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Abstract 
The traditional approach of querying a relational database is via a formal language, namely SQL. Recent developments in the design 
of natural language interfaces to databases show promising results for querying either with keywords or with full natural language 
queries and thus render relational databases more accessible to non-tech savvy users. Such enhanced relational databases basically 
use a search paradigm which is commonly used in the field of information retrieval. However, the way systems are evaluated in the 
database and the information retrieval communities often differs due to a lack of common benchmarks. In this paper, we provide an 
adapted benchmark data set that is based on a test collection originally used to evaluate information retrieval systems. The data set 
contains 45 information needs developed on the Internet Movie Database (IMDb), including corresponding relevance assessments. 
By mapping this benchmark data set to a relational database schema, we enable a novel way of directly comparing database search 
techniques with information retrieval. To demonstrate the feasibility of our approach, we present an experimental evaluation that 
compares SODA, a keyword-enabled relational database system, against the Terrier information retrieval system and thus lays the 
foundation for a future discussion of evaluating database systems that support natural language interfaces. 
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1. Introduction 
The proliferation of World Wide Web use has 
democratized information search. Traditionally, 
technicians had crafted complicated search commands in 
languages such as SQL to retrieve results from relational 
databases. As more and more data and information became 
available to the public at large, new Web search services 
emerged that quickly became the main navigation tools for 
large segments of the online population. These services, 
with Google Web Search as the most successful among 
them, were built on technology from the academic field of 
Information Retrieval (IR) (Baeza-Yates & Ribeiro-Neto, 
2011). An important characteristic of these services is that 
they allow the user to formulate queries in the form of 
either lists of keywords or even of complete, natural 
language sentences, thus dispensing with the technical 
barrier of using formal languages - allowing access to a 
much larger audience. 
Web search services such as Google Web Search have 
indeed become so successful, that users today expect this 
kind of easy, non-formal access to data and information in 
many more searching scenarios. While the field of IR is 
concerned with the question of how to retrieve results from 
collections of unstructured (often textual) data, research 
over the last few years has also become more intensive on 
how to provide similar, natural language interfaces to 
databases operating on semi-structured or structured data. 
To this end, many different natural language interfaces 
(NLI) to databases have been proposed in the past several 
years (Affolter, Stockinger & Bernstein, 2019). The core 
idea is to map the natural language input of a (potentially 
non-technical) user to a formal language such as SQL. The 
yardstick that the NLI-enabled systems are held against is 
an ideal, manually crafted SQL statement for the same 
information need as expressed by the user's input. 

                                                           
1 Corresponding author 

In this paper, we claim that there is an alternative approach 
to measuring the effectiveness of such database systems: 
one which is built analogously to the methodologies 
employed in IR evaluation, and one that is more concerned 
with the question of whether the relevant data or 
information is contained in the result set, and less with 
rendering a (correct) statement in the formal target 
language. 
The most commonly employed evaluation methodology in 
IR is the Cranfield methodology (Voorhees, 2001), which 
is test collection-driven: a set of sample information needs 
is used to query a given collection of retrievable items 
(documents), with known assessments of relevance for the 
query/document pairs. In the following, we will 
demonstrate how to adapt an IR test collection of this style 
from the INEX campaign 2011 for use with an NLI-
equipped database system, and how to then compare the 
output of said system with an IR system that uses the data 
directly. The adapted INEX collection enables a whole 
range of new, result-focused evaluation experiments for 
NLI databases, some of which we report on as examples. 
As we discuss in the paper, the necessary scripts to process 
the adaptation are publicly available and should be 
interesting for a wide range of researchers in the field. 
The paper makes the following contributions: 

● We discuss two different architectures of 
implementing natural language interfaces to 
databases: Approach 1 is database-centric and 
treats the problem basically as a Steiner-tree graph 
search problem over a relational database. 
Approach 2 is information retrieval-centric where 
the problem is basically treated as a vector space 
problem. 

● We provide a newly refactored data set for 
benchmarking NLI databases by adapting the 
INEX test collection. In particular we map the 
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data set to a relational database schema to enable 
querying it via SQL. 

● We give a detailed experimental evaluation of 
querying NLI databases with a database search 
approach and compare it against an information 
retrieval approach. Our results lay the foundation 
for a future discussion on design and 
implementation of a hybrid approach that takes 
advantage of the strengths of database and 
information retrieval technologies to build even 
more powerful NLI databases than currently 
available. 

The remainder of the paper is structured as follows. Section 
2 surveys the related work on natural language interfaces to 
databases. Section 3 introduces the data set that serves as 
our benchmark and demonstrates how we map it to a 
relational database design. In addition, we describe the two 
systems that we use for evaluation, namely SODA and 
Terrier. In Section 4 we provide a systematic experimental 
evaluation of the both systems and, finally, draw 
conclusions in Section 5. 

2. Related Work 
Modern NLI databases are based on technologies at the 
intersection of three research communities in the areas of 
databases, information retrieval and machine learning. NLI 
databases can be classified into the following five different 
approaches according to a recent survey (Affolter, 
Stockinger et al. 2019): keyword-based, pattern-based, 
parsing-based, grammar-based and neural machine 
translation-based. We will briefly review the major ideas 
of these approaches. 

Keyword-based systems are the earliest approaches. These 
systems do not support full natural language queries but 
only allow simple keyword queries. The basic idea is to use 
an inverted index on the base data and on the metadata, i.e. 
the database schema. The two inverted indexes are then 
applied for query understanding and generation of SQL 
statements by leveraging primary-foreign key relationships 
of the database schema. Examples of these systems are 
Precise (Simitsis et al., 2008), SODA (Blunschi et al., 
2012) and Aqqu (Bast and Haussmann, 2015). 

Pattern-based systems support answering more complex 
queries in natural language rather than only keyword-style. 
Typical examples are QuestIO (Damljanovic et al., 2008) 
and NLQ/A (Zheng et al., 2017). 

Parsing-based systems use a natural language parser to 
analyze and reason about the grammatical structure of a 
query. This approach allows to better understand the 
dependencies between query tokens and to disambiguate 
query terms. Typical examples are NaLIR (Li and Jagadish, 
2014) and ATHENA (Saha et al., 2016). 

Grammar-based systems restrict the formulation of queries 
according to a specific set of rules, i.e. a grammar. This 
grammar defines how questions can be built, understood 
and answered by the system. Typical examples are TR 
Discover (Song et al., 2015), and SPARKLIS (Ferre, 2017). 

Neural machine translation-based systems treat the 
translation of natural language to SQL as a 
Question/Answer problem. Given pairs of natural language 
questions and their respective SQL-statements, supervised 
machine learning techniques are used for translation. This 
approach is similar to translating between two natural 
languages such as from German to English. However, the 
major difference is that the translation process not only 
needs to learn language specific aspects but also the schema 
of the underlying databases. Typical examples are 
introduced by (Iyer et al., 2017) and (Basik et al., 2018). 

All the above described approaches are usually studied in 
isolation. To the best of our knowledge, there is no 
systematic comparison of a database-centric vs. an 
information retrieval-centric approach. We assume that a 
lack of a suitable test collection is a major reason for this 
gap. 

Available benchmark data sets typically applied in the 
database community only contain natural language/SQL 
pairs without sufficient information on relevance of the 
retrievable items - ie., relevance assessments commonly 
included in information retrieval test collections. 

3. Data Set and System Architecture  
In this section we will first describe the data set that 
underlies the test collection that we have adapted for use as 
a new benchmark for evaluating NLI databases. Afterwards 
we discuss two different implementations of NLI 
databases. In particular, we will introduce the database-
centric approach based on SODA (Blunschi et al. 2012) as 
well as the information retrieval-centric approach based on 
the Terrier system (Macdonald and He, 2008). Next, we 
describe how to transform the XML-based INEX data set 
to a relational database design and finally, we show how to 
conduct experiments for both of these approaches on the 
newly adapted test collections. 

3.1 Data Set 
The test collection used for the INEX Data-Centric Track 
at the INEX 2011 conference (Wang et al., 2011) is used as 
the basis for our adaptations. The test collection includes a 
set of documents, a set of information needs ("topics") and 
the relevance assessments that link the two. This is paired 
with a scoring tool. The document set contains 
approximately 4.4 million XML files filled with 
information originally sourced from the Internet Movie 
Database (IMDb). Each file can be assigned to one of the 
two categories movie or person and provides further details 
related to each category, respectively. 

3.1.1 Query Set 

During the original INEX 2011 evaluation track, 
participating groups were asked to create ad-hoc search 
input representing user needs. The result is a set of 45 
"topics" in XML syntax that serve as the basis for queries 
in the experiments.  
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A typical example of a topic is as follows: 

<topic id="2011103" guid="5"> 
    <task>AdHoc</task> 
    <title>Actors that played James Bond</title> 
    <castitle> //person[about(.//act//movie//character,  
                    James Bond)]//name </castitle> 
    <description>Name all actors that played the role of    
                          James Bond</description> 
    <narrative> List the names of all actors that played  
                        the role of James Bond. </narrative> 
</topic> 

To generate the query set used for the experimental 
evaluation, the content from the title tag within the topic 
file was extracted in order to create natural language style 
user input. For illustration, the resulting queries 1 to 10 are 
shown in Table 1. This is the common way of treating 
topics in information retrieval experiments; the fields 
"description" and "narrative", while exploitable in cases 
where verbose query statements are desired, are mainly 
designed to assist relevance assessment by the test 
collection creators. 
 

Number  Query  
1 social network 
2  best movie award "James Cameron" 
3  Actors that played James Bond 
4 movie Ellen Page thriller 
5 king kong jack black 
6 movie "Terry Gilliam" "Benicio del Toro" "Dr 

gonzo" 
7 Tom Hanks biography 
8 director of artificial intelligent "Haley Joel 

Osment" 
9 Trivia "Don Quixote" 
10 plot seven 

Table 1: First 10 queries of the INEX test collection. 

3.1.2 Relevance Assessment 

INEX participants used this topic set for experiments on 
their own, different systems. The output of those original 
experiments was then used as the basis to create relevance 
assessments. The specific strategy to keep relevance 
assessment cost within practical limits lies outside the 
scope of this paper, and the interested reader is referred to 
(Voorhees, 2002). For those documents that have been 
assessed with respect to their relevance for a specific topic, 
a binary value (relevant/non-relevant) is recorded. The full 
set of relevance assessments was used for scoring systems 
in the original INEX experiments, and also serves the same 
purpose in our adapted test collection. 

3.2 Search Over Data Warehouse (SODA) 
The SODA system was developed to simplify search 
processes for business analysts who are not familiar with 
SQL syntax (Blunschi et al. 2012). Using SODA enables 
searching within relational databases in a Google-like 
manner where executable SQL statements are generated 
automatically from ad-hoc keyword queries. 

SODA is based on a graph model represented by base data 
and metadata stored in a relational database. SODA also 
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enables enriching the database schema with ontologies as 
well as with external sources such as DBpedia. In terms of 
implementation, SODA leverages two inverted indexes. 
One index is created on the base data of the underlying 
database. The other index is created on the metadata of the 
database as well as additional ontologies. 

A system such as SODA sits on top of a relational database 
and cannot directly use the INEX test collection, which is 
in XML form. Hence, we need to transform the original 
INEX collection to conform to a relational database 
schema. The goal is to design a suitable relational model to 
store all the data from the XML files, making experiments 
thus comparable. After loading into the database, the data 
from the INEX collection is in semi-structured form: the 
records are fitted to the schema, but contain natural 
language text in most fields. 

The relational model is relatively simple: The two main 
categories "movie" and "person" become the main tables. 
Both tables are linked to two auxiliary tables using the 
entity-attribute-value pattern (Dinu, Nadkarni, 2007). The 
two main tables are linked through roles. Finally, two extra 
tables for "links" and "biographies" were needed since they 
contain unique attributes. For a simplified entity-
relationship diagram of this model, containing a total of ten 
tables, see Figure 1. 

Ultimately, after running experiments on this new 
relational version of the test collection, we have to link 
back to the original XML files for scoring. To this end, all 
records in the tables hold information about their origin. 

Note that there are several different database schema 
designs already available if one uses the internet movie 
database directly as a data source. A particular example is 
currently commonly used for query optimization 
benchmarks such as the Join Order Benchmark (Leis et al. 
2015). The core reason why we cannot use these existing 
schemas and why we use our own transformation lies in the 
leveraging of the relevance assessments: we need a direct 
transformation path between the INEX version of the 
documents and the records in the relational database. This 
is only possible by starting with the exact XML version that 
was used in that campaign in 2011, and not with any data 
dumps sourced from IMDb directly. We thus use our own 
Python package to create SQL statements for all tables. We 
have made this package publicly available2. The package 
allows creating and populating the relational database, 
which is suitable for all experiments that use the INEX  
relevance assessments, as described in the remainder of the 
paper. 

Figure  SEQ Figure \* ARABIC 1: ER-Diagram 
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Figure 1: Entity-relationship diagram of data set. 

 

3.3 Terrier IR System 
The information retrieval-centric approach is built around  
the Terrier IR system3. Terrier allows direct indexing of 
XML documents if properly configured. In practice, all 
documents from the INEX Data-Centric Track were 
collected and enriched with some necessary additional tags. 

For the indexing pipeline proper, we used a standard setup, 
employing both Terrier's own stopword list, as well as the 
Porter stemming algorithm (Porter 1980). The query set can 
be executed in batch mode (Macdonald and He, 2008). 

3.4 Ranking Algorithms 
While the two systems used in our experiments, SODA and 
Terrier, can both handle the same keyword-style queries, 
their approaches to retrieval and presentation of results is 
fundamentally different. SODA operates on top of a 
relational database system, and thus returns results as sets - 
all those items (documents) that "match" the query. There 
is no inherent ordering to this set, and in fact, the SQL 
standard makes no provision for how to order records by 
default. Terrier, being an information retrieval system, uses 
a ranked list paradigm: the system estimates the probability 
of relevance (score) for each item with respect to the 
information need that underlies the query. This score is 
then used to sort the result list. In the following, we 
introduce both retrieval mechanisms in more detail. 

3.4.1 SODA Retrieval Mechanism 

SODA operates by transforming a keyword query to one or 
more SQL statements. The following five steps are 
executed: 

● Lookup: the input keywords are looked up in the 
inverted index to retrieve the entry points to the 
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graph model. Multiple matches result in multiple 
entry points. 

● Rank and Top N: Corresponding to the location 
where keywords were found in the graph, a score 
is provided. Multiple solutions are ranked and 
SODA returns the top N results. 

● Tables and Joins: The tables holding keywords 
are identified as well as the relationships between 
them. 

● Filters: names from columns where keywords 
were identified are applied as filters (WHERE-
clause) for the required table. 

● SQL Generation: All identified tables, 
relationships and applied filters are used to finally 
generate the executable SQL statement. 

Finally, the output SQL statement(s) are executed on the 
respective database. The corresponding result lists are then 
returned. 

3.4.2 Terrier Retrieval Mechanism 

Terrier allows the configuration of different weighting 
schemes for retrieval, such as the commonly used tf-idf-
Cosine method. In this basic scheme, 𝑡𝑓 describes the term 
frequency (number of occurrences of a term 𝑡 in a 
document), a statistic local to a specific document, while 
the inverse document frequency 𝑖𝑑𝑓 (a weight inversely 
tied to the number of documents a term occurs in) is a 
statistic that considers the whole document collection 
𝑁(number of documents in collection): 

     𝑖𝑑𝑓(𝑡) =  𝑙𝑜𝑔 
( )

  

(where df is the document frequency, i.e. in how many 
documents a term appears). The relevance weight for a 
keyword 𝑡 in a document 𝐷 is calculated as follows: 

𝑡𝑓. 𝑖𝑑𝑓(𝑡, 𝐷) = 𝑡𝑓(𝑡, 𝐷) ∗ 𝑖𝑑𝑓(𝑡) 

This is followed by a Cosine-length normalization of 
overall retrieval scores. Terrier also provides more 
advanced weighting schemes such as the widely used 
BM25 scheme (Walker et al. 1998). BM25 is derived from 
the probability ranking principle (Robertson, 1977). The 
weight for a term 𝑡 in the document 𝐷 is calculated as 
follows: 

𝐵𝑀25(𝑡, 𝐷) =
3 ∗ 𝑡𝑓(𝑡, 𝐷)

2(
1
4

+
3
4

𝑙
𝐿

) + 𝑡𝑓(𝑡, 𝐷)
  

with 𝑙 being the document length and 𝐿 denoting the 
average document length. 

4. Experiments 
In this section we demonstrate how to use the adapted test 
collection to perform a direct comparison of a database-
centric approach based on SODA with an information 
retrieval-centric approach based on Terrier. It is not the 
scope of the paper to exhaustively optimize these 
experiments. Rather, the description serves to illustrate 
some of the potential for analysis that is unlocked by having 
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a common benchmark for systems from these two different 
domains. 

The main research questions that can be addressed by such 
experiments include: 

● Given a set of natural language questions, is it 
better to use a database-centric or information 
retrieval-centric approach to answer the 
underlying information needs? 

● Can we quantify which approach is better for 
which kind of query? 

● How would we need to design a hybrid-approach 
that leverages the advantages of both approaches 
and minimizes the disadvantages of the individual 
approaches? 

Many other research questions, e.g. pertaining to the 
optimization of the individual systems, could additionally 
be pursued. 

4.1 Evaluation Metric 
In order to gain comparable data points from both systems, 
the widely used evaluation measures precision and recall 
can be computed: 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
#𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑟𝑒𝑠𝑢𝑙𝑡

#𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑟𝑒𝑠𝑢𝑙𝑡
 

𝑟𝑒𝑐𝑎𝑙𝑙 =
#𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑟𝑒𝑠𝑢𝑙𝑡

#𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛
 

These are set-based measures, so computation for the 
output of SODA is straight-forward. Since SODA delivers 
multiple SQL statements as a possible transformation of a 
keyword query, we need a strategy to pick one set of values 
for each query. For further presentation of the results in this 
paper, the maximum values in each case were chosen. We 
thus present an upper bound on the performance that SODA 
could attain on the query set. 

The respective values for the Terrier output were computed 
with the official INEX scoring tool, which is a version of 
the tool "trec_eval" used by the TREC campaign4. The 
output of Terrier is fundamentally different from SODA: in 
our configuration, Terrier always attempts to return up to 
1,000 scored documents, with shorter lists only returned in 
cases where no positive scores for that many documents 
exist. In contrast to SODA, however, the documents in the 
result lists are ranked, i.e., users have full freedom to decide 
on their preferred result set size. For evaluation, we have 
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decided to use R-precision. The value of this measure is 
obtained by truncating the result set at the point where 
precision and recall values are equal.  

For future work, we are still actively pursuing the question 
of which measure(s) will maximize comparability between 
the set-based and rank list-based results. One additional 
direction we intend to explore is the truncation of Terrier's 
lists according to the number of results returned by SODA. 

4.2 Experimental Setup 
We executed all queries both on SODA and Terrier. The 
SODA output is a collection of SQL statements ranked by 
the score calculated by the default algorithm. The generated 
SQL statements were executed on the database to retrieve 
results including the file number. 

Terrier returns a list of retrieved documents containing the 
ranked file numbers according to the computed score. For 
our experiments we used the BM25 score. Since Terrier is 
an IR system, we did not need to execute any SQL 
statements.  

Finally, we compared the results of both systems against 
the relevance assessment to calculate precision and recall 
values. These calculations were performed by using the 
trec_eval tool for Terrier results and a Python 
implementation of the precision/recall formula for the 
SODA results. 

4.3 Results 
For our experiments we executed all 45 queries of the 
INEX test collection. However, it turns out that only 37 
queries out of 45 contain relevant documents or records 
according to the relevance assessment. Hence, the analysis 
is restricted to those 37 queries. 

Figure 2 shows the precision of all queries sorted by the 
precision obtained by SODA, while Figure 3 shows the 
precision sorted by the R-precision obtained by Terrier. By 
displaying the results from two different perspectives, we 
can more easily analyze the behavior of both systems. 

Let us now analyze the results in more detail. For the 37 
executed queries, Terrier scored precision values higher 
than zero in 21 cases (see Figure 3). The maximum 
precision score that Terrier reached is 0.92 indicating that 
the optimum of 1.0 was never achieved. On the other hand, 
SODA reached the maximum score of 1.0 in five cases. For 
29 queries the score is above 0; however, for 14 of these it 
is below 0.01, and thus barely or not visible in the figure. 
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Figure 2: Precision, sorted by precision obtained by SODA. 

 

Figure 3: Precision, sorted by precision obtained by Terrier. 

 

Figure 4: Recall of SODA and Terrier. 
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Note that SODA was not able to generate a SQL statement 
for query number 37 ("romance movies by Leonardo 
DiCaprio or Tom Cruise"). Therefore, we were not able to 
calculate the corresponding precision. For the same query, 
Terrier’s R-precision is 0 as well while it finds only two out 
of 35 relevant documents (further down in the ranked list). 
For this query both systems show poor performance. 

As shown in Figure 2, SODA reaches the optimum recall 
of 1.0 for 8 queries. For all of these queries, SODA 
generates simple SELECT * FROM statements which 
return the whole data set from the respective tables. For 16 
queries SODA does not find any relevant documents at all. 
The maximum value scored by Terrier is 0.9532 and it does 
not find any relevant documents in 4 cases (see Figure 3). 

For query 15 ("aliens usa") and 24 ("survive desert island") 
SODA scores the maximum for both values precision and 
recall. Terriers’ best performing query is number 22 
scoring 0.9532 for recall and 0.9164 for precision. 

Let us now analyze the recall of both systems. As shown in 
Figure 4, retrieval results differ the most for query 5 ("king 
kong jack black") and 28 ("lovers arctic Spanish") when 
SODA finds all relevant documents while Terrier retrieves 
none of them. 7 queries perform better with Terrier as it is 
able to find documents whereas SODA retrieves zero 
relevant documents. 

Overall, these measurements are consistent with our 
expectations considering the different result formats of the 
two systems: the set-based results of SODA, plus the fact 
that SODA generates multiple SQL commands and thus 
result sets, of which we chose the upper bound, favor 
precision. The ranked lists returned by Terrier conversely 
favor recall. 

Figure 5: Comparison of precision in SODA and Terrier. 

A different view on the results is obtained when contrasting 
the values in a scatterplot. The goal of this evaluation is to 
obtain a rough categorization of query performance: which 
queries perform equally on both systems vs. which queries 
have substantially different performance (see Figure 5). It 
will be part of future work to try to find a link between these 
performance categories and query characteristics, which 
may then either form the basis for optimizations of either 
system or the basis for a hybrid system that chooses the 
right approach (SQL on relational database or IR) query by 
query. 

5. Conclusion 
In this paper we show how to adapt an IR test collection to 
obtain a novel benchmark for evaluating systems that 

enable natural language querying over databases. The 
benchmark is targeted for comparing database-centric 
approaches that rely on a relational database schema to 
information retrieval approaches that operate on 
unstructured, textual data. As such, we are confident that it 
should inspire many additional research lines. 

In order to demonstrate the feasibility of our approach, we 
evaluated SODA - using a database-centric approach - 
against Terrier - an information retrieval-centric approach. 
Preliminary analysis confirms our expectation that the two 
approaches inherently favor different types of information 
needs: SODA shows good results on queries that benefit 
from a precision-oriented, set-based result, whereas Terrier 
shows its main strengths when considering recall. 

An exciting future research question is how to predict the 
user preference for either precision or recall from the query, 
and thus build a hybrid-approach that leverages the 
advantages of both worlds - databases and IR. The key to 
this end will be the identification of query characteristics, 
which will allow the selection of the appropriate retrieval 
strategy. 
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