
Proceedings of the LREC2020 Industry Track , pages 36–39
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

36

NERPy: A Framework for Named Entity Recognition Experiments

Constantine Lignos
Brandeis University

415 South St., Waltham, MA 02453, USA
lignos@brandeis.edu

Abstract
Creating a high-performing sequence named entity recognition (NER) system requires a series of interconnected design decisions,
including the choice of entity encoding, and for some models, the design and selection of features. In this paper, we introduce NERPy,
an MIT-licensed NER framework designed to support flexible experiments in named entity recognition. We demonstrate NERPy by
performing a sample experiment using the CoNLL 2003 English NER data that explores the performance of different entity encoding
schemes across a wide range of training data sizes.

Keywords: Named entity recognition, Sequence models, NLP frameworks

1. Introduction
Careful experimentation is a key part of producing high-
performing named entity recognition systems. However,
researchers, software developers, and students interested in
performing experiments in NER system design have limited
tools available to them, and constructing an experimental
framework for NER is a daunting task for non-experts. We
address this gap with the creation of NERPy, a Python-based
framework for NER experiments.
In addition to the substantial amount of work on develop-
ing state of the art systems, previous work has addressed
design questions for NER systems and released software
that allows for experimentation. Ratinov and Roth (2009)
provide one of the most comprehensive explorations of de-
sign considerations for NER systems, finding that BILOU
entity encoding (see Section 2.1) outperforms BIO in their
system and that standard Viterbi decoding approaches may
be slower and worse-performing in practice compared to
greedy decoding with non-local features. Dernoncourt et
al. (2017) introduce NeuroNER, a toolkit for neural NER
designed for non-expert use, which support tight integra-
tion with the annotation process. Yang and Zhang (2018)
introduce NCRF++ for performing experiments with neural
NER models, and Yang et al. (2018) carefully explore the
performance characteristics of models in that framework.
Many existing toolkits are primary targeted at NER re-
searchers looking to experiment with state of the art sys-
tems using standard datasets, and are built around specific
sequence model backends which provide for training and
prediction. Like NeuroNER, NERPy primarily targets non-
experts in the NER domain, especially software developers
in industry, and is constructed to allow them to build and ex-
periment with NER systems using standard datasets or their
own data. NERPy allows users without expertise in NER to
build NER systems and optimize their design by selecting
the features, entity encoding, sequence model backend, and
hyperparameters and then exploring the results.
NERPy’s primary focus is building non-neural models, pri-
marily using CRFsuite (Okazaki, 2007) for inference. In-
tegration with neural backends is currently ongoing; see
Section 4 for further discussion. Non-neural backends were
prioritized first due to the existence of NCRF++ and Neu-

roNER, which reduced need in this area, and because one of
NERPy’s strengths is the ease with which users can select
and customize features, which is of much lower importance
for neural systems. Many of NERPy’s users may lack the
expertise and/or computational resources to effectively train
neural NER models for custom tasks, and thus it is important
to provide a framework that meets their needs. Even if a neu-
ral model is desired for the final system, a non-neural model
can provide a strong baseline and may aid in the “booststrap-
ping” process where models are trained with small amounts
of data until more is available.
While NERPy is not designed to be used in production, it
can be used for prototyping, selecting the design parameters
of an NER system, performing research in NER system de-
sign, and as a strong but fast baseline for other systems to
beat. NERPy is designed to support comprehensive configu-
ration of every part of the system design, including selection
of hand-tuned features, use of unsupervised word represen-
tations such as word embeddings or Brown clusters, entity
encoding, and the sequence model backend. This frame-
work allows non-expert users to train NER systems from
scratch using large or small data sets and compare system
designs without having to implement any of the NER system
themselves. NERPy enables reproducible, comprehensive
experiments regarding the overall design of NER systems in
any natural language for which the user can provide data.

2. Design Goals for NERPy
A complete NER system. NERPy provides a complete
system for NER, including ingesting annotation, generating
features (Section 2.2), encoding entities, training, predict-
ing, scoring, and analyzing errors. It depends only on the
attrs, python-crfsuite, frozendict, numpy, and regex Python
packages, easing installation. NERPy uses a universal docu-
ment representation that consists of sentences, tokens (which
support storing properties such as part of speech and any
user-defined properties), and entity mentions. Unlike spaCy
(Honnibal and Montani, 2017), it supports representing
nested or overlapping names, but does require that names
are token-aligned, as is common for token-based sequence
models and is required by the CoNLL annotation format.



37

Encoding Labels

BIO B-MISC B-MISC I-MISC O B-PER I-PER
IOB I-MISC B-MISC I-MISC O I-PER I-PER
IO I-MISC I-MISC I-MISC O I-PER I-PER
BILOU U-MISC B-MISC L-MISC O B-PER L-PER

Table 1: Entity encodings for the tokens of the string Aus-
tralian Davis Cup captain John Newcombe.

NERPy can read CoNLL shared task1 and OntoNotes for-
mats and provides a CoNLL format writer. NERPy provides
evaluation scripts that can score output in the NERPy or
CoNLL formats and report overall and per-type entity F1 in
addition to producing delimited files to support error anal-
ysis (most frequent errors, etc.). Users can call a single
provided script to train and test a model, and can run ex-
periments without any code changes simply by specifying
different JSON files to configure features and select the
sequence model backend and its hyperparameters.
In addition to supporting running experiments from the com-
mand line, NERPy’s API can be used to perform in-memory
training and prediction without needing to write any data to
disk. This allows it to support rapid prototyping of appli-
cations that use named entity recognition. NERPy accepts
input consisting of tokenized, sentence-segmented data orga-
nized into documents of any length, and adds named entity
mentions to the document structure.

Interchangeable sequence model backends. NERPy
primarily uses CRFsuite (Okazaki, 2007) to support training
and decoding of sequence models. CRFsuite’s supported
training algorithms include L-BFGS, averaged perceptron,
passive aggressive, AROW, and SGD.

Tested and easy to extend. NERPy is licensed using the
MIT license. It is written in pure Python and supports
Python 3.7 and up. NERPy includes a comprehensive test
suite with 100% code coverage, allowing users to easily
verify that any modifications do not affect correctness. It is
extremely to add features or integrate a new backend other
than CRFSuite, and we have tested integration with other
backends during development.

2.1. Encoding Entities
To encode named entities in a sequence model, each en-
tity must be converted into a sequence of labels. Consider
this example from the CoNLL 2003 English NER anno-
tation: [Australian]MISC [Davis Cup]MISC captain [John
Newcombe]PER. NERPy supports the most popular entity
encoding schemes, which would encode the five tokens of
this example sentence as shown in Table 12, and provides
robust decoding that can handle invalid label sequences pro-
duced by the sequence model. With the exception of IO,

1The format varies across the four languages used in the 2002-3
CoNLL shared tasks, differing in the number of fields and the exact
manner in which the DOCSTART document separator was used.
NERPy maintains the original document boundaries and can read
all fields specified in any of the four languages and adds them as
attributes on each token.

2We can only briefly note that IOB and BIO have often been
confused, and that BILOU is isomorphic to BMES/BIOES/IOBES.

{
"word": {

"window": [-2, -1, 0, 1, 2],
"token_identity": {
"lowercase": true

},
"word_shape": {},
"is_capitalized": {},

},
"subword": {

"window": [0],
"suffix": {
"min_length": 1,
"max_length": 4

}
},
"distributional": {

"window": [-1, 0, 1],
"word_vectors": {
"scale": 2.0,
"path": "<path to embeddings>"

}
}

}

Figure 1: Sample JSON feature configuration

which is lossy in the case of adjacent entities, any of these
encoding strategies are capable of supporting separate, adja-
cent entities of the same type, and there is no a priori reason
to select one lossless encoding over another. We return to
entity encodings in Section 3.1.

2.2. Features
The currently-supported features include: the token itself
(lowercased if desired), the word shape of the token (capital
letters mapped to A, lowercase letters to a, digits to 0, all
other characters unchanged), whether the first character of
the token is capitalized, whether all characters in the token
are capitalized, whether the token is all digits, whether the
token contains a digit, whether the token is all punctuation
(using Unicode character categories for maximum gener-
alization across languages), the length of the token (either
as a binary feature for each length or a single continuous
feature), token prefixes and suffixes, Brown cluster paths
(and their prefixes), and word embeddings.
Figure 1 gives a sample feature configuration .json file that
shows how features can be defined. Multiple user-named
feature sets (word, subword, and distributional in this exam-
ple) can be simultaneously used, each with differently-sized
windows of application. For example, a window of [-1,
0, 1] will generate features for the current, previous, and
next word for that feature set. Some features have mandatory
or optional arguments, such as specifying whether to lower-
case tokens, or the path to the file to be used for embeddings.
Any arguments provided are passed as keyword arguments
to the constructor of a class that generates the feature. For
example, the string token identity in the configura-
tion is mapped to the TokenIdentity class which has a
constructor with the signature def init (self, *,
lowercase: bool = False). Thus, adding a new



38

●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

● ●

●
● ●

●
●

●
●

● ● ●
●

●

●

●

●

●

●

●
●

●
●

●

● ●
● ● ● ● ●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

● ● ●
● ●

●

●

74

76

78

80

82

84

86

88

250 500 750
Documents

F
1

Encoding ● ● ● ●BILOU BIO IO IOB

Figure 2: Entity F1 on CoNLL 2003 English test data for all
encoding schemes across training data sizes.

feature is as simple as defining a new class that implements
it and adding the class to the map of feature names to imple-
menting classes. Any added feature can be configured in the
same way as the built-in features by using JSON.

3. Discussion
3.1. Sample Experiment
To demonstrate NERPy’s capabilities, we report results for
an experiment that explores the impact of entity encoding
choice at varying sizes of training data. The features used
were: the token string, word shape, whether a token is capi-
talized, all caps, all punctuation, numeric, and/or contains a
number, the length of the token (as a binary feature for each
length), suffixes of length one to four, and word embeddings.
All features were computed on the focus token and in a win-
dow of the two previous and two next tokens. We did not use
part of speech features because we are particularly interested
in performance on small amounts of training data; as part of
speech taggers can produce tags that indicate proper nouns,
they can effectively pass information from the part of speech
training data into the NER training data, making the NER
training data in effect larger than it actually is. Word embed-
ding features were generated using fastText 300-dimensional
word embeddings with subword information (Mikolov et
al., 2018, wiki-news-300d-1M-subword). We selected these
embeddings because they retain the casing of the original
data and give some of the benefit of character-based models
by using subword information.
For the purpose of easy reproducibility and comparison

against other work, we use the CoNLL 2003 NER shared
task English data (Tjong Kim Sang and De Meulder, 2003),
reporting performance as entity F1 on the test set (the stan-
dard CoNLL NER shared task metric). To explore the effect
of varying the amount of training data, we evaluated at 20
points, using 5%–100% of the training documents in 5%
increments. For all training sizes except 100% (where doing
so is impossible), we report the mean F1 for five random
selections (without replacement) of training documents.
The training algorithm and hyperparameters were selected
based on validation set performance when training on the
full training set. Models were trained using L-BFGS for 100
iterations with an L1 regularization coefficient (c1) of 0.01,
and an L2 regularization coefficient (c2) of 0.001. As train-
ing is implemented deterministically and initializes with
zero weights, experiments from multiple random initializa-
tions are not required. We trained the model at each data
size point using each label scheme. In total, this resulted
in 80 experimental configurations, the cross product of four
encoding schemes and 20 data sizes. As a result of the large
number of configurations, the difference between encod-
ing schemes across data sizes and features configurations is
displayed in Figure 2 rather than presented in table form.
At the lowest data point, IO performs best, consistent with
the notion that when there is minimal training data, a min-
imal encoding scheme performs best. At the highest data
point, BILOU performs best, matching the findings of Rati-
nov and Roth (2009). The system performs similarly to
many of the configurations evaluated in by Turian et al.
(2010) which use Brown clusters or word embeddings.
These findings are not shocking, but serve to demonstrate
the capabilities of NERPy as an experimental framework.

3.2. Implementation Challenges
Working with word embeddings. NERPy originally
used gensim (Řehůřek and Sojka, 2010) for load-
ing word embeddings to generate features. How-
ever, this required loading vectors for all words in
the embeddings (not just the training vocabulary),
which is slow and memory-intensive. To address this,
we developed the QuickVec (https://github.com/
ConstantineLignos/quickvec) package as part of
NERPy, which can instantaneously load word embeddings
after a one-time conversion process, similar to Magnitude
(Patel et al., 2018). It can be installed with no dependencies
except numpy and can convert embeddings into its database
format much faster than Magnitude, over three times faster
for the 1 million-word vocabulary 300-dimensional embed-
dings used in the experiment described above.

Performance optimization. Due to CRFsuite’s extremely
fast C implementation of first-order linear chain CRF mod-
els, NER models can be trained rapidly. For example, using
a standard untuned feature set (including 300-dimensional
word embeddings) computed over a five-word window, train-
ing a model on the CoNLL 2003 English NER data using
L-BFGS takes approximately 13 minutes, and the result-
ing model attains an entity of F1 of 88.21 on the test data.
Substantial time was invested in optimizing NERPy’s code
to ensure that the code interfacing with the backend is as
fast as possible, including doing line-level code profiling

https://github.com/ConstantineLignos/quickvec
https://github.com/ConstantineLignos/quickvec


39

to optimize frequently-called functions, such as those used
in feature generation. However, especially when word em-
beddings are used, feature generation can take a significant
amount of time (2.5 minutes for the training data in this
example), as features for each position in each sentence are
represented as individual dictionaries before being provided
to the backend (which will typically use a more efficient
representation). While it is possible to slightly improve per-
formance while maintaining a pure Python implementation,
major changes such as implementing parts of NERPy in
C/C++ would come at the risk of making the code harder to
extend, interact with, and install. Thus we plan to keep the
current distinction of NERPy being pure Python but interfac-
ing with backends that may be written in other languages.

4. Conclusion and Future Work
NERPy provides a flexible and accessible framework for
named entity recognition that any user capable of us-
ing a command line could use to perform experiments
in NER system design, and any user capable of using
Python could use to create a prototype system. We have
publicly released the code (https://github.com/
ConstantineLignos/nerpy), and are in the process
of completing the documentation of NERPy and QuickVec
and releasing them on PyPI so that they are pip-installable.
There are many ways in which we believe that NERPy could
be extended to further enable experimentation with NER
system design and rapid prototyping. First, integration with
a neural NER backend, such as NCRF++ and NeuroNER
would enable a much broader set of experiments to be run.
Integration is currently underway, and we look forward to
releasing this soon. The challenge of integrating goes far
beyond the software engineering required to merely “pipe”
together systems; the configurations must be connected, and
errors have to be handled robustly. While using another
sequence model backend is relatively simple, connecting
NERPy to another feature-rich NER toolkit is complex.
Second, in addition to industrial and novice-user applica-
tions, we believe NERPy could provide a reliable baseline
for experimenting with NER in lower-resourced languages.
Using NERPy, users can experiment with building systems
before word embeddings are available, and later identify-
ing the best ways to train their embeddings in the context
of a simple, non-neural system before experimenting with
more complex neural models, which are often more difficult
to train due to the challenges of selecting hyperparameters
using small amounts of data.
NERPy could be extended so that users could import pre-
trained NER models for various ontologies and languages to
be used for rapid experimentation. While spaCy provides a
similar function, its models are only available for a small set
of languages and are chosen to reflect stable, common, on-
tologies as opposed to recording the research community’s
progress. We believe that NERPy can provide a framework
for researchers to produce models for less commonly studied
languages and NER tasks.

References
Dernoncourt, F., Lee, J. Y., and Szolovits, P. (2017). Neu-

roNER: an easy-to-use program for named-entity recog-

nition based on neural networks. In Proceedings of the
2017 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, pages 97–102,
Copenhagen, Denmark, September. Association for Com-
putational Linguistics.

Honnibal, M. and Montani, I. (2017). spaCy 2: Natural
language understanding with Bloom embeddings, con-
volutional neural networks and incremental parsing. To
appear.

Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., and
Joulin, A. (2018). Advances in pre-training distributed
word representations. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and Eval-
uation (LREC 2018), Miyazaki, Japan, May. European
Language Resources Association (ELRA).

Okazaki, N. (2007). Crfsuite: a fast implementation of
conditional random fields (CRFs).

Patel, A., Sands, A., Callison-Burch, C., and Apidianaki, M.
(2018). Magnitude: A fast, efficient universal vector em-
bedding utility package. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pages 120–126, Brus-
sels, Belgium, November. Association for Computational
Linguistics.

Ratinov, L. and Roth, D. (2009). Design challenges and mis-
conceptions in named entity recognition. In Proceedings
of the Thirteenth Conference on Computational Natu-
ral Language Learning (CoNLL-2009), pages 147–155,
Boulder, Colorado, June. Association for Computational
Linguistics.

Řehůřek, R. and Sojka, P. (2010). Software framework for
topic modelling with large corpora. In Proceedings of the
LREC 2010 Workshop on New Challenges for NLP Frame-
works, pages 45–50, Valletta, Malta, May. ELRA. http:
//is.muni.cz/publication/884893/en.

Tjong Kim Sang, E. F. and De Meulder, F. (2003). In-
troduction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In Proceedings of
the Seventh Conference on Natural Language Learning
at HLT-NAACL 2003, pages 142–147.

Turian, J., Ratinov, L., and Bengio, Y. (2010). Word rep-
resentations: a simple and general method for semi-
supervised learning. In Proceedings of the 48th annual
meeting of the association for computational linguistics,
pages 384–394. Association for Computational Linguis-
tics.

Yang, J. and Zhang, Y. (2018). NCRF++: An open-source
neural sequence labeling toolkit. In Proceedings of ACL
2018, System Demonstrations, pages 74–79, Melbourne,
Australia, July. Association for Computational Linguis-
tics.

Yang, J., Liang, S., and Zhang, Y. (2018). Design chal-
lenges and misconceptions in neural sequence labeling.
In Proceedings of the 27th International Conference on
Computational Linguistics, pages 3879–3889, Santa Fe,
New Mexico, USA, August. Association for Computa-
tional Linguistics.

https://github.com/ConstantineLignos/nerpy
https://github.com/ConstantineLignos/nerpy
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

	Introduction
	Design Goals for NERPy
	Encoding Entities
	Features

	Discussion
	Sample Experiment
	Implementation Challenges

	Conclusion and Future Work

