
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 1721–1726
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

1721

An Automatic Tool For Language Evaluation

Fabio Fassetti, Ilaria Fassetti
DIMES - University of Calabria, Therapeia Rehabilitation Center

fabio.fassetti@unical.it, ilaria.fassetti@gmail.com

Abstract

The aim of evaluating children speech and language is to measure their communication skills. In particular, the speech language patholo-

gist is interested in determining the child’s impairments in the areas of language, articulation, voice, fluency and swallowing. In literature

some standardized tests have been proposed to assess and screen developmental language impairments but they require manual labo-

rious transcription, annotation and calculation. This work is very time demanding and, also, may introduce several kinds of errors in

the evaluation phase and non-uniform evaluations. In order to help therapists, a system performing automated evaluation is proposed.

Providing as input the correct sentence and the sentence produced by patients, the technique evaluates the level of the verbal production

and returns a score. The main phases of the method concern an ad-hoc transformation of the produced sentence in the reference sentence

and in the evaluation of the cost of this transformation. Since the cost function is related to many weights, a learning phase is defined to

automatically set such weights.

Keywords: NLP, Language Evaluation, Machine Learning

1. Introduction

The purpose of a speech and language evaluation is to

measure communication skills specially of children. The

speech language pathologist is interested in determining the

child’s impairments in the following main areas: language,

articulation, voice, fluency, swallowing. In this work sev-

eral components of the human language are taken into

consideration, namely phonology, morphology and syntax.

Phonology is the speech sound system of language and the

rules for how speech sounds are combined. Morphology is

the study of of word structure and of rules that govern how

morphemes (the smallest meaningful units of language) are

used in a language. Syntax is the study of rules that gov-

ern the ways words combine to form phrases, clauses and

sentences.

In this context, standardized tests, like the highly diffused

tests (Devescovi and Caselli, 2001; Vender et al., 1981;

Cianchetti and Fancello, 1997) for Italian speakers, are reg-

ularly used for assessing and screening developmental lan-

guage impairments but require manual laborious transcrip-

tion, annotation and calculation. This meticulous work of-

ten leads to make mistakes and to spend too much time.

Here, a system performing automated evaluation is pro-

posed. It evaluates the different components of the human

language (phonology, morphology, syntax) included the de-

termination of phonological processes, both structural and

systemic, through a sentence repetition task.

Differently from the system proposed in

(Fassetti and Fassetti, 2018), where reading abilities

are tested by asking the patient to rewrite read texts, here

phonologic and language production abilities are tested

and the patient does not directly produce written text but

speaks and the therapist transcribe produced sentences to

feed the system.

Sentence repetition tasks are used in the evaluation and as-

sessment of children with language difficulties because it

examines a wide range of language processing skills and

are widely recognized as useful measures of individual dif-

ferences in language ability and as a means for identifying

children with language impairments (Vinther, 2002).

The speech pathologist seats at a table next to or oppo-

site the children and says: “You are going to hear some

sentences, you have to repeat exactly what you have just

heard”. So the clinician, after each sentence, asks to repeat

it as close to the original as possible. No feedback is pro-

vided during the test but some words of encouragement can

be provided if necessary. Children’s responses are audio-

recorded and later are transcribed. There are no specific

sentence requests for applying the proposed technique but

it is better to use a set of sentences of variable length, be-

cause if sentences are long enough the children can’t simply

copy them, instead they have recurse to their own grammat-

ical system to be able to repeat the sentences by analyzing

and reconstructing their meaning.

From the technical point of view, this work proposes a tech-

nique feed by the sentence as pronounced by the therapist,

in the following called reference sentence, and the sentence

as pronounced by the patient, in the following called pro-

duced sentence. The technique evaluates the verbal produc-

tion and returns the associated score.

The tackled problem has connections with string edit prob-

lems but there are challenging aspects to address, mainly

concerning:

- edit distance between sentences;

- in this scenario, swaps are more relevant than substi-

tutions;

- semantic distances can be considered;

- in considering sentence edit distances, matching/non-

matching components and erroneously reproduced

component frequencies could shed lights on some crit-

ical aspects of the verbal productions.

Thus, the aim of the technique can be summarized as fol-

lows: (i) transform the produced sentence in the reference

sentence, (ii) evaluate the cost of such transformation, (iii)

assign a score to the production.

As for step (i), notions of edit operations in sentences are

introduced. In the step (ii), the cost of the sequence of

needed edit operations is evaluated. Note that in evaluating

the cost several weights are to be set. Step (iii) provides



1722

as contribution an automatic approach to set the weights so

the compute a score according to expert evaluation.

The sequel of the work is organized as follows. Section 2

describes preliminary notions, introduces edit operations,

discusses cost computation and defines the main problem

addressed here. Section 3 presents the proposed technique,

the main algorithm and relevant functions and describes the

phase devoted at learning cost weights. Section 4 discusses

preliminary experimental results. Section 5 draws conclu-

sions.

2. Problem Definition

2.1. Preliminaries

A sentence S is an ordered sequence 〈s1, . . . , sn〉 of strings

and a sentence S∗ = 〈si1 , . . . , sih〉 is a component of S if,

for any j ∈ [1, h − 1], sij is the string that immediately

precedes sij+1
in S.

Example. Given the sentence

S = 〈“This”, “is”, “an”, “interesting”, “paper.”〉,

〈“an”, “interesting”〉 is a component of S, while neither

〈“interesting”, “an”〉 nor 〈“is”, “interesting”〉 are components

of S since, in the former, “interesting” does not precede “an”

and, in the latter, “is” does not immediately precede “interesting”

in S.

A c-sentence S of a sentence S is an ordered sequence

〈S1, . . . , Sk〉 of components of S.

In the following, with a little abuse of notation, set opera-

tors are used with sequences. In particular, si ∈ S denotes

that si is one of the strings composing the sequence S and,

S ∪ s∗, with S = 〈s1, . . . , sn〉, denotes the insertion of

the string s as (n + 1)-th element of the sequence S, thus

S ∪ s∗ = 〈s1, . . . , sn, s∗〉.

Proposition 1 Let S = 〈s1, . . . , sn〉 be a sequence, there

are 2n−1 c-sentences of S.

Proof. Since, by definition, the strings composing the components
must be adjacent, any c-sentence S can be obtained through the
following generative process:

1. create a first component S1 = 〈s1〉, set S to 〈S1〉 and j to 1;

2. for any si ∈ S:

2.1. either add si to Sj ;

2.2. or create a new component Sj+1 = 〈si〉, set S to S ∪ Sj+1 and

increment j.

Since, for any i ∈ [2, n], there are two possible alternatives, the

overall number of combinations of steps 2.1 and 2.2 are 2n−1. �

2.2. Edit operations

As stated fundamental task to be accomplished to solve the

problem addressed in this work is related to edit operations.

Definition 1 (base edit operation) Given a sentence S =
〈s1, . . . , sn〉 a base edit operation φ on S is the application

of one of the following operators:

Insertion: consisting in the insertion of a string

ŝ in position h, thus obtaining S′ =
[s1, . . . , sh−1, ŝ, sh, . . . , sn].

Deletion: consisting in the deletion of the h-th string of S,

thus obtaining S′ = [s1, . . . , sh−1, sh+1, . . . , sn].

Substitution: consisting in the substitution of the h-th

string of S, with h ∈ [1, n], with the string ŝ thus ob-

taining S′ = [s1, . . . , sh−1, ŝ, sh+1, . . . , sn].

Swap: consisting in the movement of the h-th string

of S with the k-th string, without loss of gen-

erality assume h < k, thus obtaining S′ =
[s1, . . . , sh−1, sk, sh+1, . . . , sk−1, sh, sk+1, . . . , sn].

Movement: consisting in the movement of the h-th

string of S in position k, thus obtaining S′ =
[s1, . . . , sh−1, ŝ, sh+1, . . . , sn].

Definition 2 (edit operation sequence) Given a sentence

S, an edit operation sequence Φ on S is the ordered ap-

plication of a sequence of basic edit operations on S,

〈φ1, . . . , φk〉, namely

Φ(S) = S ′ = φk(φk−1(. . . φ1(S))),

where k represents the cardinality of Φ denoted as η(Φ).

2.3. Word Relevance

Given a string s of sentence S, ρ(s) denotes the relevance

of the string s in S. Such value is related to the part of

speech of s and to the role played by s in S.

A string s of a sentence S is one of the following part

of speech nouns, adjectives, articles, pronouns, verbs, ad-

verbs, prepositions, conjunctions, interjections.

Also, a string s of a sentence S plays one of the follow-

ing roles predicates, subjects, complements, attributes and

appositions.

A weight wp is associated with each part of speech p, a

weight wr is associated with each role r and

ρ(s) = w
1−wrs
ps ,

is the relevance of s in S, where ps is the part of speech of

s in S and rs is the role played by s in S.

The weight associated with each part of speech and that

associated with each role ranges from 0 to 1 and are auto-

matically set during the learning phase (see Section 3.1).

Note that, as a consequence, also ρ(s) range from 0 to 1.

2.4. Transformation Cost

A cost is associated with each operation and, in particular,

let S and S′ be two sentences and let Φ = 〈φ1, . . . , φk〉 be

a sequence of edit operations such that S′ = Φ(S).
The cost κ(Φ) associated with Φ is computed by evaluating

for each i ∈ [1, k] the cost of the operation φi as follows.

Consider five costs: wins as the weight of insertions, wdel

as the weight of deletions, wsub as the weight of substitu-

tions, wswp as the weight of swaps and wmov as the weight

of movements.

• If φi consists in inserting the string ŝ of S′ in S then

κ(φi) = wins · ρ(ŝ, S
′),

namely, the cost coincides with the relevance of the

omitted word.



1723

ALGORITHM 1: Sentence Evaluation Algorithm

Input: Sentence Sprd to be evaluated and reference sentence Sref

Output: Score of Sprd with respect to Sref

1 begin

2 Ins,Del, Sub = SENTENCEMATCHING(Sprd, Sref);
// transform tokenized sentences according to sets Ins, Del and Sub

3 let (S∗
prd, Sref) = APPLY(Sprd, Sref, Ins,Del, Sub);

4 Sref = MODULIZE(Sref);
5 initialize cost = +∞;

6 foreach S′
prd ∈ S∗

prd do

7 Sprd,Srf = MODULARIZE(S′
prd, Sref);

8 Swaps,Moves = GREADYALIGNMENT(Sprd,Sref);
// compute the cost of this solution

9 costcurr = COMPUTECOST(Swaps,Moves,Ins,Del,Sub);

// update best result

10 if costcurr < cost then

11 cost = costcurr;

12 Sbest
prd = Sprd;

// return normalized cost

13 return cost

• If φi consists in deleting the string ŝ from S then

κ(φi) = wdel · wps
,

which is a relaxed version of the relevance, where role

is not taken into account, since the ŝ is not in the ref-

erence string S′ and then has no role in S′.

• If φi consists in substituting the string ŝ of S′ with the

string s of S then

κ(φi) = wsub · d(s, ŝ)
1−ρ(ŝ,S′),

where d(s, ŝ) denotes the distance between the two

strings, in other words, the less the word is relevant the

more the cost approaches the distance, the more the

word is relevant the higher is the cost. In order to com-

pute the distance d(·, ·) we resort to the Needleman-

Wunsch algorithm (Needleman and Wunsch, 1970).

This algorithm measures the distance by taking into

account both the score of substituting two characters

and the gap penalties divided in gap opening penalty

(relatively higher) and gap extension penalty (rela-

tively lower).

• If φi consists in swapping the string s and the string ŝ
of S′ then

κ(φi) = wswp ·

(

1−
√

(

1− ρ (s, S′)
)

·
(

1− ρ(ŝ, S′)
)

)

,

namely the geometric mean between the relevance

of the two strings, so that a relevant string provides

higher contribution on the cost.

• If φi consists in moving the string s of S′ then

κ(φi) = wmov · ρ (s, S
′) .

In the following, the cost associated with an edit sequence

Φ, whenever the explicitation of costs is needed, is more

properly defined as κ(−→w ,Φ) with −→
w = 〈−→wp,

−→
wr,

−→
wop〉

where −→
wop = 〈wins, wdel, wsub, wswp, wmov〉 is the vector

of costs associated with operations, −→
wp is the vector of

weights associated with the parts of speech p and −→
wr is the

vector of weights associated with each role r as described

in Section 2.3.

2.5. Problem

The main problem addressed in this paper can be formu-

lated as follows.

Definition 3 (sentence matching problem) Given two

sentences S ′ and S the sentence matching problem is

the problem of finding an edit operation sequence Φ with

cardinality η(Φ) such that

• Φ(S) = S ′, and

• ∄Φ∗ s. t. Φ∗(S) = S ′ and η(Φ∗) < η(Φ).

In other words, the aim is to find the best sequence trans-

forming S in S ′, where the best is the one with minimum

cardinality.

Once the edit operation sequence has been detected, its cost

can be computed as described in Section 2.4.

Computational issues.

It is relevant to note that the edit operations defined in

Section 2.2 impact on the computational cost needed to

solve the problem defined in 3. Indeed, it is known

that in case of Insertions, Deletion and Substitutions a

polynomial algorithm based on dynamic programming ex-

ists (Needleman and Wunsch, 1970) for strings and can be

easily adapted to c-sentence. Nevertheless, when Swaps

and Movements are taken into accounts the problem can

be proved to become NP-hard (Shapira and Storer, 2007;



1724

Xia, 2008; Davuth and Kim, 2013). Thus, no polynomial

algorithm it is known to exactly solve problem presented

by Definition 3. In this work, the gready polynomial al-

gorithm GreadyAlignment is proposed and is discussed in

subsequent section.

3. Algorithm

This section presents the proposed technique to solve the

problem described in Definition 3. The main algorithm is

reported as Algorithm 1.

Given the reference sentence Sref and the sentence Sprd to

be evaluated, the first step consists in mining string to be

deleted, inserted or substituted so that the strings compos-

ing Sref and the strings composing Sprd match.

At this step, the algorithm is able to identify matchings but,

in case of duplicated non-matching strings, it is not able

to discriminate between them. As for example, let Sref be

“This paper is interesting” and let Sprd be “This interest-

ing pape is interesting”. Function SentenceMatching iden-

tifies the string “pape” to be substituted with “paper” and

the string “interesting” to be deleted but does not identify

which occurrence of “interesting” should be removed.

Thus, subsequent function Apply transforms the sen-

tence Sprd according to the results returned by function

SentenceMatching and returns a set of possible transforma-

tions S∗
prd.

Subsequently, for each sentence S′
prd in the set S∗

prd, the

sentences Sref and S′
prd are modularized and are aligned

by function GreadyAlignment so that the cost can be com-

puted. For computing the cost, equations presented in Sec-

tion 2.4 are employed, where weights are those returned by

the learning phase described in Section 3.1.

The transformation achieving the best alignment is re-

turned.

As far as Function SentenceMatching is concerned, it

builds a bipartite graph between strings in Sref and strings

in Sprd. Thus, the bipartite matching problem is solved to

achieve the best matching. Note that the cost of the edge be-

tween a string sref ∈ Sref and a string sprd ∈ Sprd is related to

the edit distance between the two strings and the proximity,

namely the matching of neighbors. Moreover, even if this

is not currently implemented, the matching problem could

take into account also semantic similarity between strings,

namely could consider synonyms.

As for Function GreadyAlignment, the algorithm search for

the first non-matching module. Assume that the i module

s
ref
i of the reference sentence Sref does not match with the

i-th module s
prd
i of the sentence Sprd to be checked. Since,

when this function is called the input c-sentence are com-

posed by the same modules, let s
prd
j be the module of Sprd

that matches with s
ref
i and let s

ref

k be the module of Sref that

matches with s
prd
i . Thus, the algorithm tries three alterna-

tive paths: (i) swap the module s
prd
i with the module s

prd
j ,

(ii) move the module s
prd
j in position i, (iii) move the mod-

ule s
prd
i in position k. According to the gready strategy the

algorithm select the locally best choice.

Example. In order to clarify the three different paths, consider the

Function SentenceMatching(Tprd,Tref)

Input: Sentence Sprd to be evaluated and reference

sentence Sref

Output: set of insertions I , set of deletions D and set of

substitutions S

1 begin

2 G = ProxBipartiteMatching(Sprd, Sref);
3 foreach isolated node n ∈ G do

4 let s be the string associated with n;

5 if s ∈ Sref then

6 I = I ∪ {s};

7 else

8 D = D ∪ {s};

9 foreach edge (tprd, tref) ∈ G do

10 if there is in G an edge (tprd, tref) then

11 S = S ∪ {(tprd, tref)};

following.

Sref = 〈“This”, “paper”, “is”, “very”, “interesting”〉.

Sprd = 〈“This”, “interesting”, “is”, “paper”, “very”〉.

i = 1, j = 3, k = 4

s
ref

i = s
prd

j = “paper”

s
prd
i = s

ref

k = “interesting”

SWAP := 〈“This”, “paper”, “is”, “interesting”, “very”〉.

MOVE1 := 〈“This”, “paper”, “interesting”, “is”, “very”〉.

MOVE2 := 〈“This”, “is”, “paper”, “very”, “interesting”〉.

Once the three possible transformations have been built, the as-

sociated cost is computed and the locally best transformation is

chosen.

3.1. Learning Phase

During this phase, weights for cost computation are learned

to provide a score. Firstly, by letting −→
w = 〈−→wp,

−→
wr,

−→
wop〉,

and Swaps, Moves, Ins, Del and Sub be the sets to be eval-

uated, the cost function can be rewritten as the dot product

between −→
wop and the vector consisting in the costs associ-

ated with sets Swaps, Moves, Ins, Del and Sub as follows.

κ(−→w ,Φ) =〈wins, wdel, wsub, wswp, wmov〉◦
〈

∑

s∈Ins

w
1−wrs
ps

,

∑

s∈Del

wps ,

∑

s∈Sub

d
1−w

1−wrs
ps ,

∑

s∈Swaps

(

1 −

√

(

1 − w
1−wrs
ps

)

·
(

1 − w
1−wrŝ
pŝ

)

)

,

∑

s∈Moves

w
1−wrs
ps

〉

.

(1)

The learning phase can be then performed as described

next. Assume that a training set T of triple 〈Sref, Sprd, σ〉



1725

Function GreadyAlignment(Sprd,Sref)

Input:

Output:

1 begin

2 Φ = ∅;

3 aligned = false;

4 nref = LENGHT(Sref);
5 while not aligned do

6 i = 0;

7 while i < nref and Sref[i] == Sprd[i] do

8 i = i+ 1;

9 if i < nref then

10 S = SWAP(Sprd, i, Sref);
11 c[0] = distance(Sref, S) + 1;

12 S, from1, to1 = MOVE1(Sprd, i, Sref);
13 c[1] = distance(Sref, S) + 1;

14 S, from2, to2 = MOVE2(Sprd, i, Sref);
15 c[2] = distance(Sref, S) + 1;

16 op = argmin(c);
17 switch op do

18 case 0 do

19 Φ = Φ ∪ 〈x(Sref[i], Sprd[i])〉

20 case 1 do

21 Moves = Moves ∪ {〈order, Sref[i], from1, to1〉}

22 case 2 do

23 Moves = Moves ∪ {〈order, Sref[i], from2, to2〉}

24 else

25 aligned = true;

26 return Swaps, Moves

is available, where an expert has manually evaluated the

produced sentence Sprd and assign to it the score σ.

By letting −→
σ be the vector of the actual scores and by com-

puting the edit sequence Φ for the produced sentence in

each triple t ∈ T , thus obtaining the set
−→

Φ ,

κ
(

−→
w ,

−→

Φ

)

= −→
σ . (2)

Thus, the problem is now to find the weights that minimize

the function

f(−→w ) =
∥

∥

∥
κ
(

−→
w ,

−→

Φ

)

−−→
σ

∥

∥

∥

2

namely the 2-norm between the difference of the two terms

of Equation (2). This can be performed through the stochas-

tic gradient descend, SGD, algorithm thus iteratively updat-

ing weights by means of the gradient of the function f(−→w ),
thus

−→
w

k+1
= −→

w

k
−∇f

(

−→
w

k
)

.

4. Experiments

The whole system has been implemented in Python and a

preliminary set of experiments have been conducted. A set

of historical evaluations made by experts have been col-

lected. Note that, in this phase, age, sex and other extra

information is not taken into account.

To clarify the output of the technique, some notable exam-

ples among analyzed real cases are presented. Note that, for

the sake of presentation, the sentences have been translate

in English even if they are originally in Italian.

Case 1. The reference sentence Sref is

“At school I learn many things”,

the produced sentence Sprd is

“tool ear hings”.

First of all, the technique individuates the following trans-

formations:

insertions: 〈“at”, “I”, “many”〉,

deletions: none,

substitutions:
〈

〈“school”, “tool”〉, 〈“learn”, “ear”〉, 〈“things”, “hings”〉
〉

.

then technique extracts modules obtaining the following

c-sentences

Sref =
〈

〈“At”, “school”, “I”, “learn”, “many”, “things”〉
〉

Sprd =
〈

〈“At”, “school”, “I”, “learn”, “many”, “things”〉
〉

and performs next operations to transform Sprd in Sref:



1726

swaps: none,

movements: none.

Case 2. The reference sentence Sref is

“If I fall and I hurt, I cry a lot”,

the produced sentence Sprd is

“If I cry and it hurts”.

First of all, the technique individuates the following trans-

formations:

insertions: 〈“I”, “fall”, “a”, “lot”〉,

deletions: none,

substitutions:
〈

〈“I”, “it”〉, 〈“hurt”, “hurts”〉
〉

.

then extracts modules obtaining the following c-sentences

Sref =
〈

〈“If ”, “I”〉, 〈“fall”〉, 〈“and”, “I”, “hurt”〉, 〈“I”, “cry”, “a”, “lot”〉
〉

Sprd =
〈

〈“If ”, “I”〉, 〈“fall”〉, 〈“I”, “cry”, “a”, “lot”〉, 〈“and”, “I”, “hurt”〉
〉

and performs next operations to transform Sprd in Sref:

swaps:
〈

〈“I”, “cry”, “a”, “lot”〉, 〈“and”, “I”, “hurt”〉
〉

movements: none.

Case 3. The reference sentence Sref is

“The child eats an apple and a banana”,

the produced sentence Sprd is

“Child eass a banana and the fruit”.

First of all, the technique individuates the following trans-

formations:

insertions: 〈“an”〉,

deletions: none,

substitutions:
〈

〈“eats”, “eass”〉, 〈“fruit”, “apple”〉
〉

.

then extracts modules obtaining the following c-sentences

Sref =
〈

〈“The”〉, 〈“child”, “eats”〉, 〈“an”, “apple”〉, 〈“and”〉, 〈“a”, “banana”〉
〉

Sprd =
〈

〈“Child”, “eats”〉, 〈“a”, “banana”〉, 〈“and”〉, 〈“the”〉, 〈“an”, “apple”〉
〉

and performs next operations to transform Sprd in Sref:

swaps:
〈

〈“a”, “banana”〉, 〈“an”, “apple”〉
〉

movements:
〈

〈“the”〉
〉

.

As for the learning phase, the input set has been split in

training set and test set. Results are reported in Figure 1.

The y axis reports accuracy while the x axis reports the

iterations for the SGD algorithm. The number of iterations

have been set to 4000 and results are reported each 200
iterations.

Note that the learning phase is accomplished just at build-

ing time, since once the weights have been learned the score

of sentences can be directly computed by Equation (1).

0.000

0.250

0.500

0.775

1.000 Test Set
Training Set

Figure 1: Accuracy of the technique

5. Conclusions

The work presents a preliminary study for automatic eval-

uation of language. The aim is to help specialist in ob-

taining an evaluation suggestion together with the critical

components. Experimental results show that the approach

is promising.

6. Bibliographical References

Cianchetti, C. and Fancello, G. S. (1997). Test TVL. Test di

valutazione del linguaggio. Erickson.

Davuth, N. and Kim, S.-R. (2013). A better edit distance

measure allowing for block swaps. In Proceedings of

the 2013 Research in Adaptive and Convergent Systems,

RACS ’13, pages 7–11. ACM.

Devescovi, A. and Caselli, M. (2001). Una prova di ripe-

tizione di frasi per la valutazione del primo sviluppo

grammaticale. 3:341–364.

Fassetti, F. and Fassetti, I. (2018). Mining string patterns

for individuating reading pathologies. In Proceedings

of the ACM Symposium on Applied Computing, Pau,

France, April 9-13, 2018, pages 1–5.

Needleman, S. B. and Wunsch, C. D. (1970). A general

method applicable to the search for similarities in the

amino acid sequence of two proteins. Journal of Molec-

ular Biology, 48(3):443 – 453.

Shapira, D. and Storer, J. A. (2007). Edit distance

with move operations. Journal of Discrete Algorithms,

5(2):380 – 392.

Vender, C., Borgia, R., Bruno, S. C., Freo, P., and Zardini,

G. (1981). Un test di ripetizione di frasi. analisi delle

performances in bambini normali. Neuropsichiatria In-

fantile, 243:819–831.

Vinther, T. (2002). Elicited imitation: a brief overview.

International Journal of Applied Linguistics, 12(1):54–

73.

Xia, T. (2008). An edit distance algorithm with block

swap. In International Conference for Young Computer

Scientists, pages 54–59.


	Introduction
	Problem Definition
	Preliminaries
	Edit operations
	Word Relevance
	Transformation Cost
	Problem

	Algorithm
	Learning Phase

	Experiments
	Conclusions
	Bibliographical References

