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Abstract
The worlds of academia and industry have different priorities for machine learning models. In the academic world, the model’s
performance is often the main focus, whereas finding the balance between the model’s performance, resource requirements, and the
ease of its deployment is often deemed more important in the production environment of the industry. In this paper we consider a
real world text classification problem, compare the specifics of different parts of natural language processing pipelines and inves-
tigate their contribution to the final model’s performance. We also take into consideration the practical aspects of the model’s use
and deployment, such as the size of the model and preprocessing time. Our case-study shows that in this particular scenario the
performance of simpler models can be on par with the more complex ones. We find this result valuable, as simpler and smaller
models are normally also easier to deploy in practice, e.g. in a serverless environment. To showcase the practical usefulness of our
final model, we deploy it to AWS Lambda and show that its execution time in this environment scales linearly with the input text’s length.
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1. Introduction
Text classification is one of the most common use-case of
Natural Language Processing (NLP) models. The choice of
a model type and architecture varies significantly from task
to task. It is also greatly affected by the requirements for
the final model. In production environments, these often
comprise training time, latency and resource requirements
(for instance CPU, memory or model size).
Many academic and state-of-the-art works propose solu-
tions incorporating different steps of preprocessing, data
augmentation and large model architectures, rendering
them time-consuming and resource-intensive to develop
and train (Strubell et al., 2019). On the other hand, there is
a great demand for simplicity and ease of setup in the pro-
duction environment, which renders some of the academic-
world solutions unsuitable for real-world use.
In this paper we compare several approaches to a specific
instance of text classification. Given its practical applicabil-
ity, we also investigate the deployment of the final model in
a serverless environment.

1.1. Use-case prediction task
We compare these approaches in a real-world multi-class
classification task. The task is to distinguish between dif-
ferent types of use-cases in which an online Q&A applica-
tion1 is used.
We call a single usage of the Q&A application an event.
Thus, the task is to predict the use-case of an event by look-
ing at the data associated with it. A use-case in this context
refers to the types of events at which this Q&A system gets
used, such as a conference, a team meeting or a lecture at a
university.
Formerly the events used to be classified into use-cases by
a set of 118 expertly chosen keyword-based regular expres-

1In our case the Q&A application is called Slido, reachable at
https://slido.com

sions matched against the event name. This approach is
based on the assumption that a keyword (for instance con-
ference) in the event name implies that the Q&A system
was used at a specific type of event (in this case a confer-
ence). A sample of these regular expressions is shown in
Table 1. The main disadvantage of this approach lies in
its low coverage (around 33%), as not every event name
contains a keyword. For example, an event with the name
LREC 2020 would not be classified as conference, despite
being an abbreviation for Language Resources and Evalu-
ation Conference 2020.

Use-case Regular expressions
Conference /conference/, /summit/
Company meeting /all(\s*)hand/,

/staff(.+)meet/
Team meeting /team(\s*)meet/,

/team(\s*)sync/
Learning /workshop/, /l&d/

Table 1: A sample of regular expressions used for use-case
classification, based on a match against the event name.

1.2. Serverless environment
Serverless (Function-as-a-Service) environments provide a
simple way of deploying code to production environments
by providing an abstraction over many standard operational
concerns. They are particularly suitable for stateless appli-
cations, such as small machine learning models (Ishakian et
al., 2018). Furthermore, they require minimal maintenance,
as the cloud infrastructure takes care of provisioning their
computational resources, as well as ensuring that they only
run when necessary. On the other hand, there are numerous
practical limitations as to what can be currently deployed in
a serverless environment. These are mainly related to stor-

https://slido.com
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age (250 - 500 MB) or RAM (2 - 3 GB), forcing the models
to be small in size and to also have a small RAM footprint.

2. Related work
Text classification (sometimes also referred to as text cat-
egorization) is a widely studied technique in Natural Lan-
guage Processing (Aggarwal and Zhai, 2012). Due to its
great versatility, numerous practical tasks can be viewed as
text classification problems. This results in a wide variety
of applications, ranging from linguistically-inspired prob-
lems, such as Word Sense Disambiguation (Raganato et
al., 2017), classification of sentiment or opinion polarity of
documents (Liu, 2015), to direct downstream applications
in which text classification can be helpful, such as online
suicide prevention (Desmet and Hoste, 2018).
In broad terms, the text classification pipeline can be
viewed as a three stage process: at first the pre-processing
part ensures that the inherent noise gets removed from the
raw input text, then the feature extraction part converts the
clean input text into representation that is then taken as the
input of the final classification part, in which a classifica-
tion algorithm predicts the category of the text using the
provided representation.
The standard approaches in pre-processing relevant to the
presented work include tokenization (Verma et al., 2014)
and utilization of pre-trained models for extracting part of
speech tags (Batanović and Bojić, 2015) as well as named
entities (Trask et al., 2015) from the input text and using
this information in further parts of the pipeline.
There exist a multitude of options for feature extraction,
such as Bag-of-Words, TF-IDF (Jones, 1972), word embed-
dings, e.g. word2vec (Mikolov et al., 2013), GloVe (Pen-
nington et al., 2014), FastText (Bojanowski et al., 2017) and
various contextualized word representations (Peters et al.,
2018). A different approach to representing text is called
sentence embeddings. These aim to provide semantically
meaningful vector representations of sentences, compara-
ble using cosine distance. Some of the popular methods in-
clude Skip-Thought vectors (Kiros et al., 2015), InferSent
(Conneau et al., 2017) and the Universal Sentence Encoder
(Cer et al., 2018).
A sizable body of work has been published on the topic
of classification algorithms. Popular choices include logis-
tic regression (Lee and Liu, 2003), Naı̈ve Bayes Classifier
(Kim et al., 2006), Support Vector Machines (Kwok, 1998)
as well as various approaches based on neural-networks
(Joulin et al., 2017), particularly in combination with Deep
Learning approaches (LeCun et al., 2015).

3. Dataset
Our dataset is composed of 80 000 events. An event con-
sists of various types of interactions with the Q&A applica-
tion, incorporating mainly questions posted by the audience
to the presenter, as well as the live polls used by the presen-
ter to find out the opinion of the audience about a topic.
Only a subset of the interaction data has been selected for
the purpose of our task. A preview of such data can be seen
in Figure 1. The event data can be categorized as follows:

• Aggregated features. These comprise high-level in-
formation about the events, for instance the number of

participants, the duration of the event or the number of
posted questions and activated polls.

• Textual features. The texts of the questions and polls
belonging to the events. All the texts are in English
language. We exclude the event name from the texts
to prevent the model from essentially extracting the
regular expressions from the event name.

Aggregated: participants=95, n questions=52, dura-
tion days=1, . . .
Questions: ”How much time / hours have you saved so
far in these 23 processes?”, ”How do you pay invoices?
Do you have any automated process?”, . . .
Polls: ”You are from”, ”How did you like this talk?”,
”What do you want me to elaborate more on?”, . . .
Label: Conference

Figure 1: An example of data about event.

Text length. The length of a question is limited to 160
characters in most cases but a few events use a maximum
length of up to 300 characters. The number of questions
ranges from zero to a few thousands, with a median of 16.
A poll consists of the question asked to the audience and
either poll options or audience replies (for a multiple-choice
poll or open-text poll, respectively). A poll question can
have up to 256 characters. The number of polls in an event
ranges from zero to a few thousand, with a median of 1.
The distribution of number of tokens per event is shown in
Figure 2. It suggests that the texts we are trying to classify
can easily contain hundreds of words.

Figure 2: The distribution of the number of words in con-
catenated questions and polls in our dataset.

Labels. The events are assigned a use-case based on the
matching regular expressions described in Section 1.1. We
exclude events that are assigned more than one use-case, as
they are not numerous and doing so would needlessly turn
our task into multi-label classification.
Our task considers four use-cases: company meeting (37%
of data), conference (31%), learning (17%) and team meet-
ing (15%). The main deficiency of these classes is the in-
evitable blending of team meetings into other use-case cat-
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egories. Since some companies are smaller and some are
larger, a meeting with 20 attendants can either be a team
meeting or a whole company meeting depending on the size
of the company. We also note the inherent limits of this la-
beling scheme, as an event where a team is participating in
a workshop is both a team meeting and a learning event.

Train-test split. We split the dataset into train and test
parts using a stratified split with the 80 : 20 ratio.

4. Method
We experiment with multiple aspects of NLP pipelines. In
order to measure the importance of an aspect, we conduct
an ablation study by keeping the model fixed and only alter-
ing the studied aspect. Model performance is measured by
calculating the accuracy and the micro-averaged F1 score
of the model on the test set.
Two types of models were used in our experiments:

• FastText model (Joulin et al., 2017). The inputs to the
model are concatenated and preprocessed texts of all
questions and all polls. The model does not consider
the aggregated features.

• Two-stage pipeline model. The first step produces
a document embedding for both questions and polls
and in the second step we take the embeddings along
with the aggregated features and classify them using
a single-layer softmax neural network. The document
embedding layer is trained on a concatenation of pre-
processed questions and polls. The training of this
layer takes place separately from the rest of the net-
work.

4.1. Preprocessing
To assess the effect of various preprocessing approaches,
we study their effect on the final performance, using the
FastText model for the classification part. We focus on the
following areas of preprocessing:

Tokenization. Three types of tokenizers are compared:
simple whitespace with special characters striping, spaCy
(Honnibal and Montani, 2017) and Bling Fire2.

Part-of-speech (POS) tags. We use the spaCy POS tag-
ger to assign POS tags to each token. The tokens are
then concatenated with their POS tag, e.g. work|NOUN
or work|VERB, and used for training similarly to the
sent2vec method (Trask et al., 2015).

Named entities (NE). The spaCy NLP pipeline can also
find NEs in a text. We leverage this information to
join the tokens associated with a NE into a single token
and concatenate the joined token with the NE type, e.g.
01-04-1997|DATE. It is also possible to use both POS
and NE tags simultaneously. If this is the case, NE tags take
precedence over POS tags.

4.2. Embedding types
We also experiment with different types of embeddings
used in the two-stage pipeline model:

2https://github.com/microsoft/BlingFire

• Fast sentence embeddings (FSE) (Borchers, 2019).
We base the FSE embeddings on FastText word em-
beddings (Bojanowski et al., 2017) that are then com-
posed into higher-level embeddings. The FSE library
allows for three composition methods: Deep Averag-
ing Network (DAN) (Iyyer et al., 2015), Smooth In-
verse Frequency (SIF) (Arora et al., 2017) and Un-
supervised Smooth Inverse Frequency (USIF) (Etha-
yarajh, 2018).
The main advantage of the FSE embeddings is their
fast computation speed.

• Universal sentence encoder (USE) embeddings (Cer
et al., 2018). We experiment with multiple flavors
of pre-trained USE models available on TensorFlow
Hub3. The flavors of the USE model differ mainly in
size and performance, but also in the maximum num-
ber of tokens considered by the model: the large flavor
based on the Transformer architecture (Vaswani et al.,
2017) supports a maximum of 128 tokens whereas the
default flavor based on DAN is unbounded.
The advantage of the USE model is that is was trained
on a large corpus resulting in a fair coverage of differ-
ent domains. However, unless the model is fine-tuned
on the target domain, its performance can be lower
than that of a dataset-specific model.

• FastText embeddings. We use the average of the
FastText tokens in the texts to create the sentence em-
bedding as specified in (Joulin et al., 2017).
A possible advantage of the FastText embeddings is
that they can be trained in a supervised manner.

5. Results
In this section we present and discuss the results of different
experiments described in Section 4. We group these results
according to the aspects described above.

Method Size Time Acc F1

Whitespace - 4.5s 0.656 0.642
Bling Fire 1.4MB 12.6s 0.650 0.628
spaCy 80KB 6m 1s 0.657 0.642
spaCy+POS 3.7MB 42m 34s 0.654 0.636
spaCy+NE 4.0MB 1h 1m 0.656 0.644
spaCy+POS,NE 7.7MB 1h 26m 0.653 0.635

Table 2: Performance of the different preprocessing meth-
ods in combination with the FastText model on the test set.
We also report the size of the preprocessing model and the
time needed for preprocessing of the training set due to their
implications for practical usage.

5.1. Preprocessing
Table 2 shows the effect of testing various preprocessing
approaches on the FastText model. The simple method in-
corporating a whitespace tokenizer and punctuation strip-
ing is competitive with more complex methods like Bling

3https://tfhub.dev/google/collections/
universal-sentence-encoder/1

https://github.com/microsoft/BlingFire
https://tfhub.dev/google/collections/universal-sentence-encoder/1
https://tfhub.dev/google/collections/universal-sentence-encoder/1
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Fire or spaCy tokenizers. Furthermore, the latter methods
require increased preprocessing time. When they do POS
and NE tagging on top of tokenization, they can be up three
orders of magnitude slower than the baseline.
Models trained on data with tags (especially POS) also take
longer to converge, which can be seen in Figure 3. We
hypothesize that this can be caused by the model needing
more epochs to cope with increased vocabulary size.

Figure 3: Test accuracies of models using various token
tags at different points of the training process.

5.2. Embedding types
Table 3 shows the performance comparison of the two-
stage pipeline model using different types of embeddings
trained on texts preprocessed using whitespace tokenizer
and punctuation stripping.

Embedding type Dim Size Acc F1

FSE DAN 300 2.5GB 0.590 0.595
FSE SIF 300 2.5GB 0.585 0.593
USE default 512 1.0GB 0.575 0.584
USE large 512 850MB 0.557 0.562
FT unsupervised 150 1.3GB 0.584 0.590
FT supervised 20 180MB 0.645 0.647

Table 3: Performance of the different models on the test
set along with the respective embedding dimensions. FT
stands for FastText.

Despite using the largest embedding dimension and being
trained on the largest corpus, the USE model achieves the
lowest performance on our task. We hypothesize that this
is due to its training corpora being quite different from the
one available for our task.
We note that the default DAN-based USE flavor performs
better than the large Transformer-based flavor. This seems
to be due to the Transformer limiting the maximum num-
ber of tokens to 128. With the median of 285 words
per event, the words necessary for discrimination between
classes may not be considered by the Transformer.
The FSE and FastText unsupervised models reach higher
performance than USE. We think that this is because they
are trained on our data and manage to capture its specifics.

The model based on supervised FastText embeddings
reaches the highest performance. We assume this stems
from the fact that the supervised embeddings are tailored to
the task. As a result, the embedding layer filters out unim-
portant words and makes the task of the classifier simpler.

Embedding size. We observe that unsupervised embed-
ding models require much higher embedding size than the
supervised model. It seems that only a fraction of the fea-
tures captured in the unsupervised embeddings is finally
useful for the classification task.

5.3. Discussion and Deployment
The results listed in Section 5 show that the F1 score is
the highest in case of the two-stage pipeline model which
uses supervised FastText embeddings. On the other hand, a
simple FastText model (Table 2) trained end-to-end con-
sistently reaches higher accuracy than various two-stage
pipelines (Table 3). We find this particularly notable, as it
utilizes a subset of the available data: the model only con-
siders the texts of questions and polls associated with an
event. Furthermore, thanks to its simplicity and small size
(300 MB in RAM), we managed to deploy this model in the
AWS Lambda severless environment. As Figure 4 shows,
its execution time scales linearly up to 25 000 tokens.

Figure 4: Execution time of the FastText model deployed
in AWS Lambda as a function of the input text’s length.

6. Conclusion
In this work we present a case study of a text classification
task on longer texts. We evaluate the performance of var-
ious preprocessing and feature representation approaches,
and show that an end-to-end trained FastText model is able
to match the performance of more complex pipelines. To
showcase its practicality, we deploy it to AWS Lambda.
As the resulting model is still quite large, quantization
methods could be used to further reduce its size (Joulin et
al., 2016). Another interesting avenue of future research
would be distilling the text classification model back to reg-
ular expressions (Bui and Zeng-Treitler, 2014).
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