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Abstract
This paper describes a novel application of semi-supervision for shallow discourse parsing. We use a neural approach for sequence
tagging and focus on the extraction of explicit discourse arguments. First, additional unlabeled data is prepared for semi-supervised
learning. From this data, weak annotations are generated in a first setting and later used in another setting to study performance
differences. In our studies, we show an increase in the performance of our models that ranges between 2-10 % F1 score. Further, we
give some insights to the generated discourse annotations and compare the developed additional relations with the training relations. We
release this new dataset of explicit discourse arguments to enable the training of large statistical models.
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1. Introduction
Discourse relations, holding between neighbouring spans
of text, are known to play a central role for explaining why
a text is coherent, and how it is to be interpreted. A subset of
these relations is signaled by specific words, so-called dis-
course connectives (or discourse markers or cues), and thus
referred to as explicit discourse relations. Discourse rela-
tions in general and their understanding are important for
tasks such as machine translation, abstractive summariza-
tion, and text simplification. Short examples of such ex-
plicit discourse relations (here within the same sentence)
are:

• He ran to the school because it was raining.

• Although she took her bike, she came late.

• If things work out, then everybody will be happy.

Shallow discourse parsing (SDP) (Lin et al., 2014) is the
research area that builds models to uncover those discourse
relations within texts. SDP consists of the main tasks of
identifying connectives, demarcating their arguments, as-
signing senses to them, and finding the senses of so-called
implicit relations holding between adjacent text spans with-
out a lexical signal being present. In this work, however,
we focus on explicit discourse relations only, and further,
we leave the sense selection aside, as relation span labeling
can be handled independently of a relation’s sense.
Because of its complexity, it is hard to get annotated data
for training statistical models to perform SDP. Therefore,
our goal is to produce high-quality annotations other than
the standard corpus used in the field—the Penn Discourse
Treebank (PDTB) (Prasad et al., 2008)—in order to im-
prove performance on explicit argument extraction.
Learning from unlabeled data as in unsupervised learn-
ing still remains a challenging problem. The branch which
combines supervised and unsupervised methods is referred
to as semi-supervised learning. In particular, in this paper,
we focus on learning from unlabeled data by producing
proxy labels.

This is a hard problem in shallow discourse argument ex-
traction because the proposed models do not work very
well. Therefore, we adopt two variations of the same prob-
lem. The first is slightly easier and better suited for labeling
new data. Thereafter, we study the noisy training data thus
produced with a more complex model variation. Also, we
will analyze the extracted data and compare certain statis-
tics to the original training data.
Specifically, we tackle the problem of limited training data
by adapting existing models of our previous work and in-
creasing the amount of training data by using the output of
their predictions. As these predictions are not perfect, the
resulting data is noisy and biased by the model’s architec-
ture. Our aim is to study the influence on a specific model
when the training includes additional noisy argument la-
bels. So, our goal is not to improve the architectural design
of models for SDP per se, but to increase the amount of
available data for training these models. Given this purpose,
in this paper we will not compare various state-of-the-art
SDP components but just select one particular architecture
and demonstrate the effects of data augmentation on that
architecture.
The contributions of this paper are summarized as follows:

1. We design extensive experiments on the task of ex-
tracting explicit discourse relations using additional
unlabeled data. We use two separate phases for train-
ing that handle tasks of different complexity. The re-
sults show a promising increase in performance.

2. The amount of explicit discourse relations extracted
from the additional data makes the available training
data twice as large. The resulting dataset will be pub-
licly available.

In the following, Section 2. discusses relevant related work,
Section 3. describes the unlabeled corpus, and Section 4.
explains our method. The experiments and results are pre-
sented in Section 5., followed by conclusions in Section 6..
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2. Related Work
In this section, we first discuss some relevant work in the
area of discourse parsing and on the model used in this pa-
per. Next, an overview of semi-supervised learning is pro-
vided as well as other work that deals with the problem of
data sparsity.

2.1. Shallow Discourse Parsing
Shallow discourse parsing is a challenging task, which was
promoted by the development of the second version of the
Penn Discourse Treebank (PDTB2) (Prasad et al., 2008)
and further adapted by the shared tasks at CoNLL 2015 and
2016 (Xue et al., 2015; Xue et al., 2016). Several systems
have been proposed at the competitions (e.g., (Wang et al.,
2015; Wang and Lan, 2016; Oepen et al., 2016)), and they
largely follow the pipeline model of Lin et al. (2014), which
consists of successive tasks of connective identification, ar-
gument labeling, and sense classification for both explicit
and implicit relations.
Argument labeling with recurrent neural networks was
done first by Wang et al. (2015) in their DCU parser. In
addition to word embeddings, they also used other fea-
tures, such as POS tags, syntactic relations, and lexical fea-
tures. They distinguish between intra-sentential and inter-
sentential relations (Ghosh et al., 2011), and thus train sep-
arate models for each individual labeling task. In contrast,
the approach used for this paper does not rely on sentence
boundaries and uses word embeddings only.
Recently, fixed sized windows were introduced with neural
networks for argument labeling as a 4-class sequence clas-
sification task. First, Hooda and Kosseim (2017) studied
explicit argument extraction on predefined windows with
a fixed length corresponding to the maximum span length
of arguments. Then, in our previous work, we adapted their
approach and described a more general procedure that in-
tegrates connective classification into the process of ar-
gument extraction by using moving windows over a dis-
course (Knaebel et al., 2019). This approach was limited by
the relatively small amount of data available in the PDTB2.
Malmi et al. (2018) also improve data availability but fo-
cus on connective prediction and further limit themselves
to special cases with two consecutive sentences where the
connective is at the beginning of the second sentence. Our
approach instead applies to the full range of spans of ex-
plicit discourse relations, but it is limited by the model’s
window size used to predict a relation.

2.2. Semi-Supervised Learning
Semi-supervised learning is a research area that tries to
jointly learn from labeled and unlabeled data. Many dif-
ferent ways have been proposed to tackle this challenge.
Clark et al. (2018) combine their main task with addi-
tional auxiliary tasks such as predicting masked words from
context to gain performance. Also, semi-supervised learn-
ing is used on unlabeled data to identify co-occurring fea-
tures (Hernault et al., 2010a; Hernault et al., 2010b). These
authors define auxiliary training tasks to improve model
performance, but the unlabeled data is restricted to individ-
ual text spans that contain single relations.

Corpus docs length tokens relations
train 1,756 22.28 933,049 14,722
dev 79 21.35 39,712 680
test 91 25.67 55,453 923
blind 71 18.95 34,621 556
bbc-news 2,223 18.60 958,212 *19,576
bbc-sport 736 17.29 284,528 *8,186

Table 1: General statistics to contrast labeled and unlabeled
data. Both sets have comparable sizes. (*) The number of
relations for unlabeled data is approximated by a connec-
tive classifier.

There are various approaches for bootstrapping and self-
training with neural models. In Self-Training (McClosky et
al., 2006; Yarowsky, 1995), predictions of the same model
are used with respect to the model’s confidence in a par-
ticular prediction. Despite its simple mechanism, this al-
gorithm comes with a high bias, which is unfavorable for
learning new directions within the data. In contrast, Multi-
View-Training (Zhou and Goldman, 2004; Søgaard, 2010)
tries to compensate this bias by different views of the data.
These different views may be approached by separate fea-
ture sets, data splits, and models. In a recent study, Ruder
and Plank (2018) show that Tri-Training (Zhi-Hua Zhou
and Ming Li, 2005), a form of Multi-View-Training with
three independently trained models, should be considered
as a strong baseline for neural semi-supervised learning.
Recently, Chen et al. (2018) use a network architecture
called Tri-net that works similar to ours. Their experiments
deal with the task of image classification, though.

3. Data Collection
For additional data, we consider the work of Greene and
Cunningham (2006) who present the BBC Datasets. This
data collection consists of two parts, bbc-news and bbc-
sport, both from the years 2004 to 2005. The first dataset
contains 2225 documents including 5 categories (business,
entertainment, politics, sport, tech). The second dataset fo-
cuses on sports articles and contains 737 documents dis-
tinguishing 5 categories, too (athletics, cricket, football,
rugby, tennis). As shown in more detail in Table 1, the num-
ber of documents for BBC outnumbers the original PDTB
training data. Correspondingly, the approximate number of
explicit relations (estimated by the number of predicted
connectives) in the BBC corpus is quite high in compari-
son with the PDTB. This must be taken into account for
training the model on these proxy labels of the additional
data. Because the predicted annotations are not as reliable
as the gold annotations, the model could easily make false
assumptions about the data when using a bad balance of
gold labels and proxy labels. Throughout this work, we re-
port both parts of the BBC data separately.

3.1. Preprocessing
We preprocess the raw BBC dataset1 such that the for-
mat is comparable to the provided PDTB (CoNLL-format)

1http://mlg.ucd.ie/datasets/bbc.html
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dataset. First of all, for each document in a corpus, we ex-
tract the main document text. After normalization, we use
the Penn Treebank Tokenizer, implemented in NLTK2, for
similarity. We further process each tokenized document us-
ing Spacy3 and use their part-of-speech tags and depen-
dency trees. For generating constituency trees, we use an
additional module provided by the Benepar project(Kitaev
and Klein, 2018). Except for the normalized tokens, pre-
dicted information is only used for traditional models and
left out for the neural models. We publish all our scripts and
findings for future research.4

4. Method
The main goal of our work is to consider unlabeled data
for training and, additionally, to produce new automatically
annotated data that can be used in other settings as well.
Our focus is on explicit discourse relations and in particular
identifying argument spans of those relations, also called
explicit argument labeling.
We split this general task into two phases, where the prob-
lem of generating new data is made easier for better pre-
dictions. In the first phase, we use a combination of a
traditional feature-based connective classifier and a neural
model for argument extraction. By using a separate connec-
tive model first, the window for the neural model is already
determined. Thus, we reduce lots of the complexity of the
more general explicit argument extraction task (empty win-
dows or those where relations are not centered). We train
this whole model on the annotated data and use its predic-
tions on the unlabeled data for the second training phase
afterward. Our approach follows the idea of multi-view
models—training with different aspects to reduce model
bias.
In the second phase, we evaluate our additional data in a
more complex training setting. For this, we use a neural
model that can jointly predict connectives and their argu-
ments. The model predicts the occurrence of a relation, and
for each relation, labels every token in a window as to its
role (Arg1, Arg2, Connective). Finally, we compare models
trained with and without the additional relations, to exam-
ine their effect on the training.
The overall structure of our experiment is shown in Fig-
ure 1.

4.1. Neural Argument Extraction
For argument extraction, we adapt our previous work on
window-based neural models for discourse relation extrac-
tion (Knaebel et al., 2019). There, we describe tasks of dif-
ferent complexity that the neural model is being trained
on. For our experiments, we use two of these settings; one
model is trained to extract argument spans around previ-
ously extracted connectives, and another one is trained to
jointly extract connectives and their arguments.
The Neural Connective Argument Extractor (NCA) is a two-
component pipeline that consists of a traditional connective
classifier (Pitler and Nenkova, 2009) and a neural model.
The prediction of the first component is used to identify

2www.nltk.org
3www.spacy.io
4https://github.com/rknaebel/bbc-discourse

the connective. A fixed-sized window is placed over this
area such that the connective is centered within the model’s
window. Then, each token is classified as being part of one
of the argument.
The Neural Explicit Argument Extractor (NEA) solves a
more complex task where the connective is not given by
an external model. Instead, the model is trained to deter-
mine the presence or absence of relations. A sliding win-
dow approach is used, where each token within a window
is assigned to one of four classes (None, Arg1, Arg2, Con-
nective). The individual predictions for each document are
aggregated and define the final set of relations.
The fundamental component in both extractors is the neural
model for sequential classification. We adjust the original
topology of the neural network to increase the model’s per-
formance. Nevertheless, the approach of our previous work
is independent of the model’s topology. As shown in Fig-
ure 2, we add spatial dropout (Tompson et al., 2014) after
the embedding layer, and we double the recurrent layer.
As described in Section 5., we also adjust sizes of hidden
and recurrent layers for both types of models.

4.2. Full Explicit Relation Extraction
Semi-supervised learning is intermediate between super-
vised learning and unsupervised learning. The idea is to use
additionally unlabeled data to support the model’s training
on labeled data. In multi-view training, several models are
trained on the same task but with different views on the
data. Thus, they should complement each other’s predic-
tions by improving performance and reducing the overall
bias.
In our experiments (see Phase 1 in Figure 1), we use tri-
training (Zhi-Hua Zhou and Ming Li, 2005), a multi-view
technique where three independent models are used to bal-
ance each other’s predictions. Following the authors, the
most common way to achieve diversity is by bootstrapping
the training data. After each training round, a new bootstrap
is generated per model, taking recently extracted relations
into account. Bootstraps are sampled over possible docu-
ments, with the effect that model views are fully indepen-
dent of each other, without overlapping relations. Further,
we achieve different inductive bias of all three models by
varying the models’ architectures as proposed by Zhou and
Goldman (2004). A prediction is considered reliable and
taken into account for future training if at least two models
fully agree on a sample’s prediction.

5. Experiments
As described above and sketched out in Figure 1, we design
two consecutive phases for training. The first phase is a sim-
pler problem and we use it for the model’s adaption to the
new data and the extraction of new explicit relations. Dur-
ing the second phase, we study the quality of the extracted
relations from the former phase, by training a more com-
plex model with and without the developed training data.
Since we cannot fully reconstruct the evaluation of the
CoNLL Shared Task (as certain tokens were not taken into
account for scoring), we adapt the scheme used there and
show different gradations of the exact match scoring. In
particular, we count argument spans as correctly classified
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Figure 1: Experiments separated in two phases. The first is used to produce high quality proxy labels. Therefore, each of
the three models predicts a relation (r1, r2, r3) on a window. The relation is considered valid (and used as proxy label), if
any two models agree; the second phase integrates proxy labels into training.
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Figure 2: Neural architecture used throughout the paper.
Adapts the former model (Knaebel et al., 2019) and high-
lights changes (additional dropout and bilstm layer).

if they have a certain overlap with the reference span. For
the overlap score, we first compute precision and recall be-
tween span prediction and its reference. Then, we use the
resulting F1 score as the threshold for regarding the overlap
of two spans as correct. Specifically, for our evaluations we
use several thresholds (t ∈ {0.7, 0.8, 0.9}).
Each experiment (window length) is run four times to give
a more reliable overview of the results. Thus, the F1 scores
shown in our result tables are averages of the corresponding
runs. As is commonly done, we evaluate each part of a dis-
course relation separately (Conn, Arg1, Arg2) and also the
concatenation of both arguments (referred to as Both). The
upper three rows of each of these tables show the baseline’s
performance. In comparison, the final iteration’s results are
demonstrated in the lower three rows.

5.1. Phase 1: Relation Extraction
In the first part of our experiments, we use the Tri-
model (see Section 4.2.) and train it on the annotated data.
We use the different parts of PDTB2 for training, val-
idation, and test, respectively. Throughout all experi-
ments, test and validation are untouched. The former
is used for overall evaluation, while the latter prevents over-
fitting.
The tri-model’s connective classifier is first trained only

on training. Then, for each neural argument extractor,
we bootstrap 70% of the available training data for hav-
ing a different data bias per model. Also, each model dif-
fers in its architecture as we choose varying values for the
hidden layer and the recurrent layer. More precisely, for
each neural model mi in the tri-model, we choose respec-
tive values (ℎi, ri) ∈ {(256, 512), (512, 256), (512, 512)}.
For the experiments, we study varying window lengths,
w ∈ {50, 100, 150}.
The results in Table 2 already indicate an increase of per-
formance from baseline to final for most of the entries.

5.2. Phase 2: Data Adaption
In the second part of our experiments, we use the explicit
discourse relations generated during training the tri-model
on unlabeled data. For this experiment, we use the more
complex training problem where a single neural model is
trained to jointly predict a connective and its arguments.
Also, the model must distinguish between the presence and
absence of any explicit relation.
As baseline, first, the NAE is trained only on PDTB annota-
tions (training). Then, we use the same model configu-
ration, but train it on all available data (PDTB+BBC). The
results in Table 3 show the evaluation on test.
Additionally, we evaluate the NAE on CoNLL’s blind
dataset (see Table 4), which comes from a different source
(Wikipedia). The performance of our model is lower than
for test, but still records an increase of performance by
transferring additional weakly annotated data through train-
ing. This also means that data from other sources would
probably be beneficial for this more challenging evaluation.

5.3. BBC Relation Analysis
In this section, we briefly summarize the average proper-
ties of extracted relations recorded for the final runs of
our first phase experiments. We study two items of meta-
information that help to compare the extractions with the
labeled data relations.
In Table 5, we compare the argument lengths by comput-
ing the average spans of Arg1, Arg2, and Both. We see
that relations from training are quite long, in compari-
son with any extracted relation set, which is caused by a
few outliers in the PDTB. A reason that the extracted re-
lations do not contain any such long relation is the limited
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Threshold 0.7 0.8 0.9
Baseline Conn Arg1 Arg2 Both Conn Arg1 Arg2 Both Conn Arg1 Arg2 Both
w50 92.72 63.93 84.11 72.20 92.72 55.81 78.30 62.83 92.72 47.33 70.97 48.77
w100 90.86 57.76 80.03 68.65 90.86 48.55 75.15 56.70 90.86 41.56 67.99 43.48
w150 93.13 54.80 81.13 65.43 93.13 44.94 75.95 53.63 93.13 36.78 67.84 39.08
Final
w50 92.74 65.60 84.42 73.25 92.74 58.07 79.18 63.62 92.74 50.06 72.51 50.85
w100 92.67 62.28 83.87 71.97 92.67 53.33 79.82 61.27 92.67 55.49 73.85 48.97
w150 93.16 56.72 82.79 66.95 93.16 46.39 78.42 54.86 93.16 38.17 71.11 40.65

Table 2: Results of the NCA Tri-model for each window size averaged over corresponding runs on test. Comparison
between baseline and final iteration. Exact match with varying overlap threshold.

Threshold 0.7 0.8 0.9
Baseline Conn Arg1 Arg2 Both Conn Arg1 Arg2 Both Conn Arg1 Arg2 Both
w50 62.45 43.43 62.43 51.14 62.29 35.42 59.20 41.21 62.20 28.63 53.79 30.94
w100 62.39 44.46 61.78 51.95 62.21 36.44 58.39 42.52 62.14 29.59 53.00 31.39
w150 59.96 42.57 60.85 49.90 59.68 34.36 57.33 39.92 59.68 27.71 51.17 29.52
Final
w50 64.15 47.93 63.84 54.33 63.95 40.65 60.60 45.95 63.80 35.13 55.49 36.83
w100 68.85 52.17 68.56 60.23 68.69 44.07 65.23 51.35 68.60 38.17 60.25 40.48
w150 67.00 47.97 66.47 55.89 66.84 39.21 63.09 46.38 66.77 32.11 57.66 35.12

Table 3: Results of the NEA for each window size averaged over corresponding runs on test. Comparison between
baseline and final iteration. Exact match with varying overlap threshold.

span length (window size), which is caused by the window-
based approach. Also, a model’s performance concerning
the distance between predicted spans and true spans does
not monotonically improve by increasing window length
but also overfits at some point (as shown by the bbc-news-
150 for individual argument prediction).
In Table 6, we study differences in the position of Arg1
compared to Arg2. Therefore, we define four categories
(referring to the relative position of Arg1) and sort each
relation into one of them. Simple situations contain argu-
ments where one argument fully precedes the other one
(prev and next). The remaining situations are those where
one argument is embedded in the other one. If Arg1 is sur-
rounded by Arg2, we count it as inside and, otherwise, it
counts as outside. Other (more complex) constellations
do not exist per definition.
All three models have a strong prediction bias to the dom-
inating argument position in training. The overall rela-
tion between the category sizes remains in the models’ pre-
dictions (prev < next < inside < outside).

6. Conclusions and Future Work
In this work, we developed a two-phase semi-supervised
learning setting to improve explicit discourse argument ex-
traction using unlabeled data. We first designed a simpler
problem to produce high-quality annotations for this addi-
tional data. Then, the extracted relations were used in the
more complicated setting, without knowing exact positions
of explicit relations. With our work, we showed the posi-
tive effect of additional data for neural discourse relation
extraction, even though the data was not perfectly labeled.
Finally, we studied the characteristics of the weak extrac-
tions produced by our method and compared them to distri-
butions of the human-annotated corpus. We published these

explicit discourse arguments to help future research in this
area.
We adapted a neural argument extraction architecture and
made small changes to improve the initial performance.
These changes were necessary to make the baseline’s pre-
dictions helpful during the training process.
There is currently not much work on semi-supervised learn-
ing for sequence prediction. Therefore it was difficult to
decide for good criteria to merge predictions into train-
ing data. Also, our reliability condition (two models fully
agree) is probably too strong for sequences of up to 150 el-
ements.
In future work, we plan to continue addressing the same
genre of data (news articles) but want to study model be-
havior also with domain shifting, using texts from literature
or speeches, for example. At least a few human-annotated
samples must be made available for evaluating these unseen
domains.
Further, our present work is limited to explicit discourse
arguments, but it would be interesting to generalize this
approach to cover implicit arguments, too. The position of
implicit relations in PDTB2 is limited to consecutive sen-
tences, but the task still remains challenging for a single
neural model because of the small amount of training data
available.
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