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Abstract
To assess the robustness of NER systems, we propose an evaluation method that focuses on subsets of tokens that represent specific
sources of errors: unknown words and label shift or ambiguity. These subsets provide a system-agnostic basis for evaluating specific
sources of NER errors and assessing room for improvement in terms of robustness. We analyze these subsets of challenging tokens in
two widely-used NER benchmarks, then exploit them to evaluate NER systems in both in-domain and out-of-domain settings. Results
show that these challenging tokens explain the majority of errors made by modern NER systems, although they represent only a small
fraction of test tokens. They also indicate that label shift is harder to deal with than unknown words, and that there is much more room
for improvement than the standard NER evaluation procedure would suggest. We hope this work will encourage NLP researchers to
adopt rigorous and meaningful evaluation methods, and will help them develop more robust models.
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1. Introduction
Named entity recognition (NER) is one of the most com-
mon applications of natural language processing (NLP).
Given a text, an NER system is tasked with detecting ex-
pressions that refer to named entities, e.g. people, locations
or organizations, and predicting the entity type of each de-
tected mention. NER is used in various downstream appli-
cations, which typically involve information extraction or
retrieval. NER is a relatively well-studied problem, and is
often used to benchmark NLP systems.
The standard method used to assess NER systems is
an automatic, quantitative evaluation based on a human-
annotated dataset, whereby the system’s output is compared
to the human annotations. Most of the time, systems are
trained and tested on data from the same domain and distri-
bution, i.e. disjoint subsets of the same dataset, typically
a fixed train/dev/test split. The high scores achieved by
modern NLP systems in this setting suggest that their per-
formance is close to, or even better than, human perfor-
mance on this task. Thus, one might conclude that NER is
a “solved problem”.
However, cross-domain evaluation, whereby systems are
trained and tested on data from different domains, paints
a less rosy picture, as the change in the data distribution
results in poorer performance. This suggests that NER sys-
tems lack robustness, and have a limited ability to learn
what a named entity actually is in a way that generalizes
across domains.
To assess the robustness of NER systems, we propose an
evaluation method that focuses on subsets of tokens that
represent specific sources of errors: unknown words and
label shift or ambiguity. These sources of errors arise more
frequently when there is a shift in the data distribution, but
are also present in the single-distribution setting.
In this paper, we examine how these two phenomena mani-
fest themselves within two widely-used NER benchmarks,
then we apply the proposed evaluation method to obtain an
assessment of the robustness of various approaches to NER,
conducting both in-domain and out-of-domain evaluations.

Results show that modern NER systems still have a lim-
ited ability to handle unknown words and label shift, and
it appears that label shift is much harder to deal with than
unknown words.
We hope this work will encourage NLP researchers to adopt
rigorous and meaningful evaluation methods, and to stop
relying on those that would suggest that NER is a solved
problem. In that spirit, we have made our code publicly
available.1

2. Data
For this study, we focused on two widely-used bench-
mark datasets for NER: CoNLL-2003 (Tjong Kim Sang
and De Meulder, 2003) and OntoNotes (Hovy et al., 2006;
Weischedel et al., 2012).

• CoNLL contains newswire texts (including many
sports articles), in which four types of named en-
tities are annotated: people (PER), organizations
(ORG), locations (LOC), and various other entity
types (MISC), which include languages, nationalities,
product names, event names, etc.

• OntoNotes includes texts from 6 different sources,2

representing different domains and genres: broadcast
conversations (BC), broadcast news (BN), magazines
(MZ), newswire (NW), telephone conversation tran-
scripts (TC), and blogs and newsgroups (WB). The en-
tity type classification is more fine-grained than that of
CoNLL, comprising 18 different types, which include
specific entity types that are subsumed by a generic
entity type in CoNLL (e.g. geopolitical entities, which
are lumped together with locations in CoNLL), as well
as various numeric entities, which are not annotated in
CoNLL.

1https://github.com/gbcolborne/ner_eval.
2In the OntoNotes documentation (Weischedel et al., 2012),

MZ and NW are lumped together, but we decided to keep them
separate, as in (Ghaddar and Langlais, 2018).

https://github.com/gbcolborne/ner_eval


1705

Both datasets come pre-tokenized. Labels are encoded us-
ing the IOB2 format.3

Statistics on the named entity mentions in the training por-
tion of these datasets are shown in Table 1. These include
the number of mentions and unique mentions (i.e. unique
entity names), as well as the proportion of each that are am-
biguous, i.e. that belong to more than one entity type. Am-
biguous mentions represent a small fraction of all unique
entity names present in the training data, around 2%, but
since these names tend to occur relatively frequently,4 these
ambiguous names make up a higher percentage of all men-
tions, upwards of 25% in the case of OntoNotes.

CoNLL OntoNotes
# mentions 23499 81828
# ambig. mentions 1632 20582
% ambig. mentions 6.9% 25.2%
# unique mentions 8082 25055
# ambig. unique mentions 132 576
% ambig. unique mentions 1.6% 2.3%

Table 1: Statistics on training sets. Ambiguous mentions
are those that belong to more than one entity type in the
training set.

CoNLL OntoNotes

Dev

# mentions 5942 11066
# unseen mentions 1900 3511
% unseen mentions 32.0% 31.7%
# unique mentions 2809 4847
# unseen unique mentions 1418 2707
% unseen unique mentions 50.5% 55.8%

Test

# mentions 5648 11257
# unseen mentions 2600 3597
% unseen mentions 46.0% 32.0%
# unique mentions 2637 4830
# unseen unique mentions 1706 2659
% unseen unique mentions 64.7% 55.1%

Table 2: Statistics on dev and test sets. Unseen mentions
are those that do not appear in the corresponding training
set.

Statistics on the development (or “dev”) and test sets of
CoNLL and OntoNotes are shown in Table 2. These in-
clude the number of mentions and unique names, as well as
the proportion of each that are unseen in the corresponding
training sets. As we can see, both benchmarks contain a
high proportion of unseen mentions in the test set. Among
the unique entity names in the test sets, 55-65% are not
observed in the training data, which represents 32-46% of
all test mentions in these benchmarks. It is worth noting
here that, even when the training and test data are sampled
from the same distribution, as in the case of CoNLL and
OntoNotes, there is a significant rate of unseen mentions
in the test set. This proportion depends on how the bench-
mark was constructed. It reaches 100% in the case of some

3See https://en.wikipedia.org/wiki/
Inside-outside-beginning_(tagging)

4If this is not immediately obvious, recall that a name that oc-
curs only once can not be ambiguous, and that such low-frequency
names make up a majority of all names.

benchmarks developed specifically to assess the capacity to
detect new entity names (Derczynski et al., 2017).

Subset # Tokens
BC 204K
BN 226K
MZ 198K
NW 489K
TC 104K
WB 170K

Table 3: Size of the 6 subsets of OntoNotes.

For cross-domain evaluation, we used the 6 subsets of
OntoNotes corresponding to the 6 text sources, and evalu-
ated using a leave-one-out setup, as we will explain in Sec-
tion 4. We use the same train/dev/test splits5 as in the 2012
CoNLL shared task on coreference (Pradhan et al., 2012),
and exclude the pivot corpus, as in (Ghaddar and Langlais,
2018). As the sizes of the subsets we extracted do not quite
match up with the numbers reported in the OntoNotes doc-
umentation (Weischedel et al., 2012, p. 6), we report the
sizes we obtained in Table 3.

3. Our Proposal: hardeval
We propose an evaluation method called hardeval. The
main idea of this method is to expose the training data (or
some sample of it) and focus the evaluation on test tokens
that represent specific sources of errors, namely unknown
words and label shift (i.e. ambiguity).

3.1. Definition
hardeval computes the token error rate (TER) on vari-
ous subsets of tokens in the test set. The two main sub-
sets are unseen tokens, hereafter called unseen, and to-
kens whose label differs from what was observed during
training, hereafter called diff. These subsets are identi-
fied using simple heuristics that are both system-agnostic
and context-agnostic. For unseen tokens, we just check
whether the token appeared in the training data. For diff
tokens, we assume it appears in the training data at least
once, and check whether the token’s label is that word’s
most frequent label in the training data.
The unseen and diff tokens are further subdivided ac-
cording to their label in the test set. Here is a description of
these subsets, using the IO labeling format, where all words
in a mention are labeled I-<type>, and all others O:

• unseen = test tokens that are not in the training set

– unseen-I: label is I-X (X is any entity type)

– unseen-O: label is O

• diff = test tokens whose label is not their most fre-
quent label in the training set

– diff-I: label was usually O, but is I-X

– diff-O: label was usually I-X, but is O

– diff-E: label was usually I-X, but is I-Y (dif-
ferent entity type)

5http://conll.cemantix.org/2012/data.html

https://en.wikipedia.org/wiki/Inside-outside-beginning_(tagging)
https://en.wikipedia.org/wiki/Inside-outside-beginning_(tagging)
http://conll.cemantix.org/2012/data.html
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Examples of each of these kinds of hard tokens are shown
below in Section 3.2.

3.2. Deployment on CoNLL and OntoNotes
The sentence shown in Fig. 1 contains examples of both
unseen and diff tokens in the CoNLL test set. It con-
tains words that are not in the training data (i.e. trans-
Atlantic, Monopolies, Mergers, and complied), a token that
is part of a mention but usually is not (i.e. and), and a word
that is usually part of a mention but belongs to different
entity types (i.e. British).

The [British]MISC government warned Friday that it would
refer the proposed [trans-Atlantic]MISC alliance between
[British Airways Plc]ORG and [American Airlines]ORG to
[Britain]LOC ’s [Monopolies and Mergers Commission]ORG

unless the carriers complied with a number of conditions .

Figure 1: A sentence from the CoNLL-2003 test set. Gold
mentions are in brackets. Four unseen tokens are under-
lined; the first three are all unseen-I as they are part of a
mention, and the last is unseen-O. Two occurrences of
and are shown in bold; the second is diff-I. The to-
ken American and the second occurrence of British are both
diff-E.

The two kinds of unseen tokens are easy to grasp, but the
three different kinds of diff tokens may be a bit trickier at
first. To see what kinds of tokens are diff, we inspected
the diff-I, diff-O, and diff-E subsets identified us-
ing the the standard CoNLL train/test split. We can sum-
marize our observations as follows:

diff-I The most frequent diff-I tokens in the
CoNLL test set include of, and, and I, which are usually
labeled O in the training set, but are sometimes part of a
mention in the test set. For example, the vast majority of
the occurrences of and are not part of a mention, but a few
occurrences in the test set are, such as in the example shown
in Fig. 1. In this example, we have two occurrences of the
word and. The first is labeled O like the vast majority of oc-
currences seen in training, but the second is part of a men-
tion, and is therefore part of the diff-I subset.

diff-O The five most frequent diff-O tokens in the
CoNLL test set include four words which are almost al-
ways part of a MISC mention in the CoNLL training data,
i.e. DIVISION, LEAGUE, WESTERN, and EASTERN, but
are sometimes labeled O in the test set. One interesting case
is that of the word EASTERN. In the CoNLL-2003 training
set, this word appears 16 times, and is always part of the
two-word sentence (heading) EASTERN DIVISION, which
is consistently labeled as a mention of a MISC. However,
in the test set, we find a total of six occurrences of the word
EASTERN. Two of these appear in the heading EASTERN
DIVISION as in the training set, and four others appear in
the heading EASTERN CONFERENCE, an entity name that
was not observed in training. For some reason, all of these
are labeled O (not entity mentions). There may be an an-
notation consistency issue here, but in our experience, such
issues are an unavoidable consequence of the practice of
annotating data or collecting annotated data.

diff-E In the sentence shown in Fig. 1, the second oc-
currence of the word British is diff-E, as this token is
usually part of a MISC mention in the training data, not
an ORG as it is here. Likewise, the token American is
diff-E, as it is usually a MISC as well. If we look at
the most frequent diff-E tokens in the CoNLL test set,
the top three are all words that appear most frequently as
LOC in the training set, but sometimes appear as ORG in
the test set, i.e. United, Santa, and New. If we focus on the
word Santa, we observe that it appears three times in the
CoNLL training set, within these mentions: Santa Maria de
Pocosol (LOC), Santa Barbara (LOC), and Santa Puglisi
(PER), so its most frequent type is LOC. In the test set, we
can observe the appearance of an ORG-type mention that
contains this word, that is Santa Fe Pacific Gold Corp. This
name appears only once, but there are 18 occurrences of
the shortened form Santa Fe, 16 of which were annotated
as ORG-type mentions, and two of which were annotated
as LOC-type mentions, but clearly refer to the aforemen-
tioned organization. In any case, most of the occurrences
of Santa in the test set belong to an entity type which was
never associated with that word in the training data.6 This
kind of label shift or ambiguity is especially frequent when
there is a shift in the domain or source of the text, but as we
can see, it also occurs in the single-distribution setting.

Table 4 shows the relative size of the diff and unseen
token subsets identified in CoNLL and OntoNotes using
the definitions in Section 3.1. The standard train/test splits
were used to compute these subsets, but this was done for
illustrative purposes only: for practical applications, we
would use cross-validation, as explained later.

# tokens (%)
CoNLL OntoNotes

all 46435 (100.0) 152728 (100.0)
unseen-I 2537 (5.5) 1745 (1.1)
unseen-O 3119 (6.7) 1749 (1.1)
unseen 5656 (12.2) 3494 (2.3)
diff-I 201 (0.4) 3632 (2.4)
diff-O 215 (0.5) 1005 (0.7)
diff-E 676 (1.5) 2815 (1.8)
diff 1092 (2.4) 7452 (4.9)

Table 4: Number of diff and unseen tokens in test sets
of CoNLL and OntoNotes, computed using the standard
train/test split.

The results show that unseen tokens represent about 12%
of test tokens in CoNLL, and 2% in OntoNotes, whereas
diff tokens represent 2% and 5% of test tokens in CoNLL
and OntoNotes respectively. Thus, unseen and diff to-
kens represent a small fraction of the test tokens, at least
when we use the in-domain training set to identify them.
Remember that the number of unseen or diff tokens
depends on the training set that we provide to hardeval,
but they do not depend on the system.
It is worth noting at this point that for tokens that are nei-
ther unseen nor diff, predicting their label mainly in-
volves memorizing their most frequent label in the training

6There are also two mentions of the “person” Santa Claus.



1707

set. This represents the vast majority of tokens in these
benchmarks.
Comparing the number of unseen tokens shown in Ta-
ble 4 to the number of unseen mentions shown in Table 2,
one might wonder how the former can be lesser than the lat-
ter in the case of OntoNotes, whose test set contains 3597
unseen mentions, but 3494 unseen tokens. It is impor-
tant to remember that the property of being unseen, i.e. not
appearing in the training set, is evaluated at two different
levels here: an entity name that never occurs in the training
data – or does occur, but is never labeled as such – is con-
sidered an unseen mention, but it may contain words that
did occur in the training data, and these would not be diff
tokens by definition.
Observing the unseen and diff tokens in the CoNLL
test set, as we have just done, makes it less useful as an
estimator of generalization (assuming a fixed train/dev/test
split), as we are gaining valuable information about the con-
tent of the test set, which could be used to artificially boost
a system’s performance on it. That being said, repeatedly
using the same train/dev/test split to compare systems, as
has happened repeatedly over the past 17 years in the case
of CoNLL-2003, has accomplished the same, that is leak-
ing information about the test set that renders it a biased
estimator of generalization. The problem with fixed train-
ing/test splits has been highlighted by Gorman and Bedrick
(2019), who recommend that NLP system comparisons be
carried out by evaluating the systems on multiple, randomly
generated training/test splits.7

It is important to remember we are exploring the test sets of
these two commonly used benchmarks for illustrative pur-
poses only. For practical applications, we would recom-
mend using multiple, random training/test splits to identify
unseen and diff tokens, as in k-fold cross-validation.

3.3. Properties of hardeval
Two properties of hardeval are worth noting:

• The unseen and diff subsets are disjoint, as are
the five lower-level subsets. Tokens that are neither
unseen nor diff are expected to be easier for a ma-
chine learning system to label, as this mainly involves
memorization.

• The diff-I, diff-O, and diff-E subsets contain
tokens that are likely to be false negatives, false pos-
itives, and type classification errors respectively. For
instance, tokens in diff-I are usually not part of a
mention in the training data, so a system trained on
that data is more likely to fail to detect that they are
part of a mention in the test set, which would generate
false negatives. However, it is important to remember
that the way in which these three subsets are identi-
fied is system-agnostic. That is, rather than restrict
the evaluation to those predicted by a given system
(as well as the gold-standard, human-annotated men-
tions), we restrict it to specific subsets of tokens that
are likely errors, independent of the system.

7They also recommend using Bonferroni-corrected random
split hypothesis testing to verify the significance of differences
between systems.

In summary, hardeval computes the TER (i.e. percent-
age of mislabeled tokens) on unseen and diff tokens.
The lower the score the better.
It is important to consider that a low TER on diff-O does
not necessarily imply high-quality NER, as a system that
always predicts O (and thus fails to ever detect any men-
tions) would have a TER of 0% on diff-O. So the TER
on diff-O is not, on its own, a good metric to evaluate
NER. Likewise for unseen-O. These metrics can provide
useful insights, but should not be analyzed or optimized in
isolation. In settings where a single evaluation metric is
needed (e.g. to compare models or tune the hyperparam-
eters of a particular model), we would recommend using
the mean TER over the diff and unseen subsets, as ex-
plained below.
Lastly, it might be worth noting that we also implemented
a stricter version of diff, whereby a token’s label must
never have been observed in training to qualify. This results
in smaller subsets, and we prefer the looser definition.

4. Experiments
4.1. Methodology
We evaluated four NER systems using hardeval in both
in-domain (ID) and out-of-domain (OOD) settings. The ID
tests were conducted on the train/dev/test split of a single
dataset, i.e. CoNLL or OntoNotes. For the OOD tests, we
trained on the concatenated training sets of 5 of the 6 do-
mains in OntoNotes, and evaluated on the test set of the
held-out domain. The dev set, which was used for early
stopping, was also OOD in this case.
In both ID and OOD settings, we computed the token er-
ror rate (TER) on unseen and diff tokens using the
hardeval script, as well as the standard mention-level
f-score, using the Perl evaluation script developed for the
CoNLL-2003 shared task, called conlleval.

4.2. Systems Evaluated
We selected four systems for evaluation. They implement
different approaches to representing tokens with features
and labeling tokens based on those features:

• Illinois is the NER package in the CogComp-NLP
toolkit.8 It implements a rich set of hand-crafted
features designed specifically for NER (Ratinov and
Roth, 2009), such as lexical features (i.e. the tokens
themselves), sub-word features (e.g. case and affix
features), contextual features (e.g. the surrounding
words, as well as non-local features), and knowledge-
based features (e.g. gazetteers). It exploits a regular-
ized averaged perceptron for sequence labeling.

• NeuroNER (Dernoncourt et al., 2017) is a neural NER
toolkit.9 It automatically extracts features using repre-
sentation learning. Specifically, it employs a deep neu-
ral network in which BiLSTM layers learn representa-
tions at both character and word levels (with a single

8https://github.com/CogComp/cogcomp-nlp.
We tested version 4.0.9.

9https://github.com/Franck-Dernoncourt/
NeuroNER. We tested version 1.0.

 https://github.com/CogComp/cogcomp-nlp
https://github.com/Franck-Dernoncourt/NeuroNER
https://github.com/Franck-Dernoncourt/NeuroNER
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BiLSTM layer at each level). These representations
capture lexical, contextual, and sub-word features. No
external knowledge or hand-crafted features are used.
It exploits a CRF for sequence labeling.

• spaCy (Honnibal and Montani, 2017) is an NLP
toolkit10 that includes NER. It employs a neural net-
work architecture in which convolution and atten-
tion layers automatically extract features at word
level. Hand-crafted sub-word features are injected
separately into the network. The model exploits a
transition-based algorithm (i.e. stack-LSTM) for se-
quence labeling.

• BERT (Devlin et al., 2019) is an algorithm that
employs self-supervised language model pre-training
of a transformer architecture (Vaswani et al., 2017),
followed by supervised fine-tuning on a given tar-
get task.11 We used the pre-trained model named
“bert-large-cased-whole-word-masking”, which was
pre-trained on a large corpus of text using whole-
word masking for the masked language model.12 The
model learns to capture contextual features through
language modeling and supervised fine-tuning. No ex-
ternal knowledge is used, apart from the large, unan-
notated text corpus used for pre-training. Sub-word
features are obtained by splitting the input tokens into
sub-word units (Sennrich et al., 2016).

For each of these systems, we used the default or recom-
mended configuration.13 When forced to select a feature or
hyperparameter setting, we did a minimum of optimization
to make sure we achieved scores close to those reported
by the developers.14 Otherwise, we treated the systems as
black boxes.

5. Results
5.1. Results: conlleval
F-scores achieved by the four systems in the ID setting are
shown in Table 5. Also shown are the current state-of-
the-art (SOTA) scores on these two datasets according to
Li et al. (2019). These results show that modern NER
systems achieve f-scores upwards of 90% on CoNLL and
OntoNotes in the ID setting. Thus, the standard evaluation
procedure for NER suggests that modern systems achieve
very high performance, and that there is little room for im-
provement (RFI). This RFI represents around 10% of the
mentions that were detected by either the human annota-
tors or a given system (or both).

10https://spaCy.io/. We tested version 2.0.11.
11We use the library by HuggingFace (Wolf et al.,

2019). See https://github.com/huggingface/
transformers. We tested version 2.1.1.

12See https://github.com/google-research/
bert for more info on how this model was pre-trained.

13Installation scripts are provided in our code repository.
14This was the case for the word embedding table in the

case of spaCy. We ended up using the glove.840B.300d
embeddings (https://nlp.stanford.edu/projects/
glove/), with 200K unique embeddings after pruning the vo-
cabulary. In the case of NeuroNER, we used the glove.6B.100d
embeddings as recommended.

CoNLL OntoNotes
Illinois 0.907 0.836
Neuro 0.899 0.866
spaCy 0.881 0.850
BERT 0.916 0.894
SOTA (Li et al., 2019) 0.930 0.911

Table 5: Mention-level f-scores. In-domain training. SOTA
denotes current state-of-the-art.

Regarding the system rankings, the results show that Illi-
nois performs well on CoNLL, but neural systems perform
better on OntoNotes, which is a richer, more varied, and
more challenging dataset.
F-scores achieved in the OOD setting are shown in Table 6.
The scores on the various subsets of OntoNotes are all in-
ferior to the ID results achieved on the complete dataset,
often by a large margin. Note that there is 1/6 less training
data for each test in the OOD setting, which may explain
part of the drop in performance. On the most challenging
subset, f-scores are just above 75%. Averaged across the
6 subsets, the f-scores are about 6-8 points lower than the
overall f-score obtained on the complete dataset in the ID
setting,15 which suggests significantly more RFI.

BC BN MZ NW TC WB avg
Illinois 0.76 0.83 0.77 0.76 0.68 0.74 0.76
Neuro 0.79 0.85 0.79 0.81 0.71 0.75 0.78
spaCy 0.79 0.84 0.75 0.78 0.71 0.76 0.77
BERT 0.84 0.89 0.87 0.86 0.75 0.80 0.84

Table 6: Mention-level f-scores on the 6 subsets of
OntoNotes. Out-of-domain training.

5.2. Results: hardeval
Tables 7 and 8 show the token error rates of the systems
on CoNLL and OntoNotes respectively, using ID training.
For reference, the overall TER on all tokens is around 2-
3% in all cases. The results of hardeval show that mod-
ern NER systems achieve a TER around 6-9% on unseen
tokens in CoNLL, and 8-16% in OntoNotes. On diff
tokens, error rates are much higher: around 27-40% on
CoNLL and 22-41% on OntoNotes. This suggests label
shift or ambiguity is more challenging for these systems
than unseen tokens, at least in terms of TER, and that
there is a lot of RFI here. Also note that the basis for the
RFI is defined in a way that is system-agnostic, which is
not the case if we use the standard evaluation method, as
we highlighted earlier.
It might also be worth noting that the TER is higher on
unseen-I than unseen-O, which indicates it is harder
for NER systems to correctly label unseen tokens that are

15Recall that these 2 sets of results are not directly comparable
as we do not average over the 6 subsets in the ID setting. However,
since the sizes of the 6 subsets do not vary a lot, it is safe to assume
they are roughly comparable. This comparison seems more fair
than doing ID training on the 6 subsets and averaging, as we would
use 4/5 less training data for each of the ID tests than for the OOD
tests.

https://spaCy.io/
https://github.com/huggingface/transformers.
https://github.com/huggingface/transformers.
https://github.com/google-research/bert
https://github.com/google-research/bert
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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unseen diff
all I O all I O E

Illinois 0.07 0.12 0.03 0.34 0.41 0.42 0.29
Neuro 0.08 0.12 0.05 0.34 0.38 0.50 0.28
spaCy 0.09 0.15 0.05 0.40 0.48 0.52 0.34
BERT 0.06 0.09 0.03 0.27 0.29 0.50 0.18

Table 7: Token error rates on CoNLL. In-domain training.

unseen diff
all I O all I O E

Illinois 0.16 0.29 0.03 0.41 0.46 0.40 0.36
Neuro 0.13 0.22 0.03 0.27 0.24 0.42 0.25
spaCy 0.15 0.26 0.05 0.33 0.30 0.50 0.30
BERT 0.08 0.13 0.03 0.22 0.21 0.37 0.18

Table 8: Token error rates on OntoNotes. In-domain train-
ing.

part of a mention than those that are not, as we might ex-
pect.
Like OOD evaluation, evaluating the TER on diff tokens
paints a less rosy picture of NER performance than the stan-
dard evaluation method. And like OOD evaluation, it gives
us an estimate of robustness to shifts in the data distribution,
while being a simpler method, since it does not require us
to look at a variety of datasets, as has sometimes been pro-
posed to assess robustness – see Section 7.
hardeval can also be used in a cross-domain evaluation
setting. Table 9 shows the OOD error rates of the four sys-
tems; for conciseness, this table only shows the average
TER over the 6 subsets of OntoNotes (as in the last column
of Table 6). If we compare these to the ID error rates on
OntoNotes, we see that the TER is higher on both unseen
(in particular unseen-I) and diff tokens in the OOD
setting. This is likely due to a greater shift between training
and test data. It may also be partly due to the fact that we
use 1/6 less training data in the OOD case, as we mentioned
earlier.

unseen diff
all I O all I O E

Illinois 0.16 0.34 0.03 0.52 0.59 0.39 0.49
Neuro 0.15 0.30 0.05 0.41 0.40 0.46 0.41
spaCy 0.16 0.32 0.04 0.45 0.42 0.53 0.46
BERT 0.09 0.20 0.03 0.32 0.32 0.37 0.31

Table 9: Token error rates on OntoNotes (average over 6
subsets). Out-of-domain training.

A detailed breakdown of the ID error rates on CoNLL and
OntoNotes is shown in Table 10. These results show that
unseen and diff tokens explain the majority of errors
made by these systems on both CoNLL and OntoNotes, al-
though these subsets represent only a small fraction of the
test tokens, as we showed previously (see Table 4).
To assess the performance of NER systems on both
unseen and diff using a single metric, we propose to
use the average of the TER on those two disjoint subsets.
Table 11 summarizes the hardeval scores (mean TER on
unseen and diff tokens) of the four systems on CoNLL
and OntoNotes, in both ID and OOD settings in the latter

CoNLL OntoNotes
unseen diff other unseen diff other

Illinois 40.0 48.2 11.8 11.1 62.0 26.9
Neuro 42.1 42.8 15.1 11.4 51.6 37.0
spaCy 42.9 44.6 12.5 12.2 55.5 32.3
BERT 40.0 34.2 25.8 9.2 55.5 35.3

Table 10: Error breakdown (% of mislabeled tokens). In-
domain training.

case. It may be worth noting that this metric indicates that
three of the four systems tested are actually doing better
on OntoNotes than CoNLL, at least in the in-domain set-
ting. At any rate, we argue that it gives us a more mean-
ingful idea of the room for improvement, on a system-
agnostic basis. To obtain a more fine-grained view of the
remaining challenges, one can look separately at the TER
on diff and unseen tokens, or go even deeper by look-
ing at the test tokens that are in these subsets, as we did in
Section 3.2.16

CoNLL OntoNotes
ID OOD

Illinois 0.206 0.285 0.338
Neuro 0.212 0.198 0.281
spaCy 0.247 0.239 0.307
BERT 0.163 0.149 0.207

Table 11: hardeval score (mean TER on unseen and
diff) on CoNLL and OntoNotes. Out-of-domain results
on OntoNotes (averaged over its 6 subsets) are shown in the
last column.

6. Discussion
Many NLP and machine learning researchers still strive
to beat the state-of-the-art on NER benchmarks such as
CoNLL or OntoNotes. Given the limitations of the stan-
dard evaluation paradigm, it is hard to tell:

1. where a gain in f-score might come from, e.g. a better
model, better optimization or better data.

2. what such gains actually mean: does a small increase
in f-score really mean the model is better at learning
what a named entity is? Or is it just better at modeling
statistical noise, or even annotation errors?

Regarding the first problem, let us note that a fair com-
parison between NER systems should account for the fact
that the systems may have access to different resources,
aside from the training data: knowledge-based resources,
pre-trained word embeddings, pre-trained language mod-
els, etc. This was the case for the systems we evaluated,
as we explained in Section 4.2. As for the training data,
in this work, we restricted the training data available to the
systems, and that data was then used by hardeval, along
with the test set, to identify the unseen and diff sub-
sets used for evaluation. This provides a degree of fairness,

16It is important to keep in mind the caveat we expressed re-
garding the repeated use of the same train/test splits.
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compared to an evaluation which only considers the test set
and does not constrain the training data.
Let us also repeat that we conducted a black box evalua-
tion, and relied on the default or recommended settings of
the four systems, so the results shown in this paper depend
on how effectively these four systems were tuned. It is also
important to remember that the systems that we tested con-
tinue to evolve, and the current versions may perform better
than those we tested.
Regarding the second problem, hardeval allows us to
quantify the RFI in a way which is system-agnostic and dis-
tinguishes specific sources of errors. A more fine-grained
analysis can be conducted by inspecting the errors made by
a given system on the unseen and diff subsets. Inspect-
ing the tokens that make up the unseen and diff subsets
may also reveal annotation inconsistencies, as we showed
in Section 3.2. However, if such inconsistencies are not
eliminated from the dataset, they remain a potential source
of bias for any evaluation metric, including those proposed
in this paper.
It is worth noting that the hardeval evaluation method
can be applied to any (partially or completely) supervised
sequence labeling task where unseen tokens and label shift
are likely to occur. The simple heuristics we use to iden-
tify hard subsets of tokens might also be used to improve
the performance of NER on these subsets, using a frame-
work such as slice-based learning (Chen et al., 2019). For
such purposes, the diff tokens in the training set could be
identified by cross-validation, as mentioned in Section 3.2.

7. Related Work
Many recent works raise issues with standard evaluation
methods in NLP, such as:

• Ethical issues concerning shared tasks in
NLP (Parra Escartı́n et al., 2017)

• Problems arising from the repeated use of standard
train/dev/test splits (Gorman and Bedrick, 2019)

• Whether high performance on a dataset actually means
high performance on the task at hand, or whether
it just means better modeling of annotator idiosyn-
crasies (Geva et al., 2019)

• How leaderboards have become meaningless now that
large neural language models pre-trained on large
text corpora have become standard for many NLP
tasks (Rogers, 2019)

• The fact that standard evaluation methods com-
pletely disregard the cost of training and tuning mod-
els, in terms of energy, money, and ecological im-
pact (Schwartz et al., 2019)

Many of these issues are part of a growing discussion
around the failure of machine learning and NLP models
to perform in real-world settings, because of a lack of ro-
bustness. Tools to better assess robustness are therefore re-
quired to improve ML and NLP methods.

“One of the challenges of robustness is that it is
hard to study systematically. How do we bench-
mark how well an algorithm trained on one distri-
bution performs on a different distribution? Per-
formance on brand-new data seems to involve
a huge component of luck. That’s why the
amount of academic work on robustness is sig-
nificantly smaller than its practical importance.
Better benchmarks will help drive academic re-
search.” (Ng, 2019).

To better assess robustness, we need better evaluation meth-
ods. In that spirit, we hope the method presented here will
enable researchers to develop more robust models.
Regarding the issue of robustness, it is worth noting that
out-of-domain and cross-domain evaluations of NER sys-
tems have been carried out in a few studies (Augenstein et
al., 2017; Agerri and Rigau, 2017; Ghaddar and Langlais,
2018; Taillé et al., 2020). We believe out-of-domain evalu-
ation provides valuable information, but comparing results
across a variety of annotated corpora is costly and not al-
ways feasible, and summarizing their results can be tricky.
So we would argue there is a need for an evaluation method
that focuses on robustness but can be used even with a sin-
gle dataset, such as the one presented here.
It is worth noting that Augenstein et al. (2017) also looked
at the accuracy of NER systems on unseen mentions to bet-
ter assess their capacity to generalize, as did Taillé et al.
(2020), who further subdivided these mentions into partial
matches (which contain at least one token which was seen
in a mention of the same type, excluding stop words) and
completely new mentions. Finally, let us repeat that there
are datasets that have been designed specifically to evalu-
ate NER systems on unseen mentions (Derczynski et al.,
2017).

8. Conclusion
To assess the robustness of NER systems, we propose an
evaluation method that focuses on subsets of tokens that
represent specific sources of errors: unknown words and
label shift or ambiguity. These subsets, which we call
unseen and diff, provide a system-agnostic basis for
evaluating specific sources of NER errors and assessing
room for improvement in terms of robustness.
In this paper, we analyzed the unseen and diff tokens
in two widely-used NER benchmarks, then we conducted a
black-box evaluation of various approaches to NER based
on unseen and diff tokens. Results show that unseen
and diff tokens explain the majority of errors made by
modern NER systems, although these subsets represent
only a small fraction of the test tokens. They also indicate
that label shift is harder to deal with than unknown words,
and that there is much more room for improvement than the
standard NER evaluation procedure would suggest.
Future work might look at incorporating the metrics used in
this paper into a single metric that evaluates all tokens, in-
cluding those that are likely easy to memorize, weighted by
their difficulty. It would also be interesting to try to figure
out what tokens tend to be challenging aside from diff
and unseen. This might involve looking at the context of
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a given token, not just the token, its label, and the labels
that were observed previously for that word. We are also
interested in exploiting the analysis of unseen and diff
tokens in training data to train more robust models.
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