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Abstract
BERT, a neural network-based language model pre-trained on large corpora, is a breakthrough in natural language processing, signif-
icantly outperforming previous state-of-the-art models in numerous tasks. However, there have been few reports on its application to
implicit discourse relation classification, and it is not clear how BERT is best adapted to the task. In this paper, we test three methods of
adaptation. (1) We perform additional pre-training on text tailored to discourse classification. (2) In expectation of knowledge transfer
from explicit discourse relations to implicit discourse relations, we add a task named explicit connective prediction at the additional
pre-training step. (3) To exploit implicit connectives given by treebank annotators, we add a task named implicit connective prediction at
the fine-tuning step. We demonstrate that these three techniques can be combined straightforwardly in a single training pipeline. Through
comprehensive experiments, we found that the first and second techniques provide additional gain while the last one did not.
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1. Introduction

Discourse relation classification, a task of recog-
nizeing the semantic relations between two text
spans, is beneficial for many NLP tasks includ-
ing machine translation (Meyer et al., 2015), natu-
ral language inference (Pan et al., 2018), summa-
rization (Isonuma et al., 2019), and sentiment analy-
sis (Saito et al., 2019). In the Penn Discourse TreeBank
(PDTB) (Prasad et al., 2008), discourse relations are con-
ventionally divided into two types: explicit and implicit.
Explicit relations have strong cues named discourse con-
nectives such as “because” and “however”, while implicit
relations lack these cues. For this reason, the recognition
of implicit relations is the bottleneck of discourse relation
classification (Xue et al., 2016; Dai and Huang, 2019).
In this paper, we investigate how to improve the per-
formance of implicit discourse relation classification by
applying BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2018). BERT is a
Transformer-based neural network architecture with spe-
cialized training procedures. It is pre-trained on large cor-
pora like Wikipedia and BooksCorpus, and fine-tuned using
task-specific datasets to transfer the pre-trained represen-
tations to downstream tasks. Although BERT is concep-
tually simple, it significantly outperforms previous state-
of-the-art models in many natural language processing
tasks such as reading comprehension (Devlin et al., 2018),
syntactic analysis (Goldberg, 2019), and sentiment analy-
sis (Xu et al., 2019).
In implicit discourse relation classification,
Nie et al. (2019) and Shi and Demberg (2019b) reported
that BERT significantly outperformed previous state-of-
the-art models. Considering the broader context of research
in this area, however, we expect additional improvement
to be achieved with task-specific adaptation. Table 1
summarizes recent studies and techniques employed by
them. It is evident that a comprehensive investigation is

needed to answer the question: How is BERT best adapted
to the task?
We examine three adaptation methods in this paper.
The first one is to exploit a large amount of unla-
beled data from same domain text (referred to as Do-
main text in Table 1). In the context of BERT, a sim-
ple way to do this is to perform additional pre-training
on the domain text (Shi and Demberg, 2019b), but the
domain can be more specific to this task. In fact,
Rutherford and Xue (2015) automatically collected explicit
argument pairs from an unlabeled corpus. In the pre-BERT
era, they had no choice but to forcibly convert them into
pseudo-training data for implicit discourse relation classifi-
cation. Now, such explicit argument pairs can be used for
BERT’s additional pre-training.
The second technique is a more direct use of explicit ar-
gument pairs (referred to as explicit connective prediction
in Table 1). Explicit argument pairs have, by definition,
(explicit) discourse connectives. Training a model to pre-
dict explicit connectives may help it learn the discourse
relations (Wu et al., 2017). We call this task explicit con-
nective prediction. For BERT, Nie et al. (2019) inserted
this task between pre-training and fine-tuning (additional
pre-training). While their additional pre-training only cov-
ers explicit connective prediction (referred to as single-task
pre-training in Table 1), but a more straightforward way is
to do this together with BERT’s ordinary pre-training tasks
(multi-task pre-training).
The third technique is to exploit implicit connectives (re-
ferred to as implicit connective prediction in Table 1). In
PDTB, annotators inserted an implicit connective between
an implicit argument pair to facilitate consistent annotation.
Implicit connectives were exploited by Zhou et al. (2010),
Qin et al. (2017), and Shi and Demberg (2019a) for im-
plicit discourse relation classification. A BERT-friendly
formalization of the task is a multi-task learning at the fine-
tuning step: BERT is trained to predict the implicit connec-
tive as well as the discourse relation.
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Using BERT Domain text Explicit connective prediction Implicit connective prediction
BERT ✓
BERT+ICP ✓ fine-tuning
BERT+DT ✓ DC
BERT+DT+ICP ✓ DC fine-tuning
BERT+ECP ✓ multi-task pre-training
BERT+ECP+ICP ✓ multi-task pre-training fine-tuning
Rutherford and Xue (2015) DC
Wu et al. (2017) non-BERT pre-training
Lei et al. (2018)
Bai and Zhao (2018)
Shi and Demberg (2019a) single-step joint learning
Nie et al. (2019) ✓ single-task pre-training
Shi and Demberg (2019b) ✓ raw text
Dai and Huang (2019)

Table 1: Model configurations. DT, ECP, and ICP in the left column correspond to domain text, explicit connective
prediction, and implicit connective prediction, respectively. DC means the use of a large amount of explicit argument pairs
while raw text means the use of a raw text that is from the same domain as PDTB.

In this way, we show that these three techniques can be
combined straightforwardly in a single training pipeline.
In the experiments, we compare multiple combinations of
adaptation methods. We found that the first and second
techniques yield additional gain for implicit discourse re-
lation classification while the last one does not.

2. Related Work
2.1. Implicit Discourse Relation Classification
Discourse connectives are one of the strongest cues in dis-
course relation classification. For this reason, some studies
try to use discourse connectives for implicit discourse rela-
tions classification.
Rutherford and Xue (2015) and Wu et al. (2017) tried to
use explicit connectives. Rutherford and Xue (2015) pro-
posed a Naive Bayes classifier using a large amount of
unlabeled training data. They collected explicit argument
pairs with freely omissible discourse connectives which can
be dropped independently of the context without chang-
ing the interpretation of the discourse relation. How-
ever, Sporleder and Lascarides (2008) argued training on
explicit argument pairs was not a good strategy. They inves-
tigated how feasible it is to use explicit argument pairs in
implicit discourse relation classification and reported that
explicit and implicit argument pairs may be too dissimi-
lar linguistically and that removing unambiguous discourse
markers in the automatic labeling process may lead to a
meaning shift in the examples. However, the recent suc-
cess of neural network-based transfer learning motivates us
to rethink the importance of explicit connectives. In fact,
Wu et al. (2017) proposed discourse-specific word embed-
dings. Embeddings were learned by classifying discourse
connectives taken from a large amount of explicit discourse
argument pairs.
Zhou et al. (2010), Qin et al. (2017) and
Shi and Demberg (2019a) used pseudo-training data
in which implicit connectives are inserted into implicit
argument pairs. Zhou et al. (2010) proposed a language
model that can predict implicit connectives. They used
implicit connectives predicted by the language model as
a feature of an SVM-based implicit discourse relation

classifier. Qin et al. (2017) proposed a neural network
model using domain adversarial training. This model
focused to transfer knowledge from the recognition
model supplied with implicit connectives to the model
without connectives. Shi and Demberg (2019a) proposed
a sequence-to-sequence neural network model. This
model tried to generate implicit connectives from implicit
argument pairs, and adapted the representation of the
arguments to the classification task.

2.2. BERT
Bidirectional Encoder Representations from Transformers
(BERT) (Devlin et al., 2018), a multi-layer bidirectional
Transformer encoder, is one of the breakthrough models in
natural language processing. Training of BERT consists of
two stages: pre-training and fine-tuning. In pre-training,
BERT learns contextual information and the relationship
between two sentences from a large unlabeled corpus. In
fine-tuning, BERT is trained using a task-specific dataset
and adapts the pre-trained representations to downstream
tasks.
In the GitHub repository,1 Devlin et al. (2018) suggest that
it will likely be beneficial to run additional steps of pre-
training if the downstream task has a large domain-specific
corpus available. In fact, some studies showed the bene-
fit of running domain-specific steps. Xu et al. (2019) pro-
posed a post-training approach to enhance domain-specific
and task-specific knowledge. They defined a new task
named Review Reading Comprehension and modified the
pre-training method to solve Review Reading Comprehen-
sion. Lee et al. (2019) proposed a pre-trained language rep-
resentation model for the biomedical domain. This model
runs additional pre-training on biomedical corpora, starting
from the BERT pre-training model. Beltagy et al. (2019)
proposed a task-specific BERT model pre-trained only on
the science domain data. They reported that the proposed
method outperformed vanilla BERT on named entity recog-
nition, relation classification and dependency parsing in the
scientific domain.

1https://github.com/google-research/bert
(access date: Dec. 1, 2019)
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Figure 1: Overview of the additional pre-training step with
the explicit connective prediction task. The input is an ex-
plicit argument pair automatically extracted from an unla-
beled corpus, but the explicit connective is dropped. BERT
is trained to recover the connective while performing the
MaskedLM and next sentence prediction tasks.

3. Proposed Method
3.1. BERT
In this paper, we use BERT (Devlin et al., 2018) as the
baseline model. For implicit discourse relation classifi-
cation, the input is a pair of arguments, Arg1 and Arg2,
and the output is one of the pre-defined discourse relations.
Arg1 and Arg2 are concatenated into a single sequence,
with the special token [SEP] indicates the end of each of
the arguments. The special token [CLS] is inserted at the
beginning of the sequence.
In the pre-training step, BERT is trained on two unsuper-
vised prediction tasks: MaskedLM and next sentence pre-
diction. In the MaskedLM task, 15% of the input tokens are
masked at random, and BERT is trained to recover those
masked tokens. In the next sentence prediction task, BERT
determines if a given pair of sentences actually occurs con-
secutively in this order. Using these two pre-training tasks,
BERT can learn contextual information and the relationship
between two sentences.
In the fine-tuning step, Devlin et al. (2018) proposed four
task-specific models incorporating BERT with one addi-
tional output layer. Implicit discourse relation classification
can be cast as a sequence pair classification task.

3.2. The Use of Domain Text
Devlin et al. (2018) suggest that it will likely be beneficial
to run additional steps of pre-training if a downstream task
has a large domain-specific corpus available. For this rea-
son, we collect a large amount of explicit argument pairs
from an unlabeled corpus and use them in the additional
pre-training step.
We collect explicit argument pairs in two steps. We first
locate the occurrences of discourse connectives in the un-
labeled corpus. Among 100 discourse connectives defined
by The PDTB Research Group (2007), we used all connec-
tives. We then identify the spans of the corresponding ar-
gument pairs. In this paper, we use a discourse parser by
Lin et al. (2014) to predict explicit argument pairs.2 They

2We used a re-implementation

Figure 2: Overview of the fine-tuning step with implicit
connective prediction. The input is an implicit argument
pair randomly selected from the training data, where anno-
tators provide an implicit connective for each pair. BERT
is trained to predict the implicit connective as well as the
discourse relation.

reported that the F-measure of partial matching on argu-
ment pairs in this parser is 80.96%,3 which we believe is
sufficiently high for pretraining. Note that Wu et al. (2017)
collected explicit argument pairs using a similar method.
However, they only used argument pairs located within the
same sentence while we do not apply this constraint.

3.3. Explicit Connective Prediction Task
We aim to learn knowledge about discourse relations from
explicit connectives. Explicit connectives mark the concep-
tual relationship between the two sentences. For example,
the discourse relation of “I cannot buy this laptop because
I don’t have enough money.” is Contingency.Cause be-
cause we know “because” always represents a causality re-
lation. Note that we referred to the pair as Arg1 (in italic)
and Arg2 (in bold). We expect BERT to be flexible enough
to transfer knowledge from explicit argument pairs to im-
plicit ones. Accordingly, we introduce an additional pre-
training step with the explicit connective prediction task.
The additional pre-training with the explicit connective pre-
diction task is illustrated in Figure 1. In this step, the ex-
plicit connective classifier is given the representation of the
[CLS] token and outputs an explicit connective. Note that
Nie et al. (2019) also adapted the explicit connective pre-
diction task to BERT. However, they singled out this task
while we perform it jointly with MaskedLM and next sen-
tence prediction.

3.4. Implicit Connective Prediction Task
In order to enhance the performance of implicit discourse
relation classification, some studies try to extract strong
cues from PDTB’s annotation. In PDTB, annotators as-
signed implicit connectives to implicit argument pairs. Be-
cause these connectives are very similar to explicit connec-
tives, recent studies tried to learn knowledge from implicit
connectives (Qin et al., 2017; Shi and Demberg, 2019a).

(https://github.com/WING-NUS/pdtb-parser).
3Partial matching means that a parser gets a credit if there is

any overlap between the verbs and nouns of the two spans.
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Following these studies, we combine the implicit connec-
tive prediction task in the fine-tuning steps of BERT.
The fine-tuning step with the implicit connective prediction
task is shown in Figure 2. In this task, the implicit connec-
tive classifier is given the representation of the [CLS] token
and outputs an implicit connective.

4. Experiments
4.1. Setup
4.1.1. Penn Discourse TreeBank
We evaluated the performance of our models on the Penn
Discourse TreeBank (PDTB) 2.0 (Prasad et al., 2008),
which is the most popular and largest corpus of discourse
relations in English. The annotation is done as another layer
on the Wall Street Journal sections of the Penn Treebank.
Each discourse relation consists of two text spans (argu-
ments), a relation label and a discourse connective.
Relation labels are organized as a 3-level hierarchy in
the PDTB. Popular experimental settings are top-level
one-versus-all binary classification (Pitler et al., 2009),
top-level 4-way classification (Pitler et al., 2009;
Rutherford and Xue, 2015), second-level 11-way clas-
sification (Lin et al., 2009; Ji and Eisenstein, 2015), and
modified second-level classification for the CoNLL
2015 Shared Task (Xue et al., 2015). We used top-level
one-versus-all binary classification, top-level 4-way clas-
sification, and second-level 11-way classification in this
experiment.
In top-level one-versus-all binary classification and top-
level 4-way classification, we followed previous stud-
ies (Pitler et al., 2009; Rutherford and Xue, 2015); sections
2–20 as the training set, sections 0–1 as the develop-
ment set, and sections 21–22 as the test set. Note that
we used equal numbers of positive and negative exam-
ples in top-level one-versus-all binary classification. In
second-level 11-way classification, we report results in
three different settings. The first setting, PDTB-Lin, is
based on Lin et al. (2009); sections 2–21 as the training
set, section 22 as the development set, and section 23
as the test set. The second one, PDTB-Ji, is following
Ji and Eisenstein (2015); sections 2–20 as the training set,
sections 0–1 as the development set, and sections 21–22
as the test set. The last one, Cross Validation, is following
Shi and Demberg (2017); 10-fold cross validation using the
whole corpus of sections 0–24.
Table 2 shows a distribution of relation labels in the Cross
Validation dataset. Note that although we tried to repli-
cate the procedures described by Shi and Demberg (2017)
as closely as possible, there remained slight differences in
the discourse relation distribution.

4.1.2. Model Configurations
We used a pre-trained model named BERTBASE–uncased
as a baseline model. It was released with the original BERT
code.4 In fine-tuning, we set the batch size to 32 and the
maximum sequence length to 128. The other hyperpa-
rameter settings were the same as those of BERTBASE–
uncased. Devlin et al. (2018) recommend choosing 3 or 4

4https://github.com/google-research/bert

Sense Train Dev Test
Comparison.Concession 175 22 22
Comparison.Contrast 1,650 206 207
Contingency.Cause 3,290 412 411
Contingency.Pragmatic cause 55 7 7
Expansion.Alternative 144 18 18
Expansion.Conjunction 2,751 344 344
Expansion.Instantiation 1,116 139 140
Expansion.List 309 38 39
Expansion.Restatement 2,486 311 310
Temporal.Asynchronous 520 65 65
Temporal.Synchrony 140 18 17

Total 12,636 1,580 1,5805

Table 2: The distribution of relation labels in the Cross Val-
idation dataset.

as the number of training epochs. Accordingly, we fine-
tuned for 3 epochs.
In this experiment, we modified BERT’s training procedure
with 3 methods: domain text, explicit connective predic-
tion, and implicit connective prediction. The upper half of
Table 1 shows model configurations of our settings.
Domain text in Table 1 means additional pre-training using
domain text. The models with +DT in Table 1 were run
the additional steps of pre-training using about 26.8 mil-
lion explicit argument pairs extracted from the Gigaword
corpus, a large unlabeled newswire corpus.6 In additional
pre-training, we pre-trained the model for 1 epoch. The
batch size was 8 and the maximum sequence length was set
to 512. The other hyperparameter settings were the same as
those of BERTBASE–uncased.
Explicit connective prediction in Table 1 means the explicit
connective prediction task at the additional pre-training
step. Multi-task pre-training refers to the combination of
three tasks while single-task pre-training only covers this
task. For the models with +ECP in Table 1, we added the
explicit connective prediction task to the +DT setting.
Implicit connective prediction in Table 1 means implicit
connective prediction at the fine-tuning step. For the mod-
els with +ICP in Table 1, we added the implicit connective
prediction task to the fine-tuning step.

4.1.3. Models for Comparison
For comparison, we collected state-of-the-art models from
the literature:

• Rutherford and Xue (2015) A Naive Bayes classi-
fier that was trained explicit argument pairs with freely
omissible discourse connectives extracted from a large
amount of unlabeled data.

• Wu et al. (2017) A feedforward neural network using
discourse-specific word embeddings that were learned
from a large amount of explicit argument pairs.

• Lei et al. (2018) The state-of-the-art model in the
Expansion-versus-all classification task. It is a col-
lection of Naive Bayes classifiers using many features
based on linguistic properties.

5Cross-validation allows us to test on all 15,796 instances.
6https://catalog.ldc.upenn.edu/LDC2011T07
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model One-Versus-All Binary(F1) 4-way 11-way(F1)
Comp. Cont. Expa. Temp. Macro-F Accuracy PDTB-Lin PDTB-Ji Cross Varidation

BERT 72.74 71.67 70.27 76.47 55.07 61.99 52.72 51.40 49.30
BERT+ICP 73.84 70.91 69.80 76.76 55.19 62.89 51.62 52.42 49.47
BERT+DT 74.43 73.01 70.37 77.70 55.47 63.03 52.74 52.90 50.20
BERT+DT+ICP 76.60 74.28 70.78 77.45 54.83 62.65 52.57 52.90 50.20
BERT+ECP 75.46 73.01 72.86 80.88 58.48 65.26 52.39 54.32 51.68
BERT+ECP+ICP 77.28 73.85 73.40 79.41 56.40 64.02 52.74 54.09 51.79
Rutherford and Xue (2015) 41.00 53.80 69.40 33.30 40.50 57.10 - - -
Wu et al. (2017) - - - - 44.84 58.85 - - -
Lei et al. (2018) 43.24 57.82 72.88 29.10 47.15 - - - -
Bai and Zhao (2018) 47.85 54.47 70.60 36.87 51.06 - 45.73 48.22 -
Shi and Demberg (2019a) 41.83 62.07 69.58 35.72 46.40 61.42 45.82 47.83 41.29
Nie et al. (2019) - - - - - - - 54.70 -
Shi and Demberg (2019b) - - - - - - 54.82 53.23 49.35
Dai and Huang (2019) 45.34 51.80 68.50 45.93 52.89 59.66 - 48.23 -

Table 3: Accuracy of the implicit discourse relations classification datasets.

BERT+ECP+ICP Kishimoto et al. (2018) (F1)label Precision Recall F-measure
Comparison.Concession 0.00 0.00 0.00 0.00
Comparison.Contrast 50.21 ± 2.66 48.76 ± 2.66 49.43 ± 2.66 22.87 ± 2.9
Contingency.Cause 54.48 ± 1.58 60.56 ± 1.58 57.32 ± 1.58 48.13 ± 1.5
Contingency.Pragmatic cause 0.00 0.00 0.00 0.00
Expansion.Alternative 34.64 ± 8.17 28.33 ± 8.17 30.64 ± 8.17 0.87 ± 2.6
Expansion.Conjunction 51.49 ± 2.08 57.69 ± 2.08 54.39 ± 2.08 44.66 ± 2.3
Expansion.Instantiation 59.96 ± 4.03 58.21 ± 4.03 58.97 ± 4.03 44.98 ± 3.7
Expansion.List 47.20 ± 14.41 26.20 ± 14.41 32.53 ± 14.41 22.03 ± 9.1
Expansion.Restatement 48.08 ± 3.43 46.51 ± 3.43 47.17 ± 3.43 33.41 ± 2.7
Temporal.Asynchronous 48.54 ± 4.87 46.46 ± 4.87 47.41 ± 4.87 21.40 ± 7.7
Temporal.Synchrony 0.00 0.00 0.00 0.00
Micro Ave. 51.86 ± 1.27 51.86 ± 1.27 51.86 ± 1.27 39.80 ± 0.9

Table 4: The performance of BERT in the Cross Validation dataset.

• Bai and Zhao (2018) The state-of-the-art model in
Comparison-versus-all classification. It is a deeper
neural network model augmented by different grained
text representations like character, sentence and sen-
tence pair levels.

• Shi and Demberg (2019a) The state-of-the-art
model in Contingency-versus-all classification and
4-way classification in terms of accuracy. It is a
sequence-to-sequence neural network model trained
to transform an implicit argument pair without an
implicit connective into a pair with an implicit
connective.

• Nie et al. (2019) The state-of-the-art BERT model in
PDTB-Ji. They performed additional pre-training us-
ing about 3.2 million explicit argument pairs for 5 dis-
course connectives.

• Shi and Demberg (2019b) The state-of-the-art
BERT model in PDTB-Lin and Cross Validation.
They used the BERT-base model that was run an
additional step of pre-training on the parts of the Wall
Street Journal corpus.

• Dai and Huang (2019) The state-of-the-art model in
Temporal-versus-all classification and 4-way classifi-
cation in terms of Macro F-measure. They presented

a paragraph-level neural network model for incorpo-
rating external event knowledge and coreference rela-
tions.

4.2. Results
Table 3 shows the results for each of the datasets. Our
settings outperformed previous models in all test sets ex-
cept PDTB-Lin and PDTB-Ji. Comparing BERT+DS with
BERT, we can see that the domain text strategy obtained
about 1.5 point gain in PDTB-Ji, and about 1.0 point gain
in Cross Validation and 4-way classification in terms of
accuracy. Similarly, the comparison of BERT+ECP with
BERT reveals that the explicit connective prediction task
yielded about 4.4 point gain in 4-way classification in terms
of Macro F-measure, about 2.9 point gain in PDTB-Ji, and
about 2.4 point gain in Cross Validation. In contrast, the
implicit connective prediction task provided no significant
gain, as BERT+ICP did not consistently outperform BERT.
A breakdown of the performance in the Cross Vali-
dation dataset is shown in Table 4. Compared with
a previous model that incorporated external knowl-
edge (Kishimoto et al., 2018), our model achieved over
10% improvements in accuracy for Comparison.Contrast,
Expansion.Alternative, Expansion.Instantiation, Ex-
pansion.List, Expansion.Restatement and Tempo-
ral.Asynchronous. The accuracies for minority labels,
Comparison.Concession, Contingency.Pragmatic cause
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and Temporal.Synchrony, stuck at 0%, however.

5. Discussion
Shi and Demberg (2019b) reported that BERT outper-
formed the current state-of-the-art in second-level 11-way
classification. We reconfirmed their report in 11-way clas-
sification and also found that BERT outperformed previ-
ous studies in top-level classifications. Surprisingly, BERT
achieved over 70% F1 score in One-Versus-All Binary
classification while many previous models achieved less
than 50% in Comparison-versus-all binary classification
and Temporal-versus-all binary classification. We urge re-
searchers to switch from One-Versus-All Binary classifica-
tion to second-level or third-level classification tasks.
We found that the explicit connectives prediction task
resulted in 2.9% gain in PDTB-Ji while the DisSent
task (Nie et al., 2019), which runs the explicit connectives
prediction task in the additional pre-training step, provides
2.0% gain. This result suggests that the combination of the
explicit connectives prediction task and BERT’s ordinary
pre-training task is a better strategy than single-task pre-
training.
Qin et al. (2017) and Shi and Demberg (2019a) reported
implicit connectives help implicit discorse relation classi-
fication. Comparing BERT+ICP with BERT in Table 3,
however, we can see that implicit connectives provided no
significant gain. We conjecture that annotated data are too
small for implicit connectives to be effective for BERT, for
which data size is a key factor for success.

6. Conclusion
In this paper, we applied three additional training tasks to
BERT, (1) additional pre-training using domain text, (2)
the explicit connective prediction task at the additional pre-
training step, and (3) the implicit connective prediction at
the fine-tuning step to BERT. Through comprehensive ex-
periments, we found that the first and second techniques
provide additional gain while the last one did not.
While transfer learning with BERT is demonstrated to
be very effective for discourse relation classification, we
feel that there are non-negligible differences between ex-
plicit and implicit argument pair. It may be worthwhile
to revisit the notion of freely omissible discourse connec-
tive (Rutherford and Xue, 2015) to focus on explicit argu-
ment pairs from which knowledge can be straightforwardly
transferred to implicit discourse relation classification. We
plan to modify freely omissible discourse connectives to fit
second-level 11-way classification. Another future direc-
tion is to adapt the BERT to incorporate external knowl-
edge. Kishimoto et al. (2018) and Dai and Huang (2019)
argued that the model for discourse classification could be
further improved by incorporating external event knowl-
edge like ConceptNet (Speer and Havasi, 2012) and tem-
poral event knowledge. We plan to combine BERT with
knowledge representation learning.
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