
Proceedings of the LREC2020 Industry Track , pages 10–14
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

10

Industrial ASR Troubleshooting Tool

Oleksandr Solop, Filip Sawicki, Andrzej Jeziorski, Marcin Sikora
Michał Junczyk, Tomasz Zietkiewicz

Samsung Research Institute Poland (SRPOL)

Abstract
During the development of an industrial scale Automatic Speech Recognition (ASR) system significant quantities of
evaluation data have to be analyzed in order to make positive adjustments to the ASR subsystems. The scale and variety
of the evaluation data, as well as the complexity of the ASR system architecture makes both manual improvements and
automatic model boosting a challenging task. We present a system created to facilitate more effective improvement of
the ASR recognition rate with the help of a web tool that provides aggregation, quality review and statistical analysis of
ASR performance evaluation data in a human readable format. This paper presents an overview of the system and some
exemplary use cases.

Keywords: ASR, error rate, tokenization, alignment, data pipeline, evaluation data

1. Introduction
Evaluation and development of industrial scale, ma-
chine learning based systems like Automatic Speech
Recognition (ASR) is a challenging task due to
quickly evolving product requirements and dependen-
cies between data and system components, often with
hidden feedback loops. ASR systems are evaluated
in an iterative manner and as a result produce large
amounts of evaluation data, which is hard to explore
manually. One of the approaches to increase the
efficiency of development is to focus on the issues
which most significantly impact performance.

The ASR Troubleshooting Web Tool is made to ad-
dress the above challenge. The tool aggregates tokens
extracted from evaluation data and produces a pool of
words that have a high probability of being attributed
to a common error. These tokens are called ”trouble-
makers”. ASR experts can use the tool to mark is-
sues which are hard to automatically detect and sug-
gest corrections to models by monitoring top trouble-
makers in each ASR system version.

2. Literature Review
The need exists for industrial systems that contin-
uously improve ASR, as seen in the pending US
patent by call analytics firm Marchex Incorporated.
The patent specifies a system that automatically
provides faster and more accurate ASR for telephone
calls. In addition to automated model refinement
the cited patent provides a human interface for the
manual review of transcriptions. Our system not only
provides efficient way to detect quality issues in test
data, but also provides an extended view of evaluation
results thanks to data statistics, aggregated around

tokens. (Marchex, Inc., 2018)

In more general terms, our work addresses problems
related to machine learning pipelines deployed in a
production environments. Many academic publication
have been made on the topic. For example D. Scul-
ley et al. specify how technical debt creeps it’s way
into machine learning systems. (Sculley et al., 2015)
Our solution mitigates some of the technical debt is-
sues listed in the article, e.g. the increased cost of
analysing an individual model due to it’s dependency
on models preceding it in the pipe. B. Nushi et al.
go more in depth into the problem of troubleshooting
component-based machine learning systems and pro-
pose a human-in-the-loop approach to model refine-
ment.(Nushi et al., 2017) In their case study on Auto-
mated Image Captioning they rely on crowdsourcing
microtasks to fine-tune components. Our approach
provides a boarder set of information and allows ex-
perts to make sweeping adjustments to the pipeline
elements.

3. Materials and Methods
3.1. ASR evaluation data overview
An ASR test case (ASR TC) is a pair consisting of
an audio/speech recording and a corresponding tran-
scription. An organized collection of ASR TCs in a
standardized format, with relevant meta-data (e.g. lan-
guage, domain, acoustic conditions etc.) constitutes
an ASR database (ASRDB). An Automatic Speech
Recognition (ASR) system generates an orthographic
text representation (hypothesis) to an audio input (au-
dio recording). The quality of an ASR system is eval-
uated by comparing the similarity of the hypothesis
generated for a given audio recording to a manually
created transcription (reference) of the corresponding



11

recording, across a given set of ASR TCs. Depending
on the ASR subsystem being evaluated, either a basic
reference or a normalized reference is used. The basic
reference contains only tokens and is used to evaluate
the performance of Language Models (LM), while the
normalized reference is used for Inverse Text Normal-
izer (ITN) evaluation, therefore it should resemble text
written by humans and respect language specific nor-
malization rules related to numeric expressions for-
matting, spelling of named entities, punctuation etc.
In order to generate ASR hypotheses resembling text
written by humans a combination of various modules
is used (see next section).

3.2. ASR system overview
The ASR system is comprised of a long short-term
memory (LSTM) Acoustic Model (AM), Grapheme-
to-Phoneme (G2P) model, n-gram Language Model
(LM), optional n-gram Personal Language Model
(PLM) and Inverse Text Normalizer (ITN) post-
processing modules. All the models have been trained
using proprietary data. An in-house built decoder has
been used to generate 1-best hypothesis. The hypoth-
esis is then processed by different ITN submodules,
including:

• Preprocessor - removes tags inserted by decoder
(such as start and end of utterance tags), normal-
izes casing by the decoder output

• Inverse Number Normalizer (INN) - performs in-
verse normalization of numbers by replacing nu-
merals with appropriate numbers.

• Fixers - perform string substitutions, either ones
defined by language experts as regular expres-
sions patterns or performed automatically, by sta-
tistical models trained on ASR evaluation data.

ITN modules are connected in the form of a pipeline.
Each of them can be selectively turned off. During the
ASR evaluation ITN is tested multiple times with dif-
ferent modules turned on and off, to check them sepa-
rately and provide a way to spot the exact cause of pos-
sible errors. This, together with the PLM module also
being turned on and off, leads to production of differ-
ent ASR hypotheses. ITN specification in the indus-
trial ASR system needs to be quickly adapted to evolv-
ing user needs, language conventions, market trends
and system architecture. Given the inter-subjective na-
ture of language, hidden/complex organizational de-
pendencies with sometimes conflicting requirements,
it’s necessary to manage the ITN functional require-
ments as a common ”ASR text normalization proto-
col”, available to all stakeholders, including product

owners, ASR developers, testers and language experts
responsible for creating references.

3.3. Data Aggregation

In order to provide a human readable view of the
complex ASR evaluation pipeline, the system uses
data from ASRDB evaluation sets and corresponding
ASR hypotheses generated with various system
settings. If a hypothesis has a word recognition
rate of xwrr = 1 compared to the normalized refer-
ence (ref-n), then it is considered to be correct, else
there is a mismatch and the pair is marked as incorrect.

The Troublemaker Tool was designed using the
ETL (Extract, Transform, Load) concept to generate
the best data pipeline performance using available
resources. The system saves only structured, filtered
and polished outcomes instead of large amounts of
ASR test results in various formats.

System ETL steps
1. Data loading, validation and filtration
2. Collection of mismatched tokens
3. Calculation of aggregated statistics on tokens
4. Extraction of troublemakers
5. Comparison of mismatched utterance pairs
6. Concordance and stability metric preparation
7. Saving processed data to database

During the data processing stage, the ETL system
collects and counts all tokens that appear in mis-
matched utterance. These tokens are grouped together
and used to calculate aggregated statistics. Based on
the gathered metrics our system selects troublesome
tokens that have both high fail frequency and the
greatest influence on ASR performance. Fixing errors
in tokens with the highest combination of total count,
stability and frequency yields the most significant
improvements in ASR. We have created several
metrics to make detection of these tokens easier (see
section ”Troublemaker Metrics”).

To make an ASR improvement suggestion with the
Troublemaker, the reference and hypothesis has to be
compared to find differences. Our tool makes use of
a sequence matching algorithm to reject equivalent
tokens from both sentences. A pairwise sequence
alignment algorithm is then applied to find the best
matching tokens based on the received similarity
score. Moreover the entropy value for each token
is calculated. It shows how spread out the error is
and thus gives information on how meaningful the
potential fix would be.



12

3.4. Troublemaker Metrics
TokenCount: the number of ASR TCs containing a
given token. This metric helps to prioritize work by
providing information about the ”troublemaker” to-
ken’s impact based it’s popularity. x is equal to 1 if
the token is present in the sentence i and 0 otherwise.
n is the total number of ASR TCs in the evaluation set.

TokenCount =
n∑
i

xi

FailsCount: the number of incorrect hypotheses re-
lated to the token. Incorrect hypotheses are those with
a word recognition rate wrr < 1. xi;wrr<1 is equal to
1 when the token in present in the sentence and the
sentence is from a failing ASR reference-hypothesis
pair.

FailsCount =
∑
i

xi;wrr<1

Frequency: Ratio of incorrect hypotheses to all ASR
TCs containing the token. Shows an estimate of how
often the token is failing.

Frequency =
FailsCount

TokenCount
Entropy: Measure of the level of uncertainty asso-
ciated with a given token. F is the Frequency of the
token failing.

Entropy = − (F · log(F) + (1− F) · log(1− F))

Fail Coefficient: a modified frequency metric that re-
duces the number of most common tokens shown and
include less frequent ones. Higher values indicates
bigger impact on ASR system performance. User can
sort troublemakers by this field to work with the most
important defects first.

Fcoeff = Frequency · log(TokenCount)

FCoeffR: the logarithm of the token’s rank among all
of the tokens based on Fcoeff values.
EntropyR: the logarithm of the token’s rank among
all of the tokens based on Entropy values.
Wrank: a weighted rank based on a combination of
Fail Coefficient and Entropy ranks. The metrics tries
to balance between token frequency, replacement sta-
bility and overall incorrectness. It is used as a main
metric for comparison of different ASR system ver-
sions. The lower the rank, the more the token is wor-
thy of the user’s attention. A1 and A2 are adjustable
weight constants that effect the ratio with which FCo-
eff and Entropy effect Wrank.

WRank = (A1 · FCoeffR) · (A2 · EntropyR)

4. Triage Process
Every ASR data report contains a change rate based
on the aggregated troublemakers Wrank metric, which
makes it easy to compare performance of any pair of
ASR system versions. This simplifies results analysis,
because it allows the review of data by portions.
Language experts have access to multiple tables de-
scribing top tokens per hypothesis. These tables in-
clude all metrics, which are used to locate troublemak-
ers that are the most cost-efficient to fix, and the num-
ber of reported issues related to them. Moreover, our
tool can represent two kinds of troublemakers: the ref-
erence troublemakers (tokens, which ASR rarely rec-
ognizes correctly) and hypothesis troublemakers (to-
kens, which ASR outputs too often). This error type
separation and issue detection prevents the ASR sys-
tem from over-fitting and under-fitting on these trou-
blemakers.
After the user selects a troublemaker to work with,
the concordance view opens, enabling the checking
of details about a troublemaker’s word stability, for
example all mismatched tokens with their probabili-
ties.The concordance view also contains a pool of ran-
dom utterance pairs (reference and hypothesis) con-
taining the selected troublemaker. A single exam-
ple row consists of information about WRR, a button
for audio recording playback and comparisons of hy-
potheses from other stages of the ASR pipeline. All
troublemaker words and potential replacement words
are presented in a joint column to facilitate the process
of issue analysis.

                  The    cat     sat on the mat 0.77                 The    dog    sat on the mat

...
0.65            The big    cat    on the mat          The big    dog    sat on the mat

Reference wrr Hypothesis

                  The    cat     sat on the mat 0.77                 The    dog    sat on the mat

Figure 1: Concordance view example.

An expert can report issues related to the troublemaker
token using the report panel. In this panel, one can
quickly assign the troublemaker to several categories,
depending on the issue type. Additionally one can
provide a detailed description of the problem and tag it
with other relevant tokens. Different issue categories
are then automatically routed to appropriate developer
teams which are specialized in fixing the particular
problems. An exemplary set of problem classes for
a typical ASR system has been described below. This
set can differ vastly, depending on the ASR system ar-
chitecture.
Audio: a recording may or may not meet quality re-
quirements, depending on the purpose of a particular
ASRDB. For example, audio with an above normal



13

distortion level, can be reported if present in a regres-
sion test set which supposed to contain only clean au-
dio data. In other contexts it can be a useful example
of a real usage scenario. Other fairly common issues
are excessive cross-talk, incomplete or unintelligible
speech.
Reference: since ASRDBs references are prepared
by language experts, they are prone to human errors.
The typical problems are: incorrect normalization, ty-
pos and the unnecessary transcription of background
speech.
AM: poor recognition in certain acoustic conditions,
systematically substituted tokens with similar pronun-
ciation or sensitivity to background speech – these all
can be attributed to a problem with AM.

                  The    cat     sat on the mat 0.77                 The    dog    sat on the mat

...
0.67       président    de france           présidents    de france

Reference wrr Hypothesis

le    président    de l'égypte 0.25 les    présidents    de l'égypte

Figure 2: Concordance AM issue example

Grapheme-to-Phoneme (G2P): improper phonetiza-
tion can lead to errors, especially when it comes to
Named Entities (NE).

                  The    cat     sat on the mat 0.77                 The    dog    sat on the mat

...
0.33                bixby    was ist das für ein lied                        xd    was ist das für ein lied

Reference wrr Hypothesis

         hi    bixby 0            hi    pixy

Figure 3: Concordance G2P issue example

LM: a broad category, which can be as simple as a
lexicon typo, or more complex, signaling a broader
issue with NEs, problems with number recognition,
and many others.

                  The    cat     sat on the mat 0.77                 The    dog    sat on the mat

...
0.83  ponme un    álbum    de joe dassin ponme un    album   de joe dassin

Reference wrr Hypothesis

  ponme un    álbum    de camilo sesto 0.83  ponme un    album    de camilo sesto

Figure 4: Concordance LM issue example

ITN: a fairly well defined category consisting of gen-
eral normalization, capitalization and punctuation is-
sues.

                  The    cat     sat on the mat 0.77                 The    dog    sat on the mat

...
0.33enciende la play    playstation enciende la play    play station

Reference wrr Hypothesis

                              playstation    4 0                             play station    cuatro

Figure 5: Concordance ITN issue example

5. System architecture

Troublemaker System Cluster

Internal 
services

REST API

streaming

Web Interface
Web Server

& Proxy

Language Expert
\ Engineer

Static Support Services

Master
Service

Audio
Service

Frontend
Service

Database
Cluster

Troublemaker lang service (single instance)

Read service Write
microservice

Relational
Database

Network
Storage

Web Server

Search
Engine

Figure 6: System architecture.

5.1. Microservice architecture
The Troublemaker Tool follows a microservices de-
sign pattern. In front of the system sits a web server
that acts as an API gateway, reverse proxy, offloader
and load balancer for incoming REST requests. Next
there are two main groups of services. Static Support
Services serve as gateway aggregators, health check-
ers, frontend interfaces, data management systems and
provide other common utilities, like audio streaming,
logging and issue reporting. Scalable Language Ser-
vices consist of multiple instances of read and write
microservices deployed for one specific language.

6. Conclusion
The presented system aids the development of indus-
trial scale ASR by extracting ”troublemaking” tokens
that most frequently cause errors in the ASR system or
reference data, presenting information in a convenient
format for ASR experts and streamlining the genera-
tion of reports. Given the early stage of development,
we’re not able to measure the impact of the system
on the process in a quantitative way yet. However the
qualitative feedback received so far is encouraging to
pursue further development and research in this area.

7. Bibliographical References
Marchex, Inc. (2018). Automatic speech recognition

(asr) model training. US Patent 20180315417.
Nushi, B., Kamar, E., Horvitz, E., and Kossmann, D.

(2017). On human intellect and machine failures:
Troubleshooting integrative machine learning sys-
tems. In Thirty-First AAAI Conference on Artificial
Intelligence.

Sculley, D., Holt, G., Golovin, D., Davydov, E.,
Phillips, T., Ebner, D., Chaudhary, V., Young, M.,
Crespo, J.-F., and Dennison, D. (2015). Hidden



14

technical debt in machine learning systems. In
C. Cortes, et al., editors, Advances in Neural Infor-
mation Processing Systems 28, pages 2503–2511.
Curran Associates, Inc.


	Introduction
	Literature Review
	Materials and Methods
	ASR evaluation data overview
	ASR system overview
	Data Aggregation
	Troublemaker Metrics

	Triage Process
	System architecture
	Microservice architecture

	Conclusion
	Bibliographical References

