values of k are listed
in Table 3. The distribution over R2

adj scores for all fea-
turizers, and all values of k over all languages, is shown
in Figure 1. Both outcomes provide a stark contrast with
the way neighborhood metrics have been deployed so far.
First, as mentioned above, all metrics so far tended to use
a k of 20; as the values in the Table indicate, this is far
from optimal, as all the values are lower than 10, and some-
times as low as 2, which indicates that 20, as an arbitrary
number, was far too high. Second, the optimal parameters
for the ngrams and open ngrams are also different from
those typically deployed in the literature, and are consistent
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Figure 1: The R2
adj scores of the optimized models on the

full dataset over different values of k. The featurizations
ending with ent are the feature weighted counterparts of
the regular feature sets. The black line indicates a simple
regression model with only length and log frequency as pre-
dictors.

across languages. That these parameters converge across
languages provides strong evidence in favor of the proposed
optimizations: feature sets and models should be optimized
and cross-validated on a diverse set of data to obtain sup-
port for specific parameters. The R2 scores of the regular
and optimized models are shown in Table 4, which shows
that the predictive power of all models increases with opti-
mization, although much more so for the ngrams and open
ngrams than the slot-based features. To confirm this pat-
tern, we bootstrapped the differences between R2 scores
over 10,000 samples (Efron and Tibshirani, 1994), which
allows us to compare distributions over the differences us-
ing parametric statistics, such as a T-test. Paired T-tests re-
vealed that differences were significant at p < .0001, indi-
cating that all optimized models significantly outperformed
the baseline models, even when correcting using Bonfer-
roni correction (Bonferroni, 1936). This shows that the fea-
ture sets that have been in use so far were probably subop-
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timal.

4. Experiment 2: Entropy
In a second experiment, we investigate the impact of
weighing individual orthographic features. While weighted
open bigrams (Whitney and Cornelissen, 2008) introduce
a weighting scheme based on the number of intervening
letters, there has been very little work on applying fea-
ture weighting to the neighborhood effect. Feature weight-
ing has a long history, and has been shown to be effec-
tive when employed with kNN models in a Memory-Based
Language Processing framework (Daelemans and Van den
Bosch, 2005). In the TIMBL toolkit (Daelemans et al.,
1998), for example, the IGtree algorithm (Daelemans et
al., 1997) uses the information gain (IG) feature weight-
ing metric to construct a tree, which can then be used to
more efficiently select the neighbors relevant for classifica-
tion. Other examples of such feature weighting techniques
are MVDM (Stanfill and Waltz, 1986), which weights dis-
tances based on the similarity between two features. As the
neighborhood models we use are de facto kNN models, we
investigate whether feature weighting is an effective way of
increasing performance of our models.

4.1. Entropy weighting
We use entropy (H) as a feature weighting scheme. For a
discrete probability distribution, entropy (H) is given by the
following equation:

H(X) =

|X|∑
i=1

−P (Xi) log2(P (Xi)) (2)

Calculating the entropy separately for each column in a D-
dimensional feature matrix leads to a vector of weights,
WRD

, which we use to weigh the features. As we only use
binary feature indicators, each feature can either occur or
not occur, low entropy values are thus associated with a fea-
ture occurring with no words, or with all words. The highest
entropy value occurs only when a feature occurs in exactly
half of all types in our corpus, i.e., when the distribution
is uniform. We use entropy over the more common Mutual
Information (MI), which also takes class distributions into
account, because in our case the class distribution is uni-
form.
During experimentation, we found that using entropy as a
feature weighting measure completely removed any neigh-
borhood effect, and reduced any linear regression models
to baseline level. Hence, we hypothesized that one of the
drivers of the neighborhood effect is the complement of en-
tropy.
Two candidates for such a complement are extropy (Lad
et al., 2015), and negentropy (J) (Schrödinger, 1944; Bril-
louin, 1953). As extropy and entropy are identical for bi-
nary values (Lad et al., 2015), we experiment with negen-
tropy. In the continuous case, negentropy is defined as the
difference in entropy between the distribution and the en-
tropy of a normal distribution with the same mean and vari-
ance (Brillouin, 1953). Note that, for continuous distribu-
tions, the normal distribution leads to a maximized entropy.
As such, negentropy is always non-negative, and 0 if and

Eng-US Fra
trigram J trigram J

s## 0.260 s## 0.148
e## 0.411 e## 0.220
d## 0.440 t## 0.288
##s 0.463 es# 0.457
ed# 0.507 nt# 0.467
##c 0.530 ent 0.470
ing 0.545 ##c 0.504
y## 0.564 ##r 0.547
g## 0.570 ##p 0.549
ng# 0.581 ##a 0.577

Table 5: The top 10 trigrams with the lowest negentropy
for US English and French, respectively. Notice how most
of these consist of padding ngrams, corresponding to com-
mon bound morphemes and word endings, such as ‘ing’ in
English and ‘en’ in French.

only if the distribution is normal. Hence, in accordance
with the definition for continuous distributions, for a D-
dimensional discrete distribution, we define negentropy as
the difference between the entropy of the D-dimensional
uniform distribution, which is the situation in which en-
tropy is maximized, and the entropy of the distribution. As
such, negentropy over a discrete distribution always non-
negative, and 0 if and only if the distribution is uniform,
leading to the same constraints as continuous negentropy.
If U is the uniform distribution for a given dimensionality,
then negentropy is defined as follows:

J(X) = H(U)−H(X) (3)

We use the same experimental setting as before. Instead of
separately optimizing the entropy-weighted feature sets, we
simply apply the entropy functions to the best-performing
models in cross-validation, and contrast these to the models
on the test set. We also apply regular entropy, and investi-
gate whether the scores of neighborhoods are equal to the
baseline.

4.2. Results
The results are listed in Figure 2, which shows the distri-
bution of R2

adj bootstrapped over 10,000 samples. As the
Figure shows, the models weighted with H are near base-
line performance, while the models weighted with J almost
all outperform their non-weighted counterparts. We con-
firmed this by calculating the 95% CI of differences be-
tween the weighted and non-weighted variants of the fea-
ture sets. This again led to significant differences between
all optimized feature sets and their feature weighted coun-
terparts; for all feature sets except the slot-based feature set,
negentropy weighting outperformed entropy weighting. For
slot-based feature sets, only the US English slot-based fea-
ture set outperformed the optimized counterpart. In terms
of absolute performance, the negentropy weighted feature
set showed the highest performance in all cases, thus ques-
tioning the earlier conclusion of Tulkens et al. (2018a) that
one hot encoded representations are the best performers.
As Table 5 shows, negentropy, when applied to charac-
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Figure 2: The distribution over R2
adj on all data for all feature sets in their regular, optimized, weighted, and inversely

weighted variants. The plots shows an effect of weighting, especially for the ngrams models. For all feature sets in all
languages, the weighted variant is low, and near baseline level.

ter trigrams, assigns lower weights to common word end-
ings and bound morphemes, i.e., the ‘-s’ and ‘-ed’ suffixes
marking the simple and perfect past, and ‘-ing’ marking the
present continuous for English, and the ‘-nt’ and ‘ent’ suf-
fixes, marking the third person plural in French. We ob-
serve similar results for the other languages, where, for ex-
ample, the morphemes ‘-en’ and ‘-ado’ are weighted down
heavily for Dutch and Spanish, respectively. The only mod-
els for which the weighting consistently does not improve
performance are the slot-based models. An explanation for
this lies in independence of the one hot encoded representa-
tions; using ngram features, it is very clear whether a given
feature is a suffix or not, because it occurs at the end of a
word, no matter the length of that word. Slot-based features
on the other hand, do not have information about the length
of a word, and assigns the same representation to the let-
ter S, e.g., in WALKS and the letter S in EURASIA. Note
that the lower weights for bound morphemes can only be
related to their relative frequency of occurrence, not their
status as morphemes, as feature weighting has no informa-
tion about morphological segmentation. The frequency of
occurrence of these morphemes thus has to be the driver of
the weighting. What is peculiar, however, is that the down-
weighting of morphemes leads to better performance across
all languages. Whether this is an effect of letter entropy or
frequency, or actually related to morphological processing
is an open question.

5. Experiment 3: Korean

We now apply the strategy and methodology of the previ-
ous two experiments to Korean. As argued by Frost (2012),
the results of experiments such as the one we performed
above carry with them a bias towards alphabetic writing
systems, in which it is easy to confuse and transpose let-
ters. In Arabic and Hebrew, for example, which have more
rigid position coding, transposition effects and substitution
effects are processed differently, and do not lead to the
strong priming effects seen in alphabetic languages (Ve-
lan and Frost, 2007; Velan and Frost, 2009; Perea et al.,
2010; Velan et al., 2013). The Korean alphabet, also called
Hangul, is interesting in this regard, as it has alternatively
been characterized as featural (Sampson, 1985), syllabic,
and alphabetic (Pae, 2011). Like an alphabetic writing sys-
tem, words are made up out of letters, and are separated
by spaces. The letters, however, correspond to syllables in-
stead of phonemes, as in a syllabic writing system. These
letters are composed out of sub-letters, called jamo, which
correspond to individual phonemes, Jamo can, again, be de-
composed into visual features that carry articulatory infor-
mation about the phonemes, which is a characteristic of a
featural writing system. The word 한글 (Hangul), for ex-
ample, consists of two syllable blocks 한 (han), 글 (gul).
The first block, for example, consists of three jamo,ㅎ (h),
ㅏ (a), andㄴ (n). As such, Hangul is a highly decompos-
able orthography, although there is little consensus about
whether this decomposability has an effect on how readers
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k n w
Slots 1 - -

ngram 500 3 -
Open ngram 500 3 3

Table 6: The optimal values for k and the various parame-
ters in Korean.

baseline Slots ngrams Open ngrams
- Reg Opt Reg Opt Reg Opt

.197 .194 .228 .197 .240 .198 .238

Table 7: The optimal values for k and the various parame-
ters in Korean.

of Korean behave. Rastle et al. (2019) found that readers
of Hangul show no rigid transposition effects in a masked
priming task, showing that Hangul is likely not processed
like a purely alphabetic language. This still leaves the ques-
tion of whether Korean shows a neighborhood effect, and,
if we find such an effect, whether it behaves like an alpha-
betic language. We attempt to clarify this issue from a com-
putational point of view, by applying the methods from the
previous experiments to a large corpus of Korean Lexical
Decision RT judgments on Hangul words (Yi et al., 2017).

5.1. Data and Preprocessing
We used the data of the Korean Lexicon Project (Yi et
al., 2017), which consists of lexical decision judgments on
30,930 Korean words and non-words. As mentioned above,
these words are written in syllable characters, or syllable
blocks, which are built up out of a smaller set of phoneme
letters, called jamo. Because there are many possible syl-
lable blocks, e.g., the dataset we use contains 1391 unique
blocks, we choose to decompose the syllable blocks into
their constituent jamo, using the jamo Python package,4

which led to a much smaller set of 66 jamo. For each word,
we then simply concatenate the sets of jamo. As each syl-
lable block can contain either two or three jamo5, we chose
to pad all blocks containing two jamo with a space char-
acter, because otherwise longer words would no longer be
aligned. We also experimented with using the bare syllable
blocks, and decomposing them into jamo without padding,
both of which gave worse results.

5.2. Experiments
For the sake of convenience, we report on Experiments 1
and 2 simultaneously. As before, we optimized the param-
eters and the optimal k in a first step, the results of which
are shown in Table 6.
The results of this analysis differ radically from the results
on the alphabetic languages. First, for the alphabetic lan-
guages, a low number of neighbors worked well. Korean,
instead seems to favor a really high number of neighbors
for the ngram-based models, and a really low number of
neighbors for the slot-based models. Note that the k value

4https://github.com/JDongian/python-jamo
5In non-computational terms, a syllable block can contain

more than three jamo. In the unicode standard, however, some
jamo characters are represented as complex characters, which we
also adopted.
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Figure 3: The R2
adj over various values of k. As the figure

shows, the entropy weighting did not have any effect. Note
that the values of k for the Korean dataset are much higher.

reported for the ngram and open ngram models has an ar-
tificial plateau; we tested with values between 1 and 500
nearest neighbors, and found that the score of the ngram
and open ngram models kept increasing, but very gradually
so. The scores of the models on the test set are shown in
Table 7. This shows another difference between datasets:
the relative contribution of the baseline models seems to be
relatively low, i.e., while logged frequency and length ex-
plains between .37 and .56 percent of variance in RT for the
other language, they only explain .197 percent of variance
in this case. The contribution of the non-optimized models
is much smaller for Korean than for the other languages,
implying that the neighborhood effect, while present, is ex-
pressed differently for Korean. Figure 3 shows the distri-
bution over k for all Korean models. This shows the grad-
ual upwards trend over increasing k, and also shows that
feature weighting, both using H and J, has a negative ef-
fect for Korean. To confirm the trends, we again calculated
10,000 resampled bootstrap samples, which were compared
in a pairwise fashion. This showed significant differences
between all baselines and optimized models. Second, we
also compared all optimized models to all weighted models,
which showed that all weighted models were significantly
worse than the optimized models. Weighting thus had the
opposite effect for the Korean models, indicating another
difference between Korean and the other languages. Figure
4 shows the distributon of the 10,000 bootstrapped resam-
ples, showing that, in contrast to the other languages, the
slot-based codes do not outperform other codes.

6. Conclusion
In conclusion, Table 8 shows the final regression coeffi-
cients for the best models. As shown, ngram models obtain
the highest scores across all languages, indicating that this
was an overlooked option in previous research. We demon-
strate that it is possible to discover the neighborhood ef-
fect using a variety of feature sets, and that the feature sets
which were in use before were probably not the best fea-
ture sets for discovering the feature sets. Although the dif-
ference between the highest score is relatively small, es-
pecially for Spanish and US English, we do obtain signifi-
cantly better, and consistent, results across languages. This
indicates that conceptualizing the orthographic neighbor-
hood effect in terms of feature sets is a fruitful research di-
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Fra Spa Nld Eng-UK Eng-US Kor
Features ngram ngram ngram ngram ngram ngram
Weighting J J J J J -
intercept 739.98 1060.055 585.06 650.67 762.18 632.56
freq -39.36 -102.13 -29.89 -44.68 -47.32 -39.15
length 37.38 36.07 6.72 13.72 56.26 -21.47
rd 27.49 33.38 16.90 14.96 28.85 -19.18
R2 .399 .605 .341 .363 .519 .223
∆R2 .015 .005 .022 .014 .007 .018
∆R2

base .062 .041 .056 .025 .046 .040

Table 8: The final regression models. The top rows indicate the parameters of these models, the presence of weighting.
The second part of the table shows their coefficients, while the bottom rows show their explained variance and change in
explained variance.

slots ngrams open ngrams
name
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weighting
regular
optimized
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J

Figure 4: The R2
adj , bootstrapped over 10,000 samples.

rection; perhaps other feature sets or other weighting meth-
ods are yet to be discovered. This also shows yet another
contrast between Korean and other languages: while the
neighborhood effect is a positive effect, it has a negative
effect in Korean; words with more neighbors are read more
slowly. This pattern has previously been observed in Chi-
nese (Li et al., 2011; Wang et al., 2014; Perea, 2015; Chang
et al., 2016), where the orthographic neighborhood, both
when it is based on characters and strokes, has been ob-
served to be negative. This shows that the neighborhood
effect, although perhaps based on general cognitive princi-
ples such as co-activation of orthographically similar repre-
sentations, can not be considered to be completely general
effect. One possible confound, as noted by Perea (2015),
is that the calculation of the neighborhood effect is highly
dependent on the way words are conceptualized. For ex-
ample, the concept of a word is less clear, and the task
of word segmentation more difficult, for languages with
syllabic or logographic writing systems, such as Japanese
and Chinese. While the issue of word boundaries does not
present itself in Hangul, the measurement of the neighbor-
hood effect is highly dependent on whether the it is ana-
lyzed as a syllabary or as an alphabetic writing system. In
future work, we would like to investigate this in more de-
tail; one interesting direction to take this in would be to

train representations of visual orthography directly learned
from the visual modality, similar to the way the Triangle
model (Harm and Seidenberg, 2004) was trained by Chang
et al. (2019). From a computational point of view, it would
be interesting to discover a less expensive way to calculate
the neighborhood effect. Currently, the neighborhood effect
relies on calculating the cosine distance between all words
in the lexicon, which takes a lot of time and scales expo-
nentially with the amount of words in the lexicon. In terms
of general Natural Language Processing work, the discov-
ery of new features for Hangul could perhaps be of use in
training machine translation systems, as has been done for
Chinese-Japanese-English machine translation (Zhang and
Komachi, 2018).
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