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Abstract
According to psycholinguistic studies, the complexity of concepts used in a text and the relations between mentioned concepts play the
most important role in text understanding and maintaining reader’s interest. However, the classical approaches to automatic assessment
of text complexity, and their commercial applications, take into consideration mainly syntactic and lexical complexity. Recently, we
introduced the task of automatic assessment of conceptual text complexity, proposing a set of graph-based deep semantic features using
DBpedia as a proxy to human knowledge. Given that such graphs can be noisy, incomplete, and computationally expensive to deal
with, in this paper, we propose the use of textual features and shallow semantic features that only require entity linking. We compare
the results obtained with new features with those of the state-of-the-art deep semantic features on two tasks: (1) pairwise comparison
of two versions of the same text; and (2) five-level classification of texts. We find that the shallow features achieve state-of-the-art
results on both tasks, significantly outperforming performances of the deep semantic features on the five-level classification task. In-
terestingly, the combination of the shallow and deep semantic features lead to a significant improvement of the performances on that task.
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1. Introduction
In this digitalized era, readers are overwhelmed with the
amount of informational texts freely available online. Al-
though seemingly so easy to reach, many of them are too
complex for an average reader, and even more for strug-
gling readers, e.g. non-native speakers, people with low
literacy, or people with any kind of reading or cognitive
impairments (such as dyslexia, aphasia, autism, Down’s
syndrome, etc.). To mitigate this problem, many guide-
lines have been proposed and made available advising on
how to make texts easier to understand for everyone, re-
garding both their presentation (in terms of font styles,
sizes, and colors, background colors, etc.) and their textual
characteristics (vocabulary, syntactic structures, and overall
text structures), e.g. Web Content Accessibility Guidelines
(WCAG)1, ‘Make it Simple’ guidelines (Freyhoff et al.,
1998), Federal Plain Language Guidelines2. At the same
time, many readability metrics have been proposed to man-
ually or automatically assess the reading level necessary to
understand a text, mostly focusing on superficial lexical and
syntactic features, and rarely on more semantic-based fea-
tures (DuBay, 2004). Most of the proposed readability met-
rics do not assess deeper levels of text processing, such as
inference making and the use of world knowledge and dis-
course structure necessary to comprehend the text (Arfé et
al., 2017).
According to the model of reading comprehension pro-
posed by Kintsch and van Dijk (1978), the reader needs
to understand both individual propositions and concepts in
the text, as well as their relations, in order to make a co-
herent story and fully understand the text. Text difficulty
could thus be seen as the amount of gaps in the text coher-

1https://www.w3.org/TR/WCAG21/
2https://www.plainlanguage.gov/

guidelines/

ence, and the effort required by the reader to repair them
by inference making (Arfé et al., 2017). This effort for
mentally organizing the content of a text is especially chal-
lenging for struggling readers (Lovett et al., 1996; Meyer et
al., 1980), and those readers that have problems with mem-
ory load (Meyer, 2003). Even in the case of non-struggling
readers, to actively engage them, texts need to be on the
right level not only by their lexical and syntactic choices,
but also in the way the concepts are mutually connected,
and by the amount of background knowledge necessary to
make inferences which strengthen the representation of the
text meaning (McNamara et al., 2006).

Building up on those psycholinguistic models of text com-
prehension, we earlier proposed the task of automatically
assessing conceptual complexity of texts and explored the
possibility of using DBpedia (DBpedia, 2014) to construct
knowledge graphs with the aim of measuring the amount
of background knowledge necessary to understand how
are the mentioned concepts interconnected (Štajner and
Hulpuş, 2018).

In this work, we propose two sets of features to auto-
matically measure conceptual text complexity, which are
computationally less expensive, but seem to have similar
or even better predictive power than previously proposed
graph-based deep semantic features (Štajner and Hulpuş,
2018). We propose several surface text-based features and
shallow semantic features, both types only requiring an en-
tity linker, and some basic entity mention counting and
offset calculations. Furthermore, we set a strong baseline
by using the four widely-known psycholinguistic features,
which have not been used in automatic assessment of text
complexity so far. We compare the performance of the
newly proposed features with those of the state-of-the-art
deep (graph-based) semantic features (Štajner and Hulpuş,
2018), and the strong baseline features, on two tasks: (1) bi-

https://www.w3.org/TR/WCAG21/
https://www.plainlanguage.gov/guidelines/
https://www.plainlanguage.gov/guidelines/
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nary text classification, and (2) five-level text classification.
The newly proposed features outperform both the strong
baseline features, and the state-of-the-art features, on both
tasks. Interestingly, the combination of shallow and deep
semantic features seem to lead to best performances on the
five-level classification task.

2. Related Work
Manual assessment of textual complexity has long history
in education and psycholinguistic research. Only in the sec-
ond half of the twentieth century, over 200 readability for-
mulae have been proposed with the aim of assessing the
reading level necessary to understand given texts (DuBay,
2004). The majority of them only captures lexical and syn-
tactic properties of a text. Those that go beyond those two
levels, and attempt at capturing semantic complexity of a
text, cannot be computed automatically with sufficient pre-
cision.
Currently, the only automatic complexity assessment tool
that goes beyond lexical and syntactic levels is the Coh-
Metrix tool (Graesser et al., 2004), which apart from a high
number of lexical and syntactic features, also calculates
coreference indices and LSA semantic complexity features.
It has been shown that Coh-Metrix can successfully capture
cohesion level of manually produced texts, but has prob-
lems differentiating between texts with different cohesion
levels which are closely related by their topic (McNamara
et al., 2006). Furthermore, Coh-Metrix does not have any
features related to conceptual clarity, which would measure
ambiguity, vagueness, and abstractness of a concept, neces-
sary to measure conceptual complexity of a text, as defined
in the previous section.
Several works investigated the correlation of a number of
syntactic, lexical, conceptual, and discourse features with
text readability, e.g. (Pitler and Nenkova, 2008; Štajner et
al., 2012). Pitler and Nenkova (2008) explored six groups
of features: baseline (e.g. average number of words per sen-
tence or average number of characters per sentence), vocab-
ulary (e.g. article likelihood according to different language
models), syntactic (e.g. average parse tree height, average
number of subordinate clauses per sentence, etc.), lexical
cohesion (e.g. the number of pronouns and the number
of definite articles per sentence, word overlap over nouns
and pronouns), entity coherence features based on entity
grids (Barzilay and Lapata, 2008), and discourse relation
features (e.g. implicit comparisons, explicit temporal rela-
tions, etc.). Out of those six groups of features, discourse
relation features obtained the highest correlation with hu-
man ratings of readability on the Penn Discourse Treebank
(Marcus et al., 1993). The major obstacle of using those
features in a system for automatic assessment of text read-
ability/complexity is that no robust systems for automatic
annotation of discourse exist, and those features can thus
be extracted only from texts annotated in Penn Discourse
Treebank, as the authors themselves pointed out (Pitler and
Nenkova, 2008). In the binary text classification experi-
ments (“given two articles, is article 1 more readable than
article 2?”), however, the entity grid features performed the
best, reaching the accuracy of 0.79 (Pitler and Nenkova,
2008). Štajner et al. (2012) investigated the correlation be-

tween several widely-used readability formulae and several
features, indicators of structural complexity and ambiguity
in meaning (average number of pronouns, definite descrip-
tions, and word senses) across four different corpora (Sim-
ple Wikipedia, news articles, fictional stories, and health
leaflets). They found a high level of correlation (Pearson’s
correlation) between those features and the Flesch readabil-
ity index (Flesch, 1949) across all corpora. They, however,
did not attempt at automatically assessing textual complex-
ity using those features.
The coherence assessment, as a measure of text quality for
automatic generation of texts has received significant at-
tention in the last ten years in the field of automatic text
generation, e.g. (Barzilay and Lapata, 2008; Karamanis et
al., 2009; Mesgar and Strube, 2018). While coherence as-
sessment is somehow related with our task of automatic
assessment of conceptual text complexity, it still has sev-
eral major differences. First, the focus of coherence as-
sessment in those works is on local text coherence (only
within a sentence, or between two neighbouring sentences),
while we focus on overall text coherence, capturing entity-
relations throughout the whole text. Second, we focus only
on conceptual text complexity and thus make sure that we
do not introduce any bias coming from syntactic or lexical
complexity (see Section 3 for details on feature extraction).
The aforementioned approaches to coherence assessment,
in contrast, use syntactic information, and therefore model
coherence assessment without controlling for the syntac-
tic complexity. Finally, we focus on conceptual text com-
plexity from the readers perspective and are therefore fo-
cused on measuring background knowledge necessary to
understand the text. The aforementioned approaches to co-
herence assessment, instead, focus on quality of generated
text and are thus not interested in the level of background
knowledge, but rather only the connection between the en-
tity mentions (not their number or familiarity).
To the best of our knowledge, we were the first to define the
task of automatic assessment of conceptual complexity as
the level of background knowledge necessary to understand
the text (Štajner and Hulpuş, 2018). In the same work, we
explored the possibility to use a set of graph-based deep se-
mantic features computed over DBpedia as a proxy of the
background knowledge, and approached the problem as a
supervised binary classification task on the Newsela corpus
(see Section 4 for more details), which contains news arti-
cles manually simplified not only on lexical and syntactic
level, but also on conceptual level under a strict quality con-
trol (Newsela, 2016). Later, we proposed an unsupervised
approach for the same task, using spreading activation over
the subgraphs of DBpedia as the text is sequentially tra-
versed (Hulpus, et al., 2019).
To the best of our knowledge, there are no other datasets
that contain same stories manually adapted to different
complexity levels (including conceptual complexity), ex-
cept the aforementioned Newsela corpus. Building such
datasets is a challenging task, as asking humans to rate text
coherence has been shown to be unreliable because of sev-
eral possible confounds such as the annotator interest, level
of distraction, and familiarity with the topic (Lapata, 2006).
To avoid introducing such confounds in our systems, we opt
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Type # Description/Name

Surface (text-based)

1 Number of mentions divided by the total number of tokens
2 Average number of mentions divided by the total number of tokens (in a paragraph)
3 Average number of mentions divided by the total number of tokens (in a sentence)
4 Average distance (in sentences) between consecutive mentions
5 Average distance (in paragraphs) between consecutive mentions

Shallow Semantics

6 Number of unique entities
7 Average number of unique entities in a paragraph
8 Average number of unique entities in a sentence
9 Entities to mentions ratio in the document
10 Average entities to mentions ratio in a paragraph
11 Average entities to mentions ratio in a sentence
12 Average distance (in sentences) between consecutive mentions of the same entity
13 Average distance (in paragraphs) between consecutive mentions of the same entity
14 Number of cases with the maximal distance (in sentences) between consecutive mentions of

the same entity
15 Number of cases with the maximal distance (in paragraphs) between consecutive mentions

of the same entity
16 Number of cases with the minimal distance (in sentences) between consecutive mentions of

the same entity
17 Number of cases with the minimal distance (in paragraphs) between consecutive mentions of

the same entity
18 Average distance (in sentences) between all pairs of mentions of the same entity
19 Average distance (in paragraphs) between all pairs of mentions of the same entity

Table 1: Conceptual complexity features

for already existing readability corpora made under highest
quality standards, the Newsela corpus. By using the same
corpus as in our previous work (Štajner and Hulpuş, 2018),
we are able to more fairly compare the performances of
three different types of features on the same task, using the
same training and test sets.

3. Entity-based Conceptual Complexity
Features

We propose two sets of features: the surface text-based fea-
tures, and the shallow semantic features. Table 1 contains
the list of all 19 features, computed on a document/text
level. All features based on counting entities/mentions are
computed in three versions: on a document level, and as the
average on the paragraph and sentence levels. All features
that compute the distance between mentions are calculated
in two versions: as an offset in sentences, and as an offset
in paragraphs. To avoid the influence of syntactic features
(the length of a document, paragraph, or a sentence) which
would make all classification tasks trivial (as simplification
performed in Newsela, like in any other manually simpli-
fied corpora, shortens texts, paragraphs, and sentences in
each simplification step), all surface and shallow features
that include counting are normalized with the total number
of tokens in the corresponding text snippet.
Figure 1 illustrates the type of data used for the computation
of the two newly proposed types of features (the surface
text-based features and shallow semantic features) as op-
posed to the graph-based deep semantic features proposed
earlier (Štajner and Hulpuş, 2018). The main prerequisite

for the extraction of any feature is that the document is
linked to the knowledge graph, in this case DBpedia. Given
the linked document, the mentions are used for computing
text based features. The mentions, as well as the knowledge
graph entities they are linked to, are used for computing
shallow semantics features.

3.1. Surface Text-based Features
This group of features aims to capture conceptual complex-
ity expressed in the surface structure of the discourse. It
assesses the general memory load required to process all
mentions of encyclopedic concepts in the text, as well as
the density of such mentions in the text. For computing
the textual features, the output of the entity linking step is
used to select the textual noun phrases that correspond to
encyclopedic concepts - the mentions.
Given the example text snippet in Figure 2, the values for
the fourth and fifth surface features (average distance be-
tween consecutive mentions) are 0.4 for the distance in sen-
tences and 0.2 for the distance in paragraphs.

3.2. Shallow Semantics Features
In this set of features, we focus on shallow semantic-based
features capturing the amount of background knowledge
necessary to understand the text (measured as the number
of unique entities/concepts) and the distance of the men-
tions of the same entities in the text. The core hypothesis is
that the closer the new mention is to the previous mention
of the same concept, the less effort is necessary to reactivate
the concept in the memory.
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Figure 1: Document processing and feature extraction pipeline

Figure 2: An example of a processed text snippet.

The shallow semantic features are computed using the
DBpedia concepts linked to the noun phrases from
the text. As illustrated in Figure 1, the three men-
tions “attention deficit hyperactivity disorder”, “ADHD”,
and “ADHD” are all linked to the same entity:
<dbres:Attention deficit hyperactivity disorder>
To exemplify, the values of the entities to mentions ratio
feature in the text snippet illustrated in Figure 2 are: 1 in
all three sentences and in the second paragraph, and 0.75
in the first paragraph. For the same example, the value of
the average distance between two consecutive mentions of
the same entity, when measured as a distance in sentences,
is 1 (= 1+1

2 ), and when measured as a distance in para-
graphs, is 0.5 (= 0+1

2 ).3 The feature average distance
between all mentions of the same entity considers the dis-
tance between such mentions even if they are not consecu-
tive. In our example (Figure 2), the values for this feature
are 1.33 (= 1+1+2

3 ) for the distance in sentences and 0.66
(= 0+1+1

3 ) for the distance in paragraphs.

3The entities that are mentioned only once are ignored in the
computation of those features.

4. Experimental Setup
In this section, we give details on the corpora used in all
experiments, the entity linking step, and the setup of classi-
fication experiments used to test whether surface text-based
features and shallow semantic features can lead to simi-
lar performances as the previously proposed deep seman-
tic features computed over the DBpedia subgraphs (Štajner
and Hulpuş, 2018) listed in Table 2.

4.1. Newsela Corpus
We are interested in finding features which can distinguish
between different versions of the same texts. Therefore, we
perform our experiments on the English part of Newsela
corpus, which contains original news articles, manually
simplified at four different complexity levels by trained hu-
man editors under a high quality control (Xu et al., 2015).
As those are informational texts and simplification is made
for language learners and young readers, with the idea of
engaging them and maintaining their interest in the texts
they read, we can assume that texts are on different concep-
tual complexity levels, requiring different amounts of back-
ground knowledge and inferences in order to comprehend
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Type # Description/Name

Single node
1 Node degree
2 Node clustering coefficient
3 Node PageRank

Pairwise

4 Average shortest path (in the graph) between concepts occurring in the same sentence
5 Average shortest path (in the graph) between concepts occurring in the same paragraph
6 Average pairwise semantic relatedness between concepts occurring in the same sentence
7 Average pairwise semantic relatedness between concepts occurring in the same paragraph

Global

8 The average number of connected components per sentence
9 Average number of connected components per paragraph
10 Average local clustering coefficient per sentence
11 Average local clustering coefficient per paragraph
12 Average graph density per sentence
13 Average graph density per paragraph

Table 2: Previously proposed graph-based deep semantic features (Štajner and Hulpuş, 2018).

the texts.
We are not aware of any other publicly available corpora,
large enough to allow for machine learning experiments,
with different versions of the same text that are on different
conceptual complexity levels. Asking human annotators to
annotate conceptual complexity level is a hard task which
would very likely lead to low inter-annotator scores, know-
ing that even assessing simplicity of a sentence on a 1–5
level scale leads to low IAA scores (Štajner, 2018). Fur-
thermore, as mentioned in Section 2, asking human anno-
tators to annotate text coherence is known to bring several
possible confounds into play. By using the Newsela corpus,
we avoid those drawbacks and rely instead on trained hu-
man annotators and proven readers engagement to provide
us with the ‘gold standard’ data for our experiments.

4.2. Entity Linking
The entity linking step links noun phrases of the input doc-
ument to entities in DBpedia. To link the entities/concepts
(common nouns and named entities) to DBpedia, we use
KanDis (Hulpuş et al., 2015), which showed comparatively
good results at linking both types of entities (recall between
0.59 and 0.69 at a disambiguation accuracy between 0.88
and 0.89 on news items). To minimize the effect of wrong
linking, we remove the outliers, i.e. entities that have very
weak semantic relatedness (Hulpuş et al., 2015) to other en-
tities in the text. This strategy should eliminate some of the
wrongly linked concepts and corner cases. All 19 newly
proposed features are computed on the linked documents.

4.3. Tasks
We test our features on two tasks:

• Task 1: Pairwise comparison of conceptual complex-
ity between two versions of the same text;

• Task 2: Five-level conceptual complexity assessment
of texts.

For both tasks, we take 200 original English news articles
from Newsela (Newsela, 2016) and their four correspond-
ing simpler versions (marked for their level of complexity

on a 0–4 scale, where 0 corresponds to the original texts,
and 4 to the simplest version).

4.3.1. Task 1 (Binary Classification)
The goal of the first task is to, given the two versions of the
same news story, decide on whether the first story is con-
ceptually simpler or more complex than the second story.
To build the dataset, we take each possible pair of two ver-
sions of the same texts, extract all features from each of
them, concatenate those two vectors of features, and assign
the label simpler or more complex depending on whether
the first text is simpler or more complex than the other, ac-
cording to their Newsela complexity levels (‘gold’ label).
In each pair, we choose the order of texts randomly, ensur-
ing that we have approximately equal number of instances
in both classes. This resulted in having 980 instances with
the class ‘simpler’ and 1020 instances with the class ‘more
complex’.
We perform all classification experiments in a ten-fold
cross-validation setup with ten repetitions in Weka Ex-
perimenter (Hall et al., 2009), using four classification
algorithms: Logistic (le Cessie and van Houwelingen,
1992), Support Vector Machines with feature normalization
(Keerthi et al., 2001), JRip rule-learner (Cohen, 1995), and
Random Forest (Breiman, 2001). In all four cases, we use
the algorithms with their default parameters as our goal is
not to achieve the optimal performances on the task, but
rather to assess the quality of our features and their combi-
nations on the task.

4.3.2. Task 2 (Five-Level Classification)
The goal of the second task is to assess the conceptual com-
plexity of a given text (news story) on a 0–4 level scale that
corresponds to Newsela levels 0–4.
We use all 1,000 articles (200 titles on five complexity lev-
els) as our dataset, and apply ten-fold cross-validation setup
with ten repetitions (in Weka Experimenter) without con-
trolling for which titles and text versions end up in which
fold. In other words, we behave as we had 1,000 indepen-
dent articles on five different complexity levels, but choose
to have 200 titles on five complexity levels, in order to:
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(1) allow for learning subtle differences between different
complexity levels of texts treating the same topic; and (2)
avoid bias that might arise from topic differences if we used
corpora with five complexity levels, in which each level has
different topics (as in the case of typical language learners
corpora).

4.4. Baseline
As a strong baseline, we use a set of four well-known psy-
cholinguistic features: familiarity, age of acquisition, con-
creteness, and imagery (Gilhooly and Logie, 1980). Famil-
iarity of a word can be defined as the frequency with which
a word is seen, heard, or used daily. Age of acquisition is
the average age at which a word is learned. Concreteness of
a word measures how “palpable” the object the words refers
to is. Imagery can be defined as the intensity with which a
word arouses images (Paetzold and Specia, 2016). Accord-
ing to those definitions, those four features seem relevant
for our task of measuring conceptual complexity of text. It
has been shown that those objects whose names are learned
earlier in life (age of acquisition) can be named faster in
later stages in life (Carroll and White, 1973). As such, they
might be a good indicator of how quickly a specific con-
cept can be retrieved in working memory. The familiarity
and concreteness of the words has been shown to have im-
pact on text comprehension (Paetzold and Specia, 2016).
Imagery can be seen as a measure of word’s abstractness,
and as such, be an useful feature in assessing conceptual
complexity of texts.
Despite their wide use in psycholinguistics, those features
have never been used in automatic readability assessment.
This is probably due to scarcity of resources and their
very poor coverage on regular texts. The original MRC
psycholinguistic database4 (Coltheart, 1981) contains fa-
miliarity scores for 9,392 words, age-of-aquisition scores
for 3,503 words, concreteness scores for 8,228 words,
and imagery scores for 9,240 words (Paetzold and Spe-
cia, 2016), and much less words with all four scores. The
bootstrapped version of this database (Paetzold and Spe-
cia, 2016), in contrast, contains all four scores for 85,942
words. We tested the coverage of both versions of the
MRC database, and found that the original database cov-
ers less than 5% of words in our texts on average, while
the bootstrapped version covers 63.5% words in our texts
on average. Therefore, we used the bootstrapped version
of the MRC database to extract the set of four aforemen-
tioned psycholinguistic features (familiarity, age of acqui-
sition, concreteness, and imagery) and use it as a strong
baseline in our classification tasks.

5. Binary Classification Results
The results of the pairwise comparison experiments are
presented in Table 3. The shallow semantic features on
their own achieve the best results (up to 0.94 weighted F-
measure), significantly better than the other two types of
features (surface and deep) regardless of the classification
algorithm. The superior performance of shallow features

4http://websites.psychology.uwa.edu.au/
school/MRCDatabase/uwa_mrc.htm

Features Logistic SVM-n JRIP RandF

Surface .80 .80 .72 .80
Shallow .94 .93 .80 .91
Surface+Shallow .95 .94 .81 .92

Deep .84 .84 .78 .85

Surface+Deep .90 .88 .79 .87
Shallow+Deep .96 .95 .82 .92
All .96 .96 .82 .93

MRC (strong baseline) .94 .91 .89 .92

Table 3: The weighted average F-measure (the accuracy
results are the same) for the binary classification task (10-
fold cross-validation with 10 repetitions). The best results
for each algorithm are presented in bold. Standard devia-
tions for the weighted F-measure were in range 0.01–0.03.
The majority class baseline has the accuracy of 0.51.

over the surface features is not surprising. The shallow se-
mantic features introduce a semantic level on top of the su-
perficial textual level, which on its own might be too sim-
plistic to capture the overall conceptual complexity. The
superior performance of shallow features over the deep se-
mantic features might seem surprising. One explanation
could be that the graph-based features, although theoreti-
cally being well-suited (Štajner and Hulpuş, 2018), intro-
duce some noise from the DBpedia knowledge graph. The
other explanation could be that the graph-based features
are not expressive enough to capture the full conceptual
complexity, as they do not account for all available posi-
tional attributes. The combination of shallow and deep fea-
tures, and the combination of all three feature sets do not
seem to bring any significant improvements over the results
achieved by the shallow features on their own.

Interestingly, the four psycholinguistic features (familiar-
ity, age of acquisition, concreteness, and imagery) extracted
from the bootstrapped MRC database, indeed proved to be
a strong baseline for this binary task. At the same time,
in the five-level classification task, they performed signifi-
cantly worse than any other set of features (see Section 6).
This can be explained by the fact that in the binary classi-
fication task the system needs to decide which of the two
versions of the same text is simpler. When constrained by
the topic, while manually simplifying texts, human editors
naturally try to simplify them lexically, thus choosing more
frequent and more familiar words. In the five-level classifi-
cation task, the system needs to assess the ‘absolute’ con-
ceptual complexity level of a given text, instead of choos-
ing the simpler of the two versions of the same text. While
human editors in each simplification step choose more fre-
quent and more familiar words, the starting point is differ-
ent for each original article, thus introducing the noise into
the five-level classification task and making it more chal-
lenging than comparing the two versions of the same arti-
cle.

http://websites.psychology.uwa.edu.au/school/MRCDatabase/uwa_mrc.htm
http://websites.psychology.uwa.edu.au/school/MRCDatabase/uwa_mrc.htm
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Algorithm Logistic SVM-n JRip RandF
F AUC F AUC F AUC F AUC

Surface .37 .72 .30 .65 .30 .56 .31 .65
Shallow .51 .83 .47 .78 .27 .63 .42 .76
Surface+Shallow .51 .84 .48 .79 .28 .64 .44 .77

Deep .34 .80 .33 .67 .33 .58 .31 .66

Surface+Deep .44 .78 .40 .72 .23 .60 .34 .70
Shallow+Deep .58 .87 53 .82 .31 .67 .44 .79
All .59 .88 .53 .82 .31 .67 .45 .79

MRC (strong baseline) .31 .68 .27 .63 .25 .57 .30 .64

Table 4: The weighted average F-measure (F) and the weighted average area under curve (AUC) for the five-level classifi-
cation task (10-fold cross-validation with 10 repetitions). The best results for each algorithm and each evaluation metric are
presented in bold. Standard deviations for weighted F-measure were in range 0.04–0.06, and for AUC in range 0.02–0.04.
The majority baseline achieves a 0.07 weighted F-measure and a 0.50 AUC.

5.1. Indirect Comparisons to Other Approaches
In this set of experiments we use the same 200 randomly se-
lected Newsela articles (and their corresponding simplified
versions) that were used in the experiments with the state-
of-the-art unsupervised system for measuring conceptual
complexity (Hulpus, et al., 2019). As our current approach
is supervised, direct comparison is not possible. Therefore,
we compare them indirectly, assuming that the average ac-
curacy over 2000 article pairs from the unsupervised ap-
proach roughly corresponds to the average accuracy in a 10-
fold cross-validation with 10 repetitions over the same 2000
article pairs. If we assume such approximation, the combi-
nation of our surface and shallow features outperforms the
unsupervised system (.95 to .91).
Due to different datasets, we cannot directly compare the
performances of our features with those proposed by Pitler
and Nenkova (Pitler and Nenkova, 2008). However, as we
use the same classification algorithm and framework (SVM
classifier in Weka), and the accuracy of the majority class
baseline is similar in both cases (.50 to .51), we can roughly
compare the accuracy of our system (the combination of
surface and shallow features) with their best set of features
(entity-grid features): .94 to .79. Even their full feature set
achieves an accuracy of only .89. However, as mentioned
earlier (Section 2), their full feature set cannot be automat-
ically extracted as it relies on having an extensive human
annotation such as the one of the Penn Treebank.

6. Five-Level Classification Results
On the five-level classification task, the logistic regression
significantly outperformed the other three classification al-
gorithms (paired t-test; p < 0.05). On this task, not only
the shallow semantic features significantly outperform the
deep semantic features, but even the surface features do so.
In contrast to the case of the binary classification task (Sec-
tion 5), here the combination of shallow and deep seman-
tic features, and the combination of all three feature sets,
achieve significantly better results than the shallow fea-
tures, or the combination of surface and shallow semantic
features. The combination of all three feature sets reaches

Correct level
Predicted level

0 1 2 3 4

0 157 27 13 3 0
1 33 110 54 2 1
2 14 52 85 43 6
3 4 4 46 99 47
4 0 1 2 56 141

Table 5: The confusion matrix for one of the 100 runs
of logistic function on the full feature set (the confusion
matrices in other runs follow a similar pattern).

an average weighted F-measure of 0.59 and AUC of 0.88
(Table 4). More importantly, the confusion is much more
frequent between neighboring classes (Newsela levels) than
between distant classes (Table 5). In most of the runs, there
was not a single misclassification between the Newsela lev-
els 0 and 4.

Regardless of the classification algorithm, performances on
different feature sets follow the same pattern, which we al-
ready saw in the pairwise text comparison task. Out of the
three sets of features (text, shallow, and deep), the shallow
features significantly (paired t-test, p < 0.05) outperform
the other two feature sets. Combining shallow and deep
semantic features lead to significantly better results, while
adding textual features (either to the shallow features only,
or to the combination of shallow and deep features) does
not improve the results.

To the best of our knowledge, there were no other studies
that attempted at five-level text classification in the scope
of conceptual text complexity. Although we used the same
Newsela dataset in our unsupervised approach for auto-
matic assessment of conceptual text complexity (Hulpus, et
al., 2019), due to the different nature of the approaches (un-
supervised vs. supervised), the five Newsela levels were
used in a ranking task to evaluate the unsupervised ap-
proach, while here they are used in a five-level classifica-
tion task.
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Task Features with without

Binary
Surface+Shallow .95 .90
Deep .84 .80
All .96 .94

Five-level
Surface+Shallow .51 .42
Deep .34 .30
All .59 .53

Table 6: The weighted average F-measure for both classi-
fication tasks (10-fold cross-validation with 10 repetitions)
with Logistic classifier, in two setups: with and without the
features that require paragraph information for their com-
putation.

7. Influence of Paragraph Information
To better assess the universality of our systems, knowing
that in real-world scenario some text will not have para-
graph division, we wanted to explore how much paragraph
organization influences the results of our systems on both
classification tasks. Therefore, we compared classification
performances on three different feature sets: surface + shal-
low, deep, and combination of all three types of features,
in two scenarios: using all features of the corresponding
type, and excluding the features that require paragraph in-
formation, e.g. features #2 and #5 for the surface text-based
features (Table 1).
As can be seen (Table 6), the exclusion of features that use
paragraph information significantly decreases (paired t-test,
p < 0.05) classification performances on both tasks. The
drop in performances is higher for the combination of sur-
face and shallow features (-.09) than for the graph-based
deep semantic features (-.04) on the five-level classification
task. On the binary task, in contrast, the drop is similar for
both feature sets (-.05 vs. -.04). Interestingly, on the binary
classification task, the combination of all three types of fea-
tures (surface + shallow + deep), performs extremely well
even when the features which require paragraph informa-
tion are excluded (.94 weighted F-measure and accuracy).

8. Summary and Outlook
Automatic assessment of text complexity usually takes into
account just syntactic and lexical features. The task of au-
tomatically assessing conceptual complexity has only been
proposed recently. Both proposed approaches, supervised
and unsupervised, leverage the information from the DB-
pedia knowledge graph.
In this paper, we proposed two computationally less expen-
sive and less noisy sets of features, the surface text-based
features and the shallow semantic features. The compu-
tation for both of them only requires an entity linker and
basic text processing (measuring offsets and counting oc-
currences), without need for accessing or processing any
knowledge graphs.
We compared the performances of our two newly proposed
sets of features with the state-of-the-art deep semantic fea-
tures (computed over DBpedia knowledge graph) on two
tasks: a binary classification task, and a five-level classifi-

cation task. The results indicated that our shallow semantic
features (alone, and in combination with the surface text-
based features) perform significantly better than the previ-
ously proposed deep semantic features on both tasks. In the
case of five-level classification task, the combination of all
three feature sets performed significantly better than any of
the three feature sets on their own did.
We also proposed a strong baseline for automatic assess-
ment of conceptual text complexity, using four widely-
known psycholinguistic features (familiarity, age of acqui-
sition, concreteness, and imagery). They proved to be a
strong baseline in the binary classification task, outper-
forming the surface text-based features and the graph-based
deep semantic features. However, on the five-level classi-
fication task, they were outperformed by all other feature
sets.
For future work, it would be interesting to explore how the
choice of entity linker and mention identification influence
the results.
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