
LREC 2020 Industry Track
Language Resources and Evaluation Conference

11–16 May 2020

Industry Track

PROCEEDINGS

Khalid Choukri (ELRA/ELDA, France), Bente Maegaard (University of Copenhagen, Denmark),
Nicoletta Calzolari (Institute for Computational Linguistics «A. Zampolli», CNR, Italy; ELRA, France),

(eds.)

Proceedings of the LREC 2020
Industry Track

Edited by: Khalid Choukri, Bente Maegaard, and Nicoletta Calzolari

ISBN: 979-10-95546-71-9
EAN: 9791095546719

For more information:
European Language Resources Association (ELRA)
9, rue des Cordelières
75013 Paris
France
http://www.elra.info
Email: lrec@elda.org

c© European Language Resources Association (ELRA)

These proceedings are licensed under the Creative Commons
Attribution-NonCommercial 4.0 International License

ii

Introduction

These are the proceedings of the Industry track at LREC 2020. As stated in the track description1,
Human Language Technologies (HLT) have reached a high level of maturity to become increasingly
important parts of our lives. These technologies have emerged from decades of collaborations between
academic and industrial research organizations often with financial and research support from the public
sector; collaborations are made possible by the unique strengths of both communities and a set of shared
practices (algorithms, evaluation methods and the corresponding challenges, language resources, and
the like). But despite this, there are substantial differences between research in academic and industrial
settings.

In contrast to academic research, industrial speech and language technologies pose unique challenges of
scale when real applications are to be deployed on the market; language resources from industry may
imply different sizes, demand different algorithms or validation and quality control methodologies than in
academic settings; and the practices of academic and industrial settings may converge on distinct methods
for the same problem; industrial systems and practices may pose ethical challenges not necessarily
present in academic settings.

The initial plan was to have one full conference day dedicated to addressing the industrial R&D in the
HLT domains we target, reviewing the current state of the art and future trends. Unfortunately, because
of the COVID-19 pandemic, LREC 2020 had to be cancelled, as well as the full industry track day. We
considered that it was difficult to go virtual for such an interactive day which by nature should trigger
discussions and debates between the participants. In particular since the intention was that the technical
presentations were to be backed up by an exhibition set-up within the traditional HLT village organized
by ELRA.

To pay tribute to the authors who have submitted papers, the Industry Track Committee has also decided
to publish these papers that have been thoroughly examined by the Track organizers.

The organization of an industry track will continue at the next LREC, in 2022, and the current authors
will be invited to re-submit updates of 2020 activities if appropriate which then can be examined by a
larger committee assessing their added value with respect to state of the art.

The Organizing Committee:

Khalid Choukri (ELRA/ELDA, France)
Bente Maegaard (University of Copenhagen, Denmark)
Nicoletta Calzolari (Institute for Computational Linguistics «A. Zampolli», CNR, Italy, & ELRA,
France)

1https://lrec2020.lrec-conf.org/en/conference-programme/industry-track/

iii

Organizers:

Khalid Choukri (ELRA/ELDA, France)
Bente Maegaard (University of Copenhagen, Denmark)
Nicoletta Calzolari (Institute for Computational Linguistics «A. Zampolli», CNR, Italy, ELRA,
France)

iv

Table of Contents

Spoken Medical Prescription Acquisition Through a Dialogue System on Smartphone: Perspective of a
Healthcare Software Company

Ali Can Kocabiyikoglu, François Portet, Jean-Marc Babouchkine and Hervé Blanchon.1

Promises and Disappointments of Semantic Analysis of Speech-To-Text Applied to Call Center Conver-
sations in an Industrial Setting

Ruslan Kalitvianski, Emmanuelle Dusserre and Muntsa Padró . 6

Industrial ASR Troubleshooting Tool
Andrzej Jeziorski, Filip Sawicki, Oleksandr Solop, Michal Junczyk, Marcin Sikora and Tomasz

Zietkiewicz . 10

Measuring the Polarity of Conversations between Chatbots and Humans: a use Case in the Banking
Sector

Guillaume Le Noé-Bienvenu, Damien Nouvel and Djamel Mostefa . 15

On the Importance of Text Classification Pipeline Components for Practical Applications: A Case Study
Andrej Švec, Katarína Benešová and Marek Suppa . 21

Hybrid Tagger - An Industry-driven Solution for Extreme Multi-label Text Classification
Kristiina Vaik, Marit Asula and Raul Sirel . 26

Industrial Machine Translation System for Automotive Domain
Maria Sukhareva, Olgierd Grodzki and Bernhard Pflugfelder . 31

NERPy: A Framework for Named Entity Recognition Experiments
Constantine Lignos . 36

v

Proceedings of the LREC2020 Industry Track , pages 1–5
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

Spoken Medical Prescription Acquisition Through a Dialogue System on
Smartphone: Perspective of a Healthcare Software Company

Ali Can Kocabiyikoglu†, François Portet?, Jean-Marc Babouchkine†, Hervé Blanchon?

† Calystene SA, 38320 Eybens, France
?Univ. Grenoble Alpes, CNRS, Grenoble INP-LIG F-38000 Grenoble France

{a.kocabiyikoglu, jm.babouchkine}@calystene.com
{francois.portet, herve.blanchon}@imag.fr

Abstract
Industrial Medical Practice Management Software (PMS) have appeared in health institutions to reduce medication errors which affect
several million people worldwide each year. However, practitioners must enter information manually into PMS which decreases the
time devoted to care. In this paper, we describe the approach and some experiments of the implementation of an initial spoken dialogue
system in this low-resourced domain in an industry-oriented setting. The main objective is to provide a natural language interface as an
alternative to typing prescriptions in PMS. We highlight some of the difficulties of using deep-learning systems in an industrial context
and discuss how these systems could be used while enabling a full traceability. To overcome the lack of annotated speech data, we
present a way to generate aligned data for machine-learning systems and discuss the limitations of using artificial data generation. We
report on the findings of human evaluation conducted on the initial prototype with 2 medical experts and 2 naive users and discuss the
results of each module of the dialogue system from an industrial perspective.

Keywords: Spoken Dialogue Systems, Natural Language Understanding, Health Informatics, Natural Language Processing

1. Introduction
Mobile applications, internet of things, big data and digital
health are affecting permanently healthcare domain and all
of its actors. In this transformation process, health informa-
tion systems are becoming increasingly complex as a result
of the diversity of the digital tools available to patients and
the healthcare professionals. After the earlier dialogue sys-
tems that simulated conversations between doctor-patients
(Weizenbaum, 1966; Colby et al., 1971) and then that fo-
cused on commercial interactions such as advanced traveler
information systems (Bobrow et al., 1977; Price, 1990),
there has been an increasing interest on dialogue systems
developed for health-related purposes. While Calystene SA
is proposing healthcare informatics solutions for hospitals
since 1992 in France, following this trend, we also have
taken interest in dialogue systems as a part of our R&D
program.
If most industrial dialogue systems have been based on
some sort of expert rule-based models (Wallace, 2009), re-
cent research on dialogue systems focused on neural ap-
proaches for dialogue systems (Wen et al., 2017; Ultes et
al., 2017; Williams et al., 2017a) and led to end-to-end dia-
logue systems trainable by using a dataset of textual human
dialogues (Ultes et al., 2017; D’Haro et al., 2020). Avail-
ability of deep learning frameworks and large datasets al-
lowed training of such systems. Hence, for task-oriented
dialogue systems, instead of creating domain specific se-
mantics for each new task, these systems learn an interme-
diate semantic representation from data which is supposed
to fit better the needs of the task.
However, from an industrial perspective, the goal is also to
build agile, predictable, sustainable and scalable software.
Hence, statistical approaches must provide control over the
pipeline. Especially for the healthcare domain, without us-
ing any intermediate control mechanism, inferring directly
an output from an input representation can have serious

consequences.
Developing a dialogue system in the health care domain
implies specific requirements, in particular to meet the stan-
dards of security and confidentiality of health data, but also
the standards of healthcare software conformity and effec-
tiveness relating to the use medical practice software. In
this paper, we share our experience of the modeling pro-
cess of a hybrid dialogue system which uses recent ap-
proaches for NLU and dialogue management while incor-
porating rule-based software PMS which would allow a
control mechanism for the medical domain.

2. Overview of the Dialogue System

A classical dialogue architecture is based on a modular sys-
tem where each component is responsible for a specific task
(Williams et al., 2016). The different components of a di-
alogue system are the following : automatic speech recog-
nition (ASR), spoken language understanding (SLU), di-
alogue state tracking (DST), dialogue policy, natural lan-
guage generation (NLG) and text-to-speech (TTS). Since
our objective is to deliver a prototype as a mobile appli-
cation, we have to take into consideration several aspects
regarding the human-computer interaction and other details
which are not related to the Natural Language Processing
(NLP) domain.
We approach the medical prescription understanding prob-
lem as a dialogue task in which the utterance initiated by
the user must be understood, disambiguated and completed
through goal oriented dialogue. This way, missing infor-
mation about the prescription could be completed through
dialogue turns. When connected to a patient profile, pre-
scription assistance software could warn the practitioner for
potential adverse drug events (ADE) or adverse drug inter-
actions, etc. The example described Figure 1 illustrates this
strategy.

1

(1) Spoken Language Understanding
Prescriber: Metoprolol 200 mg one-half
tablet once a day at night during dinner

(2) Disambiguation and Information Filling:
(METOPROLOL 200 mg, coated tablets, extended-
release, route oral) (freq-ut: everyday,freq-
startdate: immediately)

(3) Requesting precision from the prescriber:
System: Please specify the duration of the prescrip-
tion
Prescriber: For one week

(4) Proposition of a structured prescription:
METOPROLOL 200 mg, tablets, route of adminis-
tration oral. One-half tablet at night during dinner,
starting from today for 1 week. Do you confirm?

(5) Checking for drug interactions and patient his-
tory:
System: Contraindication detected, the patient’s file
shows that the patient has had arthritis. Do you
want to add this prescription to the patient’s file?
Prescriber: No

Figure 1: Overview of the general approach

3. Challenges & Approach
Most of the dialogue systems created for health purposes
focus on preventive health and medical data collection of
patients, especially in the context of mental health problems
(Fitzpatrick et al., 2017) which raises a lot of concerns in
terms of privacy, ethics and effectiveness of the proposed
solutions.

3.1. Low-resourced domain
One of the major challenges for biomedical NLP is the lack
of freely available datasets for developing machine learn-
ing algorithms. There are very few datasets that are used in
NLP domain which are composed of natural language med-
ical prescription. For example, the challenges i2b2, which
took place in 2009, involved extraction medication infor-
mation from electronic health records (Uzuner et al., 2010).
As a part of this competition, 696 health records were re-
leased with 17 documents annotated by medical experts and
251 documents annotated by the scientific community.
Another dataset which is widely used in the medical do-
main is the MIMIC-III corpus which is an extension of
MIMIC-II providing a massive amount of data also used
by the NLP community (Johnson et al., 2016). However,
this dataset is not annotated medical prescription-wise.
Another issue in NLP is that for languages other than En-
glish, the situation is even worse, since the only paper we
found was (Deléger et al., 2010), who applied techniques
used for the i2b2 Shared Task to a French dataset extracted
from 17,412 French EHRs. This dataset cannot be made
available. We are not aware of any speech dataset related
to medical prescription that would be available to the com-

munity.
For a spoken dialogue system, a corpus of dialogues is
required for training and evaluating the systems. Since
we were not able to find any corpus for this task, we ap-
proached the dialogue modeling by using interactive learn-
ing (Bocklisch et al., 2017). Regarding the SLU aspect, our
approach for generating initial training data was to extract
medical prescriptions from a medical textbook and to com-
plement it with prescriptions generated by a context-free
grammar. Although the artificial data generation techniques
lacks of naturalness, it is capable of providing a large cov-
erage (cf. (Kocabiyikoglu et al., 2019)).

3.2. ASR and NLU Quality in the Pipeline
Most frequent use of speech recognition in clinical context
has been speech recognition software for dictation (Kumah-
Crystal et al., 2018). However, most of the earlier ASR
systems were abandoned quickly due to recognition er-
rors (Blackley et al., 2019). Recent systems transcribe con-
versational medical speech with around 20% Word Error
Rate (WER) (Edwards et al., 2017; Chiu et al., 2017). Most
of these systems are using cloud platforms which raises
questions about the privacy of the data, especially knowing
the fact that when proposing a solution to a client, the client
is not necessarily aware about how the data is processed.
For a modular dialogue system, since the output of a mod-
ule is feed as input into another module, errors appearing
in the earlier modules of the system is propagated through
other components and result in poor performances (Li et
al., 2017). This is why the ASR stage and NLU stage
must be as error-free as possible. Even though ASR sys-
tems are prone to errors, a spoken dialogue system can
benefit from human intelligence by implementing implicit
repetitions and visual confirmation of information on the
smartphone application. Also, for a given utterance when
the confidence level of the system is low, dialogue systems
could implement fallback actions such as explicit confirma-
tion to make sure that recognized utterances are validated
by the user.
However, creating an ASR system for health-related pur-
poses is a complex process and require good quality conver-
sational speech data. For demonstration purposes, we have
started using the cloud based speech recognition system
available on Android smartphone. A recent study on ma-
jor ASR services on medical conversational data show that
Google ASR produce on average 40% WER on healthcare
related conversational speech (Kodish-Wachs et al., 2018).
For medical prescriptions, the entries are more clear and
concise which allowed the use of an ASR cloud engine for
demonstration purposes. However, in order to scale the di-
alogue system at production-level, one should take into ac-
count the performance of ASR and the impact on the NLU
system. Ideally, before scaling process, it would be interest-
ing to test toolkits such as Kaldi (Povey et al., 2011) which
can run the ASR system locally even on Android platform
or to explore end-to-end SLU system (Desot et al., 2019).

3.3. Medical Components of the Pipeline
Healthcare applications are subject to strict conformity
checks often required by governments. In USA, the HIPAA

2

Figure 2: Pipeline of dialogue servers and external services

(Edemekong and Haydel, 2019) requires all healthcare fa-
cilities to implement strict rules to protect the confidential-
ity and integrity of patient information. In a similar way,
in France, medical applications should be certified by Na-
tional Authority for Health (HAS).

One of the crucial aspects of conformity is to provide
a seamless flow of information with medical knowledge
bases. Healthcare databases are updated regularly (daily
or weekly) and provide information about drugs and their
interactions. For example, in the case of refusal of a mar-
keting authorization from the government, medical appli-
cations should be capable of modifying the applications by
disabling the prescription of some drugs.

Our PMS, Futura Smart Design R© is certified by HAS and
is used at over 50 health care facility in France. Our knowl-
edge base, is based on Thesorimed R©, a large databases on
drugs, which is updated regularly by the French National
Health Insurance (Ameli). We are planning two levels of
verification to ensure a secure information validation pro-
cess. In order to do so, the processing pipeline involves
different levels of verification using several medical knowl-
edge bases. The overview of the different components that
incorporates expert knowledge is illustrated Figure 2.

At first (1), when a prescription intent is inferred from
an utterance, slot-fillers are extracted (2) to be associated
to common dispensation codes (UCD) of drugs (3). If
no drugs could be associated from the extracted semantic
frames, system suggests to restart the prescription process.
If there are more than one potential drugs corresponding to
semantic frames, the user is provided with a list of drugs
to choose and the process continue until all missing infor-
mation is inferred (4 and 5). At the second stage, when the
necessary prescription information is complete, we plan to
send this structured data to PMS (6). For a given patient
file, PMS handles the validation process of the prescription
and give information about drug interactions, patient aller-
gies, and so on (7 and 8). Until the prescriber validates the
prescription or cancel it.

3.4. Training Procedure and Traceability
Over the last decade, systems based on deep neural net-
works surpassed other methods in most of the existing lit-
erature in many fields. Availability of large datasets, re-
duction of costs of cloud computing platforms and con-
tinuously evolving deep learning frameworks allowed this
change especially in academic studies. Compared to
academia, the adoption of fully statistical methods have
been somewhat slower in industry. The reason is once a
dialogue system is deployed, it should be a part of contin-
uous integration (CI) and continuous deployment (CD) at
any point. However, the process for developing, deploying,
and continuously improving deep neural networks is more
complex compared to traditional software (Sculley et al.,
2015).
In domains where the output of a system can have serious
consequences, a system should be fully tracable. In case of
an error, one should be able to pinpoint easily the source of
an error. Decoupling tasks in a modular system allows this
partly by creating logs of each process.
In industry, it’s not uncommon to ‘hack’ a solution by man-
ually modifying a behavior in a software or correcting an
entry in the database when there is a specific need com-
ing from a client. A neural network is often viewed as a
black box in the sense that while it can approximate any
function, its structure does not provide any insight of the
function being approximated. Thus, quick-fix solutions and
even adjusting the system according to new data requires
the retraining of the whole system. Their behavior is of-
ten complex and hard to predict, harder to test, explain and
maintain (Sculley et al., 2015). A hybrid approach tack-
les this problem by allowing to train/adapt only the module
that is concerned by the changes (Williams et al., 2017b).
We are using the freely available Rasa X 1 toolset which
allows this by providing a simple web interface that allows
to modify the NLU, dialog scenarios and the domain defi-
nition from a web interface.

1http://www.rasa.com/

3

Task Sucess Rate Average Dialogue
Turns

NLU
(f-measure)

WER
(ASR)

Drug
Association
Rate

Average Time
Elapsed

medical
experts

45% 1.56 0.75 3.40% 0.62 30 seconds

naive
users

16.6% 1.54 0.43 17.35% 0.65 35 seconds

Table 1: Results of the human evaluation of the dialogue system

4. Experimental Results
In order to have an early feedback about the prototype, we
performed an human-based experiment. This experiment
had a double objective: collect speech dialogue corpus in
French using the dialogue system and evaluate the dialogue
modeling which extends our previous work of the evalua-
tion of our NLU system (Kocabiyikoglu et al., 2019). For
the evaluation process, we have contacted two medical ex-
perts and two naive users for prescribing medicine using
our mobile dialogue system.
Prescribing medicine is not an easy task for a naive user,
even when the information to utter is provided. There-
fore, we have prepared two procedures, one for medical
experts and another for naive users. To avoid reading be-
havior from the experts, they were given a textbook of ther-
apeutics which presents clinical cases and for which medi-
cal prescription is presented in a non-natural language way
(B. Gay, 2009). Thus they had to abstract the prescription
before uttering it. For naive users, however, another ther-
apeutics textbook for students in medicine was given (Per-
rot, 2015). All prescriptions information was explicitly pre-
sented so they did not need medical knowledge. Hence,
reading behavior could not be avoided.
In order to challenge the system and obtain various exam-
ples, the textbook prescriptions were ranked according to
their complexity. Each participant had to make 10 medi-
cal prescriptions using the mobile application a headset and
microphone in a silent room. For medical experts, they had
to try at least two challenging examples. In total, 40 dia-
logue were collected from 2 medical experts and 2 naive
users with 10 prescription each. The implementation pro-
cess does not include the interactions with the PMS and
focused on the prescription and drug association.
Results of the evaluation are summarized in the table 1. The
global task success rate (ratio of validated prescriptions)
which describes if the prescription has been completed or
not is low for both medical experts and naive users.
It can be seen that for medical expert, the ASR Word Error
Rate (WER) is very good while the NLU stage exhibits a
fair f-measure of 0.75 which stays in line with our previ-
ous study on our NLU performance (Kocabiyikoglu et al.,
2019). The picture is far less good regarding naive users.
A behavior which is common for both type of users is
the low dialogue turn (about 1.5). In fact, the dialogue
stopped quickly because the system often responded ”drug
not found”. This is illustrated the low score of Drug As-
sociation rate (about 40% of error). Another problem was
due to the difficulty of recognizing frequency (e.g., every
weeks) and duration (e.g., for the next two weeks). These

elements have been reported as been difficult to extract in
the i2b2 challenges as well (Uzuner et al., 2010) and are
due to a the lack of training data of intermediate interac-
tions such as precising the duration or the dosage of the
prescription.
In case the drug is associated correctly, the prescription pro-
cess takes around 20-30 seconds which is quite reasonable
with respect to the typing procedure.
Overall, this quick evaluation shows that although some
components gives satisfying performances the overall
pipeline is not robust enough for the expert (the target user
of the product). The evaluation of the modular architec-
ture permits to identify the necessary improvement such as
the NLU component (needs to be trained with examples for
precising duration and frequency of the prescription) the
drug identification as well as the dialogue management. In-
deed, the system has been trained using cooperative scenar-
ios. However, a good number of dialogues entered a fall-
back loop because of the lack of uncooperative scenarios.
The evaluation also showed that including non expert in
the process emphasize the difference in behavior and lan-
guage with the expert. Indeed, the poor performance of
the naive users were mainly due to some formulations that
were less technical and more familiar which differed sig-
nificantly from most of the training examples. Although
very limited in size, this evaluation shows the importance
of performing experiment including target users.

5. Conclusion
This paper presents an approach to make oral medical pre-
scription possible for an industrial prototype through dia-
logue on a smart phone. We discussed the trade-off be-
tween fully statistical end-to-end systems and the need for
control, maintenance, traceability and privacy in a real in-
dustrial setting. An initial working pipeline prototype has
been developed using a mixture of inference models ac-
quired by machine learning, expert system and professional
knowledge bases. The evaluation of this initial prototype
showed the importance of keeping a modular architecture
to identify the components that need improvement and em-
phasized the dependence of machine learning technique on
data; data that are very often unavailable in industry setting.
This call for more research in machine learning to develop
methods which could benefit both from expert knowledge
and a reduced amount of data.

References
B. Gay, P.-L. Druais, P. A. T.-D. (2009). Thérapeutique en

médecine générale. apnet.

4

Blackley, S. V., Huynh, J., Wang, L., Korach, Z., and Zhou,
L. (2019). Speech recognition for clinical documen-
tation from 1990 to 2018: a systematic review. Jour-
nal of the American Medical Informatics Association,
26(4):324–338.

Bobrow, D. G., Kaplan, R. M., Kay, M., Norman, D. A.,
Thompson, H., and Winograd, T. (1977). Gus, a frame-
driven dialog system. Artificial intelligence, 8(2):155–
173.

Bocklisch, T., Faulkner, J., Pawlowski, N., and Nichol,
A. (2017). Rasa: Open source language under-
standing and dialogue management. arXiv preprint
arXiv:1712.05181.

Chiu, C.-C., Tripathi, A., Chou, K., Co, C., Jaitly, N., Jaun-
zeikare, D., Kannan, A., Nguyen, P., Sak, H., Sankar, A.,
et al. (2017). Speech recognition for medical conversa-
tions. arXiv preprint arXiv:1711.07274.

Colby, K. M., Weber, S., and Hilf, F. D. (1971). Artificial
paranoia. Artificial Intelligence, 2(1):1–25.

Deléger, L., Grouin, C., and Zweigenbaum, P. (2010).
Extracting medication information from French clinical
texts. In MEDINFO 2010, pages 949–953, Amsterdam.

Desot, T., Portet, F., and Vacher, M. (2019). SLU for
voice command in smart home: comparison of pipeline
and end-to-end approaches. In IEEE Automatic Speech
Recognition and Understanding Workshop, Singapore.

D’Haro, L. F., Yoshino, K., Hori, C., Marks, T. K., Poly-
menakos, L., Kummerfeld, J. K., Galley, M., and Gao, X.
(2020). Overview of the seventh dialog system technol-
ogy challenge: Dstc7. Computer Speech & Language,
page 101068.

Edemekong, P. F. and Haydel, M. J. (2019). Health insur-
ance portability and accountability act (hipaa). In Stat-
Pearls [Internet]. StatPearls Publishing.

Edwards, E., Salloum, W., Finley, G. P., Fone, J., Cardiff,
G., Miller, M., and Suendermann-Oeft, D. (2017). Med-
ical speech recognition: reaching parity with humans.
In International Conference on Speech and Computer,
pages 512–524. Springer.

Fitzpatrick, K. K., Darcy, A., and Vierhile, M. (2017). De-
livering cognitive behavior therapy to young adults with
symptoms of depression and anxiety using a fully auto-
mated conversational agent (woebot): a randomized con-
trolled trial. JMIR mental health, 4(2):e19.

Johnson, A. E., Pollard, T. J., Shen, L., Li-wei, H. L., Feng,
M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L. A.,
and Mark, R. G. (2016). Mimic-iii, a freely accessible
critical care database. Scientific data, 3:160035.

Kocabiyikoglu, A. C., Portet, F., Blanchon, H., and
Babouchkine, J.-M. (2019). Towards spoken medical
prescription understanding. In 2019 International Con-
ference on Speech Technology and Human-Computer Di-
alogue (SpeD), pages 1–8. IEEE.

Kodish-Wachs, J., Agassi, E., Kenny III, P., and Overhage,
J. M. (2018). A systematic comparison of contemporary
automatic speech recognition engines for conversational
clinical speech. In AMIA Annual Symposium Proceed-
ings, volume 2018, page 683. American Medical Infor-
matics Association.

Kumah-Crystal, Y. A., Pirtle, C. J., Whyte, H. M., Goode,
E. S., Anders, S. H., and Lehmann, C. U. (2018). Elec-
tronic health record interactions through voice: a review.
Applied clinical informatics, 9(03):541–552.

Li, X., Chen, Y.-N., Li, L., Gao, J., and Celikyilmaz,
A. (2017). Investigation of language understanding im-
pact for reinforcement learning based dialogue systems.
arXiv preprint arXiv:1703.07055.

Perrot, S. (2015). Thérapeutique pratique 2015. MED-
LINE.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glem-
bek, O., Goel, N., Hannemann, M., Motlicek, P., Qian,
Y., Schwarz, P., et al. (2011). The kaldi speech recog-
nition toolkit. In IEEE 2011 workshop on automatic
speech recognition and understanding.

Price, P. (1990). Evaluation of spoken language systems:
The atis domain. In Speech and Natural Language: Pro-
ceedings of a Workshop Held at Hidden Valley, Pennsyl-
vania, June 24-27, 1990.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips,
T., Ebner, D., Chaudhary, V., Young, M., Crespo, J.-F.,
and Dennison, D. (2015). Hidden technical debt in ma-
chine learning systems. In Advances in neural informa-
tion processing systems, pages 2503–2511.

Ultes, S., Barahona, L. M. R., Su, P.-H., Vandyke, D.,
Kim, D., Casanueva, I., Budzianowski, P., Mrkšić, N.,
Wen, T.-H., Gasic, M., et al. (2017). Pydial: A multi-
domain statistical dialogue system toolkit. In Proceed-
ings of ACL 2017, System Demonstrations, pages 73–78.

Uzuner, Ö., Solti, I., and Cadag, E. (2010). Extracting
medication information from clinical text. Journal of the
American Medical Informatics Association, 17(5):514–
518.

Wallace, R. S. (2009). The anatomy of a.l.i.c.e. In Robert
Epstein, et al., editors, Parsing the Turing Test: Philo-
sophical and Methodological Issues in the Quest for the
Thinking Computer, pages 181–210. Springer Nether-
lands.

Weizenbaum, J. (1966). Eliza—a computer program
for the study of natural language communication be-
tween man and machine. Communications of the ACM,
9(1):36–45.

Wen, T.-H., Vandyke, D., Mrkšić, N., Gašić, M., Rojas-
Barahona, L. M., Su, P.-H., Ultes, S., and Young,
S. (2017). A network-based end-to-end trainable task-
oriented dialogue system. In EACL 2017, pages 438–
449, Valencia, Spain.

Williams, J., Raux, A., and Henderson, M. (2016). The di-
alog state tracking challenge series: A review. Dialogue
& Discourse, 7(3):4–33.

Williams, J. D., Asadi, K., and Zweig, G. (2017a). Hybrid
code networks: practical and efficient end-to-end dialog
control with supervised and reinforcement learning. In
ACL 2017, pages 665–677, Vancouver, Canada.

Williams, J. D., Asadi, K., and Zweig, G. (2017b). Hy-
brid code networks: practical and efficient end-to-end di-
alog control with supervised and reinforcement learning.
arXiv preprint arXiv:1702.03274.

5

Proceedings of the LREC2020 Industry Track , pages 6–9
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

Promises and Disappointments of Semantic Analysis of Speech-To-Text Applied

to Call Center Conversations in an Industrial Setting

Ruslan Kalitvianski, Emmanuelle Dusserre, Muntsa Padró
ELOQUANT

5 allée de Palestine, 38610 Gières

{ruslan.kalitvianski, emmanuelle.dusserre, muntsa.padro}@eloquant.com

Abstract
Recent progresses in speech-to-text technologies, and the marketing hype they create, lead to believe that speech-to-text has become
robust enough for reliable semantic analysis of textual transcripts of phone conversations to have a chance to be feasible. This paper
describes our experience as a mature provider of semantic analysis of written text in French with analysis of uncorrected machine
transcripts of real-life call center two-speaker conversations. We argue that, although much progress has indeed been made, many
difficulties remain before French conversation transcripts can be exploited to their full potential.

Keywords: speech-to-text, semantic analysis, opinion mining, classification, call center

1. Introduction

Our team has been developing commercial solutions for
semantic analysis for text in French for many years. We
propose machine learning and expert-based systems for
generic and bespoke multilabel classification, opinion
extraction and topic modelling. Since the acquisition of our
start-up by a company specialized on customer relations
management solutions, the services we provide are shaped
on the direction of extracting information from the different
channels we propose to our client companies to
communicate with their customers.

One of these channels, and probably the most important
today for us, is the voice channel. Our company offers a
platform for managing call centers with multichannel
interactions (phone, emails, chat…), phone calls being
nowadays more than 80% of the communications managed.
Thus, the amount of data generated from the conversations
of our customers with their costumers is huge. To enhance
the service we give to our customers, it is a natural step to
experiment with the use machine analysis of conversation
recordings to automatically determine which topics are
being discussed, how the conversation is evolving, what are
the emotions expressed by the customer, etc.

There is a profusion of providers of speech-to-text (STT)
solutions on the market for the French language. Nuance,
Vocapia, Bertin IT, Allo-Media, IBM Watson, Google
Speech-to-Text, to name some. A few are specialized in
phone conversations, but most offer various models trained
for different purposes.

We are aware of numerous works on deep learning-based
architectures that have considerably advanced the state of
the art in speech transcription, but in this paper, we are
interested in mature commercial solutions, being agnostic
of the underlying technologies.

This paper describes our experience as an experienced
provider of semantic analysis for French with analysis of
uncorrected machine transcripts of real-life call center two-
speaker conversations. First, we describe the rationale that
a company such as ours could have for using semantic
analysis of machine transcripts, then we describe the
difficulties and obstacles we encountered when trying to
apply our technology on this data.

2. Promises of STT: Massive analysis of an
abundant resource

Call centers abound with recordings of conversations,
which represent a big wealth that companies could exploit
to better serve their customers and improve the efficacity
of their contact centers. Nevertheless, these data are not as
readily exploitable as written text, therefore good STT
systems are crucial for the development of these
applications.

In what follows we present some interesting tasks that
could be performed with a quality speech transcription.

2.1 What STT providers can do

Other than raw speech-to-flow-of-words transcription,
many STT systems provide other features:

• “Speaker diarization is the task of determining “who
spoke when”” (Anguera et al., 2010). Most
commercial STT providers include automatic or semi-
automatic identification of the number of speakers in
a conversation and attribution of speech turns,
performing a kind of speech segmentation, which is
useful when the audio is single channel (mono). This
task may also involve speaker gender identification.

• Word timestamping and word transcription
confidence scores: some systems (Vocapia, Bertin IT)
assign a timestamp to each transcribed token. This
allows to align tokens with the audio, a useful feature
when developing an interactive audio player that
displays the transcription. More expert users may
benefit from the confidence score ∈ [0, 1] that these
systems assign to each token. Other STT providers
(Nuance) can output a lattice of transcription
candidates which allows NLP experts to select the
best transcription path using a custom language
model.

• Several systems (Nuance, Vocapia, Bertin, Google
STT) can incorporate custom vocabularies for correct
transcriptions of persons’ names, product names,
places, etc. Some accept a simple list of words, other
allow to specify a category for each custom word
(product name, locality, etc).

• A few systems (Google, Vocapia) have begun adding
automatic punctuation to their output, which renders
the transcript more natural to read.

6

2.2 Indexation

The most basic use for speech transcripts is term indexation
of the audio. This allows searching among and within the
conversations for mentions of specific terms. This is a need
that has been expressed by some of our customers during
our brainstorming workshops.

2.3 Semantic analysis

We provide Web platforms that allow to graphically
display results of semantic analyses on an interactive
dashboard (Dusserre et al., 2020). One can thus combine
results of different analyses to select, for example, opinions
expressed about one or several products or topics. The
purpose of these platforms is to provide our clients with an
overview of the vocal interactions between their agents and
their customers, since the volumes of the data, coupled with
the time it takes to listen to a call, vastly exceed the hu-
manly analyzable. Thus, a more ambitious use is machine
analysis of the transcripts for:

• Speaker role identification: based on the diarization
performed by STT, determine who of the speakers is
the client and who is the agent. In a general setting,
one cannot systematically say, for instance, that the
first person to speak is the agent that is replying to an
incoming call. An analysis of what is said is necessary
to determine who is who in the conversation. This will
allow both filtering in the Web dashboards, and
analyses tailored to each type of speaker.

• Call topic extraction: extract the topics addressed in
each call, either for statistical analysis over large
collections of calls (to determine the most frequent
topics and their diachronic evolution) or to classify
the call (i.e. for indexing, routing, etc.). This task can
be approached in two ways:
i. Unsupervised topic modelling: given a significant

amount of calls, extract the most frequent topics
that are relevant to the current domain. This allows
for an evolutive modelling of the calls for each
costumer and to discover new topics.

ii. Supervised classification: given a predefined set
of categories, use a classifier to determine the
topics of a call. This allows to track over time a set
of categories that we know are important for the
customer/domain.

• Opinion mining: extract feedback given by the
customer (positive or negative opinions, action
requests, threats, etc.). This would allow to perform
real-time alerting about unhappy customers, study the
opinions related to each topic or category, etc.

• Domain-specific named entity recognition: detect the
mentions of a given product or specific entity to gain
insights into its popularity, understand the satisfaction
level related to it, etc.

• Automatic summary generation and action item
detection: this has been attempted by the CALO
Meeting Assistant Project (Tur et al., 2010) for
English, and, more recently by the REUs project for
French (Patel et al., 2019).

2.4 Good/bad practice identification

Our client companies’ agents say that the mere fact of
reading one’s own conversation transcript al-lows them to

1 https://www.vocapia.com/glossary.html

better themselves by an a posteriori analysis of how an
interaction.

An advanced semantic analysis may also help identify the
specific rhetoric used by the agent that allowed him or her
to close a deal, or, on the opposite side, to see what went
wrong in an interaction.

Many companies have scripts that their agents must adhere
to (for instance mentioning a product’s name N times
during an advertisement), and semantic analysis could be
used to check for script conformity.

2.5 Combining NLP extracted information
with structured data

Information extracted from audio can be combined with
that extracted from other data sources, which can be
especially useful in a multichannel customer relation
management platform. Some examples of other data can be
event information (how long was the conversation, did the
customer already contact the company before, etc.),
customer information (age, gender, etc.), closed questions
answers (e.g. satisfaction note the customer gave in a
survey), among others. Thus, we can imagine several
applications of combining these kind of data with data
extracted from conversations: profiling of customers and
agents to assign them to the best suited agent, prediction of
satisfaction rate given the contents of the conversations,
computing automatically first call resolution rate, etc.

3. Difficulties

Our first attempt at semantic analysis of conversation
transcripts was for a client company that routinely recorded
their pre-sale and customer support conversations via the
several call center platforms they employ. These are
conversations recorded in France, whose length ranged
from less than a minute to over 40 minutes long.

We agreed to transcribe conversations that were between 1
and 10 minutes long and transcribed over 10000 such
audios over a period of one year. All audios are single
channel, 8KHz, 64 Kbit/second, encoded with G711.

3.1 Choice of STT provider

The first obstacle was selecting the best provider of STT
for French. We had to construct a gold standard of
transcription on the data of the client, a process that is very
time-consuming: on average, transcribing 4,5 minutes of
audio required an hour of work per person.

The task was distributed to 20 participants which allowed
us to collect 90 minutes of transcribed speech. Instead of
making our participants work from scratch, we chose to
give them machine transcripts from a promising STT tool,
that they would correct via a text editing tool. A posteriori,
all participants felt that having a machine “pre-transcript”
was useful, and accelerated the transcription process.

3.1.1 The issue of evaluation

We chose to evaluate several systems using the word
accuracy metric (WAcc = 1 - Word Error Rate1). We
normalized input texts by stripping punctuations (if any),
lowercasing words, removing some disfluency markers

7

(“euh”, “hum”, etc.) as well as newlines. The texts to be
compared are therefore streams of words. We chose not to
evaluate speaker diarization, because was of lesser priority.

We evaluated a total of ten models of five leading STT
providers. Given that the conversations centered on the
client’s products (heating appliances), we built a lexicon of
client-specific terms, and used it as a parameter for systems
that accepted vocabulary customization.

On twenty audios of 4.5 minutes each, the lowest observed
average word accuracy rate was 0.47 and the highest was
0.73. The median WAcc was 0.696. The highest average
WAcc was obtained with a system that used a phone
conversation model supplemented with the client’s
vocabulary.

It is important to note that merely focusing on average
performance occults the performance of the system in the
best and worst cases, and, more generally the variability in
performance. Thus, the system with the best average WAcc
transcribed only 10% of the audios with a WAcc at or
above 0.8, whereas the second-best transcribed 15% of the
audios with a WAcc at or above that threshold, but
conversely it produced less transcriptions that reached the
0.7 WAcc threshold.

3.1.2 Lexical fidelity vs task usefulness

Lexical fidelity may not be the best or the only measure of
the performance of a STT system. We decided to perform
and extrinsic evaluation by comparing the results of our
analyses on the gold standard transcriptions with those on
the automatic transcriptions using the two best STT
providers with their best configuration. We evaluated three
analyses that produce sets of words or categories:

• Concept extraction, which extracts nouns and
nominal groups that are significant to the domain
using a terminology extraction system based on
Sclano and Velardi (2007).

• Categories, which are client-specific themes, based on
a ML classifier (which uses as features the word, the
lemma, noun phrases, and semantic annotations
coming from domain-specific gazetteers), and hand-
written rules based on the TokensRegex formalism
(Chang and Manning, 2014).

• Domain-specific Named Entities, which are simply a
list of our client’s products and their synonyms.

Table 1 demonstrates that a system that performs better at
transcription (average WAcc = 0.73) may reveal itself to be
less useful for semantic analysis than a system with a
slightly worse performance (average WAcc = 0.699).

 F-measure

Concepts Categories
Domain

NEs

Best

system

Average 0.51 0.79 0.69

Median 0.52 0.85 0.73

Second-

best

system

Average 0.50 0.86 0.83

Median 0.48 0.92 0.86

Table 1: performance of three semantic analyses on machine

transcripts by the two best systems (as determined by their

average WAcc), with human transcripts analyses as reference.

These results show that, paradoxically, analyses performed
on the output of the best system show less agreement with
analyses of human transcripts of the same audios than
analyses of the output of the second-best system. The
discrepancy is likely due to differences in the abilities of
these systems in integrating customer-specific vocabulary
into the transcription model. More generally, that shows the
importance of performing this kind of evaluation on top of
core task evaluations, since they may reveal that the most
useful systems for industry purposes may not be the ones
that have best scores on paper.

3.2 Insufficient audio quality

Real-time telephony is a low-latency transmission whose
only requirement is human intelligibility of speech. Signal
is deformed at many steps, including capture (low quality
microphones), encoding, transmission (loss of packets),
mixing (fusion of two speaker channels into one).

Moreover, the system we selected based on best average
performance does not attempt automatic punctuation,
which results in a flow of words that seem odd when read,
even if correctly transcribed, partly because they lack
prosodic features such as pauses.

Thus, the indexing and reading promise of STT appears
only partially fulfilled. Reading a transcript is often a
tedious task, because of the reasons above, and because one
must guess what words were actually uttered when one
reads an erroneous portion, which is a cognitively
demanding task.

3.3 Insufficient transcription quality

Upon subjective evaluation of transcription quality, it
turned out that a WAcc of 0.7 corresponded to a rather low-
quality transcription. Most of the correct words were trivial
words, there were portions that were not transcribed, often
at the beginning of a speech act.

Moreover, the system we selected based on best average
performance does not attempt automatic punctuation,
which results in a flow of words that seem odd when read,
even if correctly transcribed, partly because they lack
prosodic features such as pauses.

Thus, the indexing and reading promise of STT appears
only partially fulfilled. Reading a transcript is often a
tedious task, because of the reasons above, and because one
must guess what words were actually uttered when one
reads an erroneous portion.

3.3.1 Speaker diarization

This is a necessary step when one has mono audio (as we
did) and wants to build a speaker classification system to
determine which speaker is the client and which one is the
agent. The two typical errors we observe with speaker
diarization are:

• Incorrect identification of the number of speakers: in
our context two is the correct number, but sometimes
more are found, or, when the voices of the two
speakers are similar, only one. Some systems can take
the maximum number of speakers as a parameter,
others cannot.

• Incorrect speech turn boundary placement, which
attributes words to the wrong speaker, making the

8

transcript less comprehensible and confusing the
speaker role identification system.

3.3.2 Impact of noise and errors

As mentioned before, there are many errors on the
automatic transcriptions. This means that the semantic
analysis systems that we build to extract information have
to be very robust to these errors. This implies that it is very
challenging to develop rule-based or Machine Learning
systems that correctly model a very variable set of contexts.
Here, we must deal with the already rich and variable
spoken language with noise added by the STT system.

Furthermore, French is especially difficult to analyze
because of its high degree of homophony. It is crucial to
have a good language model, and to adapt it to each
domain, since each customer will have a set of specific
words (names of products, for example) that are unknown
by the system or that appear in unexpected contexts. In our
experience, this lexical and contextual tuning are
mandatory to improve the quality and, most importantly,
task usefulness of the transcriptions. Adding words is an
option for many STT system, but it would also be useful if
words that are observed in machine transcriptions and are
unlikely in the client’s context could be manually removed
from the model’s vocabulary.

3.4 Analyzing text vs analyzing speech

A difficulty that is not necessarily related to the quality of
the transcription is the vast difference between written one-
time comments and spoken conversations.

3.4.1 Disfluencies of speech

We use linguist-defined rules that describe specific lexical
and syntactic patterns to detect opinions. Spoken language
is much less precise than written comments, and it is much
harder to write patterns that match discourse filled with
disfluencies, interruptions and transcription errors.

3.4.2 Loss of prosody

Much emotional information is conveyed by prosody,
which could be used to increase confidence in opinions
detected in the text. Thus, to correctly detect opinions,
studying not only lexical items, but also the prosody seems
mandatory. None of the systems we tried supplied this
information.

3.4.3 Expressions of opinions

Usual sources for opinion mining are surveys or reviews
that are rich on opinionated expressions since this is their
purpose. Detecting opinions in an oral conversation is
much more difficult, for several reasons:

• As mentioned, a much emotional information is
conveyed by prosody, not on the language itself.

• The purpose of many conversations is often to
factually discuss topics, not necessarily to express
satisfaction or unsatisfaction. Thus, the opinions are
found much less frequently, mixed with a lot of other
information, and often expressed implicitly.

• Given the oral nature of the speech and the errors from
STT systems, the sentences are rarely syntactically
complete, thus, opinion extraction systems based on
syntactic patterns only rarely match.

• Expressions such as “good”, “very well” or “ok” often
imply an opinion in written reviews but are used as
mere acquiescence in phone conversations.

4. Conclusion

As a call center management software experts and NLP
experts, we are highly interested on exploit-ing STT
solutions to process the big amount of data that our
customers produce. We believe that the call center software
of the future will allow companies to better serve their
customers by automatizing as much as possible the study
of the needs, expectations, and satisfaction of the
customers.

The promise of STT systems is to accurately transform
audios into written texts, which would al-low their
browsing, indexing and detailed analysis.

In this paper, we have presented some of the applications
that we can imagine of such a transcription and analysis,
but also the current limitations discovered in practice when
applying current state-of-the-art commercial solutions to
our real-world data. Namely, even if we can extract some
information as the topics of a conversation, the quality of
the transcription is often not good enough to be read
without listening to the audio.

In our domain, we observed two leverages that can improve
the quality of STT systems: the quality of the audio, which
in our case is limited by the phone lines, and the use of in-
domain lexica to tune the STT models. These are, of course,
known issues for researchers, but what is sometimes
ignored is the difficulty in real life to obtain (or create)
audio in good quality and good lexical resources.

The lessons learnt from our experiences is that big attention
has to be given to these factors before setting up a project,
and that there is still a long way to go to be able to fully
analyze call conversations, but we remain optimistic about
the possibility of reaching this goal and to industrializing
se-mantic analysis of this channel.

5. Bibliographical References
Anguera, X., Bozonnet, S., Evans, N., Fredouille, C., Friedland,

G., & Vinyals, O. (2012). Speaker diarization: A review of
recent research. IEEE Transactions on Audio, Speech, and
Language Processing, 20(2), 356-370.

Chang, A. X., & Manning, C. D.: TokensRegex: Defining
cascaded regular expres-sions over tokens. Technical Report
CSTR 2014-02. Department of Computer Science, Stanford
University (2014)

Dusserre, E., Kalitvianski, R., Ruhlmann, M., & Padró, M.
(2020). Analyse sémantique de transcriptions automatiques
d'appels téléphoniques en français. Actes de la 6e conférence
conjointe JEP, TALN, RÉCITAL, Volume 4: Démonstrations et
résumés d'articles internationaux.

Patel, N., Lannes, M., & Pradel, C. (2019, July). Patrons
linguistiques pour l'extraction de tâches dans des transcriptions
de réunions. In Actes de PFIA 2019, pp. 158–166. PFIA.

Sclano, F., & Velardi, P.: TermExtractor: a Web Application to
Learn the Shared Terminology of Emergent Web
Communities. In: R. J. Gonçalves, J. P. Müller, K. Mertins, M.
Zelm (Éd.): Enterprise Interoperability II, pp. 287‑290.
Springer London (2007)

Tur, G., Stolcke, A., Voss, L., Peters, S., Hakkani-Tur, D.,
Dowding, J., ... & Frederickson, C. (2010). The CALO meeting
assistant system. IEEE Transactions on Audio, Speech, and
Language Processing, 18(6), 1601-1611.

9

Proceedings of the LREC2020 Industry Track , pages 10–14
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

Industrial ASR Troubleshooting Tool

Oleksandr Solop, Filip Sawicki, Andrzej Jeziorski, Marcin Sikora
Michał Junczyk, Tomasz Zietkiewicz

Samsung Research Institute Poland (SRPOL)

Abstract
During the development of an industrial scale Automatic Speech Recognition (ASR) system significant quantities of
evaluation data have to be analyzed in order to make positive adjustments to the ASR subsystems. The scale and variety
of the evaluation data, as well as the complexity of the ASR system architecture makes both manual improvements and
automatic model boosting a challenging task. We present a system created to facilitate more effective improvement of
the ASR recognition rate with the help of a web tool that provides aggregation, quality review and statistical analysis of
ASR performance evaluation data in a human readable format. This paper presents an overview of the system and some
exemplary use cases.

Keywords: ASR, error rate, tokenization, alignment, data pipeline, evaluation data

1. Introduction
Evaluation and development of industrial scale, ma-
chine learning based systems like Automatic Speech
Recognition (ASR) is a challenging task due to
quickly evolving product requirements and dependen-
cies between data and system components, often with
hidden feedback loops. ASR systems are evaluated
in an iterative manner and as a result produce large
amounts of evaluation data, which is hard to explore
manually. One of the approaches to increase the
efficiency of development is to focus on the issues
which most significantly impact performance.

The ASR Troubleshooting Web Tool is made to ad-
dress the above challenge. The tool aggregates tokens
extracted from evaluation data and produces a pool of
words that have a high probability of being attributed
to a common error. These tokens are called ”trouble-
makers”. ASR experts can use the tool to mark is-
sues which are hard to automatically detect and sug-
gest corrections to models by monitoring top trouble-
makers in each ASR system version.

2. Literature Review
The need exists for industrial systems that contin-
uously improve ASR, as seen in the pending US
patent by call analytics firm Marchex Incorporated.
The patent specifies a system that automatically
provides faster and more accurate ASR for telephone
calls. In addition to automated model refinement
the cited patent provides a human interface for the
manual review of transcriptions. Our system not only
provides efficient way to detect quality issues in test
data, but also provides an extended view of evaluation
results thanks to data statistics, aggregated around

tokens. (Marchex, Inc., 2018)

In more general terms, our work addresses problems
related to machine learning pipelines deployed in a
production environments. Many academic publication
have been made on the topic. For example D. Scul-
ley et al. specify how technical debt creeps it’s way
into machine learning systems. (Sculley et al., 2015)
Our solution mitigates some of the technical debt is-
sues listed in the article, e.g. the increased cost of
analysing an individual model due to it’s dependency
on models preceding it in the pipe. B. Nushi et al.
go more in depth into the problem of troubleshooting
component-based machine learning systems and pro-
pose a human-in-the-loop approach to model refine-
ment.(Nushi et al., 2017) In their case study on Auto-
mated Image Captioning they rely on crowdsourcing
microtasks to fine-tune components. Our approach
provides a boarder set of information and allows ex-
perts to make sweeping adjustments to the pipeline
elements.

3. Materials and Methods
3.1. ASR evaluation data overview
An ASR test case (ASR TC) is a pair consisting of
an audio/speech recording and a corresponding tran-
scription. An organized collection of ASR TCs in a
standardized format, with relevant meta-data (e.g. lan-
guage, domain, acoustic conditions etc.) constitutes
an ASR database (ASRDB). An Automatic Speech
Recognition (ASR) system generates an orthographic
text representation (hypothesis) to an audio input (au-
dio recording). The quality of an ASR system is eval-
uated by comparing the similarity of the hypothesis
generated for a given audio recording to a manually
created transcription (reference) of the corresponding

10

recording, across a given set of ASR TCs. Depending
on the ASR subsystem being evaluated, either a basic
reference or a normalized reference is used. The basic
reference contains only tokens and is used to evaluate
the performance of Language Models (LM), while the
normalized reference is used for Inverse Text Normal-
izer (ITN) evaluation, therefore it should resemble text
written by humans and respect language specific nor-
malization rules related to numeric expressions for-
matting, spelling of named entities, punctuation etc.
In order to generate ASR hypotheses resembling text
written by humans a combination of various modules
is used (see next section).

3.2. ASR system overview
The ASR system is comprised of a long short-term
memory (LSTM) Acoustic Model (AM), Grapheme-
to-Phoneme (G2P) model, n-gram Language Model
(LM), optional n-gram Personal Language Model
(PLM) and Inverse Text Normalizer (ITN) post-
processing modules. All the models have been trained
using proprietary data. An in-house built decoder has
been used to generate 1-best hypothesis. The hypoth-
esis is then processed by different ITN submodules,
including:

• Preprocessor - removes tags inserted by decoder
(such as start and end of utterance tags), normal-
izes casing by the decoder output

• Inverse Number Normalizer (INN) - performs in-
verse normalization of numbers by replacing nu-
merals with appropriate numbers.

• Fixers - perform string substitutions, either ones
defined by language experts as regular expres-
sions patterns or performed automatically, by sta-
tistical models trained on ASR evaluation data.

ITN modules are connected in the form of a pipeline.
Each of them can be selectively turned off. During the
ASR evaluation ITN is tested multiple times with dif-
ferent modules turned on and off, to check them sepa-
rately and provide a way to spot the exact cause of pos-
sible errors. This, together with the PLM module also
being turned on and off, leads to production of differ-
ent ASR hypotheses. ITN specification in the indus-
trial ASR system needs to be quickly adapted to evolv-
ing user needs, language conventions, market trends
and system architecture. Given the inter-subjective na-
ture of language, hidden/complex organizational de-
pendencies with sometimes conflicting requirements,
it’s necessary to manage the ITN functional require-
ments as a common ”ASR text normalization proto-
col”, available to all stakeholders, including product

owners, ASR developers, testers and language experts
responsible for creating references.

3.3. Data Aggregation

In order to provide a human readable view of the
complex ASR evaluation pipeline, the system uses
data from ASRDB evaluation sets and corresponding
ASR hypotheses generated with various system
settings. If a hypothesis has a word recognition
rate of xwrr = 1 compared to the normalized refer-
ence (ref-n), then it is considered to be correct, else
there is a mismatch and the pair is marked as incorrect.

The Troublemaker Tool was designed using the
ETL (Extract, Transform, Load) concept to generate
the best data pipeline performance using available
resources. The system saves only structured, filtered
and polished outcomes instead of large amounts of
ASR test results in various formats.

System ETL steps
1. Data loading, validation and filtration
2. Collection of mismatched tokens
3. Calculation of aggregated statistics on tokens
4. Extraction of troublemakers
5. Comparison of mismatched utterance pairs
6. Concordance and stability metric preparation
7. Saving processed data to database

During the data processing stage, the ETL system
collects and counts all tokens that appear in mis-
matched utterance. These tokens are grouped together
and used to calculate aggregated statistics. Based on
the gathered metrics our system selects troublesome
tokens that have both high fail frequency and the
greatest influence on ASR performance. Fixing errors
in tokens with the highest combination of total count,
stability and frequency yields the most significant
improvements in ASR. We have created several
metrics to make detection of these tokens easier (see
section ”Troublemaker Metrics”).

To make an ASR improvement suggestion with the
Troublemaker, the reference and hypothesis has to be
compared to find differences. Our tool makes use of
a sequence matching algorithm to reject equivalent
tokens from both sentences. A pairwise sequence
alignment algorithm is then applied to find the best
matching tokens based on the received similarity
score. Moreover the entropy value for each token
is calculated. It shows how spread out the error is
and thus gives information on how meaningful the
potential fix would be.

11

3.4. Troublemaker Metrics
TokenCount: the number of ASR TCs containing a
given token. This metric helps to prioritize work by
providing information about the ”troublemaker” to-
ken’s impact based it’s popularity. x is equal to 1 if
the token is present in the sentence i and 0 otherwise.
n is the total number of ASR TCs in the evaluation set.

TokenCount =
n∑

i

xi

FailsCount: the number of incorrect hypotheses re-
lated to the token. Incorrect hypotheses are those with
a word recognition rate wrr < 1. xi;wrr<1 is equal to
1 when the token in present in the sentence and the
sentence is from a failing ASR reference-hypothesis
pair.

FailsCount =
∑

i

xi;wrr<1

Frequency: Ratio of incorrect hypotheses to all ASR
TCs containing the token. Shows an estimate of how
often the token is failing.

Frequency =
FailsCount

TokenCount
Entropy: Measure of the level of uncertainty asso-
ciated with a given token. F is the Frequency of the
token failing.

Entropy = − (F · log(F) + (1− F) · log(1− F))

Fail Coefficient: a modified frequency metric that re-
duces the number of most common tokens shown and
include less frequent ones. Higher values indicates
bigger impact on ASR system performance. User can
sort troublemakers by this field to work with the most
important defects first.

Fcoeff = Frequency · log(TokenCount)

FCoeffR: the logarithm of the token’s rank among all
of the tokens based on Fcoeff values.
EntropyR: the logarithm of the token’s rank among
all of the tokens based on Entropy values.
Wrank: a weighted rank based on a combination of
Fail Coefficient and Entropy ranks. The metrics tries
to balance between token frequency, replacement sta-
bility and overall incorrectness. It is used as a main
metric for comparison of different ASR system ver-
sions. The lower the rank, the more the token is wor-
thy of the user’s attention. A1 and A2 are adjustable
weight constants that effect the ratio with which FCo-
eff and Entropy effect Wrank.

WRank = (A1 · FCoeffR) · (A2 · EntropyR)

4. Triage Process
Every ASR data report contains a change rate based
on the aggregated troublemakers Wrank metric, which
makes it easy to compare performance of any pair of
ASR system versions. This simplifies results analysis,
because it allows the review of data by portions.
Language experts have access to multiple tables de-
scribing top tokens per hypothesis. These tables in-
clude all metrics, which are used to locate troublemak-
ers that are the most cost-efficient to fix, and the num-
ber of reported issues related to them. Moreover, our
tool can represent two kinds of troublemakers: the ref-
erence troublemakers (tokens, which ASR rarely rec-
ognizes correctly) and hypothesis troublemakers (to-
kens, which ASR outputs too often). This error type
separation and issue detection prevents the ASR sys-
tem from over-fitting and under-fitting on these trou-
blemakers.
After the user selects a troublemaker to work with,
the concordance view opens, enabling the checking
of details about a troublemaker’s word stability, for
example all mismatched tokens with their probabili-
ties.The concordance view also contains a pool of ran-
dom utterance pairs (reference and hypothesis) con-
taining the selected troublemaker. A single exam-
ple row consists of information about WRR, a button
for audio recording playback and comparisons of hy-
potheses from other stages of the ASR pipeline. All
troublemaker words and potential replacement words
are presented in a joint column to facilitate the process
of issue analysis.

 The cat sat on the mat 0.77 The dog sat on the mat

...
0.65 The big cat on the mat The big dog sat on the mat

Reference wrr Hypothesis

 The cat sat on the mat 0.77 The dog sat on the mat

Figure 1: Concordance view example.

An expert can report issues related to the troublemaker
token using the report panel. In this panel, one can
quickly assign the troublemaker to several categories,
depending on the issue type. Additionally one can
provide a detailed description of the problem and tag it
with other relevant tokens. Different issue categories
are then automatically routed to appropriate developer
teams which are specialized in fixing the particular
problems. An exemplary set of problem classes for
a typical ASR system has been described below. This
set can differ vastly, depending on the ASR system ar-
chitecture.
Audio: a recording may or may not meet quality re-
quirements, depending on the purpose of a particular
ASRDB. For example, audio with an above normal

12

distortion level, can be reported if present in a regres-
sion test set which supposed to contain only clean au-
dio data. In other contexts it can be a useful example
of a real usage scenario. Other fairly common issues
are excessive cross-talk, incomplete or unintelligible
speech.
Reference: since ASRDBs references are prepared
by language experts, they are prone to human errors.
The typical problems are: incorrect normalization, ty-
pos and the unnecessary transcription of background
speech.
AM: poor recognition in certain acoustic conditions,
systematically substituted tokens with similar pronun-
ciation or sensitivity to background speech – these all
can be attributed to a problem with AM.

 The cat sat on the mat 0.77 The dog sat on the mat

...
0.67 président de france présidents de france

Reference wrr Hypothesis

le président de l'égypte 0.25 les présidents de l'égypte

Figure 2: Concordance AM issue example

Grapheme-to-Phoneme (G2P): improper phonetiza-
tion can lead to errors, especially when it comes to
Named Entities (NE).

 The cat sat on the mat 0.77 The dog sat on the mat

...
0.33 bixby was ist das für ein lied xd was ist das für ein lied

Reference wrr Hypothesis

 hi bixby 0 hi pixy

Figure 3: Concordance G2P issue example

LM: a broad category, which can be as simple as a
lexicon typo, or more complex, signaling a broader
issue with NEs, problems with number recognition,
and many others.

 The cat sat on the mat 0.77 The dog sat on the mat

...
0.83 ponme un álbum de joe dassin ponme un album de joe dassin

Reference wrr Hypothesis

 ponme un álbum de camilo sesto 0.83 ponme un album de camilo sesto

Figure 4: Concordance LM issue example

ITN: a fairly well defined category consisting of gen-
eral normalization, capitalization and punctuation is-
sues.

 The cat sat on the mat 0.77 The dog sat on the mat

...
0.33enciende la play playstation enciende la play play station

Reference wrr Hypothesis

 playstation 4 0 play station cuatro

Figure 5: Concordance ITN issue example

5. System architecture

Troublemaker System Cluster

Internal
services

REST API

streaming

Web Interface
Web Server

& Proxy

Language Expert
\ Engineer

Static Support Services

Master
Service

Audio
Service

Frontend
Service

Database
Cluster

Troublemaker lang service (single instance)

Read service Write
microservice

Relational
Database

Network
Storage

Web Server

Search
Engine

Figure 6: System architecture.

5.1. Microservice architecture
The Troublemaker Tool follows a microservices de-
sign pattern. In front of the system sits a web server
that acts as an API gateway, reverse proxy, offloader
and load balancer for incoming REST requests. Next
there are two main groups of services. Static Support
Services serve as gateway aggregators, health check-
ers, frontend interfaces, data management systems and
provide other common utilities, like audio streaming,
logging and issue reporting. Scalable Language Ser-
vices consist of multiple instances of read and write
microservices deployed for one specific language.

6. Conclusion
The presented system aids the development of indus-
trial scale ASR by extracting ”troublemaking” tokens
that most frequently cause errors in the ASR system or
reference data, presenting information in a convenient
format for ASR experts and streamlining the genera-
tion of reports. Given the early stage of development,
we’re not able to measure the impact of the system
on the process in a quantitative way yet. However the
qualitative feedback received so far is encouraging to
pursue further development and research in this area.

7. Bibliographical References
Marchex, Inc. (2018). Automatic speech recognition

(asr) model training. US Patent 20180315417.
Nushi, B., Kamar, E., Horvitz, E., and Kossmann, D.

(2017). On human intellect and machine failures:
Troubleshooting integrative machine learning sys-
tems. In Thirty-First AAAI Conference on Artificial
Intelligence.

Sculley, D., Holt, G., Golovin, D., Davydov, E.,
Phillips, T., Ebner, D., Chaudhary, V., Young, M.,
Crespo, J.-F., and Dennison, D. (2015). Hidden

13

technical debt in machine learning systems. In
C. Cortes, et al., editors, Advances in Neural Infor-
mation Processing Systems 28, pages 2503–2511.
Curran Associates, Inc.

14

Proceedings of the LREC2020 Industry Track , pages 15–20
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

Measuring the Polarity of Conversations between Chatbots and Humans: a use
Case in the Banking Sector

Guillaume Le Noé-Bienvenu, Damien Nouvel, Djamel Mostefa
OrangeBank, Inalco, OrangeBank

guillaume.lenoe.bienvenu@gmail.com, damien.nouvel@inalco.fr, djamel.mostefa@orangebank.com

Abstract
This paper describes a study on opinion analysis applied to both human to chatbot conversations, but also to human to human conversa-
tions with data coming from the banking sector. Applying a polarity classifier model to conversations provides insights and visualisations
of the satisfaction of users at a given time and its evolution. We also conducted a study on the evolution of the opinion on the conver-
sations started with the chatbot and then transferred to a human agent. This work illustrates how opinion analysis techniques can be
applied to improve the user experience of the customers but also detect topics that generate frustrations with a chatbot but also with
human experts.
Keywords: Text Mining, Opinion Analysis, Chatbot, Polarity

1. Introduction
1.1. Scope and Aim
Orange Bank is a mobile bank launched in late 2017 and
for which the main channel of communication with its cus-
tomers is Djingo, a text chatbot. Available 24/7 by chat,
Djingo, Orange Bank virtual advisor, is the customers first
point of contact. Since the launch of Orange Bank in
November 2017, more than 2,5 million conversations have
been initiated by our clients with Djingo (an average of
100,000 conversations per month), 50% of which are han-
dled entirely by the virtual advisor (without any redirection
to the Customer Relationship Centre). Since Djingo is the
first point of contact of Orange Bank clients, all chat con-
versations with a human agent started with Djingo. We are
hence able to measure the evolution of the polarity within
the same conversation between a customer and Djingo and
then between the customer and the human operator.
In this context, opinion mining may be used to deliver in
real time an understanding of the customer relationship for
a given service. It could also be used to detect annoyance,
irritation or angriness at an early stage of the conversation
with Djingo in order to quickly redirect the user to a human
expert. In this situation, opinion mining is also useful to
detect topics and to provide insights about customer’s sat-
isfaction.
Our work focuses on the evolution of customer’s opinion,
both on conversations or messages within conversation. We
implemented an opinion detector that has been evaluated,
and plugged into the history of online conversations be-
tween customers and chatbot or human support desk. This
work provides the customer support service visualisations
of the evolution of customer’s satisfaction depending on
themes, as well as information on how much the bot and
humans give satisfaction to the customers.

1.2. State of the Art
1.2.1. Opinion Analysis
Whereas a lot of work has been done in the opinion analysis
field, most of it was directed towards product reviews, e.g.
identifying the sentiment linked to the aspects of an object
or its entities (Liu, 2012), but a few work was done towards

written conversations, especially with a chatbot. (Hancock
et al., 2019) used the estimation of user satisfaction to im-
prove the learning process of the chatbot. Tools to work
on polarity and emotions based on rules such as VADER
(Hutto and Gilbert, 2014) or SentiWordNet (Esuli and Se-
bastiani, 2006) are freely usable, but remain only for the
English language. For French, resources are also available,
such as the CANÉPHORE Corpus (Lark et al., 2015), but
remain mostly specific to tweets. In this paper, we present a
few cases (mostly graphs) in which opinion analysis could
help giving valuable information with written talks. We fo-
cus on the polarity, defined by Zhang and Ferrari (2014) as
the property of a text being positive, negative or neutral.

1.2.2. Text Classification
Text classification is a well known task in NLP, and a rea-
sonably efficient technique to perform it consists of us-
ing a TF-IDF (Salton and Buckley, 1988) representation of
the data combined with a support vector machine classifier
(SVM) on it. This approach has since be giving satisfactory
results. (Joachims, 1998; Pang et al., 2002; Lilleberg et al.,
2015) Deep learning methods can also be used for text clas-
sification. In particular, convolutional neural networks ob-
tain very high scores for text classification (Kim, 2014), but
require more time and examples for training. Also, the win-
ners of many challenges in NLP for the French language
used TF-IDF+SVM models as the one used for DEFT 2015
(Thierry Hamon, 2015) or during the Hackatal 2018 1).

1.3. The Djingo Chatbot
Djingo is Orange Bank’s conversational agent, available
24/7 for its 3,000 daily users. It is able to understand 390
intentions and has more than 1,000 answers adapted to the
user’s needs. Djingo is used both as a Frequently Asked
Questions (FAQs) system (products marketed e.g. with-
drawal fees, time to deliver a cheque book, etc.) and as an
assistant to perform actions related to the customer account
(ordering a cheque book, blocking the card, etc.). FAQ-
oriented answers are usually the same for all customers,
whereas requests performing an action trigger an operation

1https://hackatal.github.io/2018/

15

that depends on the account.
For example, if a user wishes to order a checkbook, Djingo
will check if the user is identified, if there is currently no
checkbook order, if the user can order it, and so on. At each
step, depending on the elements received through a pro-
grammatic interface (APIs), Djingo provides the user with
an appropriate answer. During the conversation, themes
and intentions are detected by the IBM Watson module. To
date, there are about 60 themes: Orange-Bank, app-site-
info, app-site-problem, insurance-info, termination insur-
ance, etc. Conversations can include several themes. If the
user asks a question that Djingo does not have the answer
to, or detects that the user is unable to make himself under-
stood, he suggests that the user should be redirected to an
advisor.

2. Opinions for messages and conversations
2.1. Chatbot Corpus
The corpus used in this article consists of 1,566,060 unique
conversations from November 2017 to March 2019, con-
taining 5,775,227 messages. Most of the messages sent
by the users contain a small number of words (around 4.6
words per message) and are often describing the question
using simple words. The size of the lexicon is quite impor-
tant with around 144k entries due to important number of
misspellings and typos.

2.2. Annotation
As we focus on the polarity of messages, we built a gold-
standard, by manually annotating 3,053 randomly picked
user messages from the corpus. Each message is considered
as positive, negative or neutral, following the 2015 DEFT
annotation guide (Thierry Hamon, 2015).
The annotation was made by two different annotators, giv-
ing a Cohen’s kappa coefficient of 0.72. One particular is-
sue during the annotation process was the case of greeting
messages. We notice that in our data set, the user uses greet-
ings for 83.96% of the conversations with a human agent,
and only 18.99% of those with the chatbot. This gives us
a clear indication of the behaviour of the user depending
on the interlocutor. From an opinion perspective, we then
assumed those greetings were positive and annotated them
accordingly.
Table 1 gives examples of annotated data.
Unsurprisingly, the annotations are unbalanced: 5.01% of
the messages are positive, 73.96% of them neutral and
21.03% negative. This was expected as users usually come
with problems and questions regarding bank services and
operations. Indeed, the company wants to maximise the
satisfaction of users at the end of the interaction, while lim-
iting the number of agents hired for this task.

2.3. Classification
This annotated data set was then divided over a train (4/5)
and test parts (1/5). The train data was then pre-processed
by computing a TF-IDF transformation. We tested several
classical machine learning models using the sklearn API
(Buitinck et al., 2013). Results are reported in Table 2.

Message (translated) Annotation
Merci orange pour les 80 euros
Thank you orange for the 80 euros positive

Merci, bonne soirée
Thank you, have a nice evening positive

OK, super !
Okay, great! positive

Je souhaiterai ouvrir un compte
I’d like you register an account neutral

Savoir si ma demande a été traitée
Find out if my request has been
processed

neutral

Quelles sont vos offres pour les
étudiants ?
What are your offers for students?

neutral

Cela ne repond pas a la question
This doesn’t anwser the question negative

Non merci je suis très contrariée
No, thanks, I’m very upset. negative

Vous servez à rien
You’re useless. negative

Table 1: Example of annotated messages

ML classifier Precision Recall F1
SVM 0.90 0.81 0.85
MaxEnt 0.92 0.75 0.82
Nultinomial
Naive Bayes 0.92 0.63 0.70
SGDClassifier 0.91 0.79 0.84

Table 2: Performance of Opinion Classifier (macro)

As the SVM classifier provides the best F1 score, we ran
a grid search on several parameters to optimize this model
configuration. We obtained an average 0.85 F1 macro score
(0.91 F1 micro). The neutral class obtains the best score
(0.95 F1), while positive and negative classes have much
lower F1 scores (0.82 and 0.76, respectively). Those results
were obtained using the NLTK TweetTokenizer (Bird et al.,
2009), without any other preprocessing (no lemmatization,
case is kept as it is) and linear kernel for the SVM. Finally,
the model was used to classify all messages of the corpus.

3. Conversation Polarity by Themes
3.1. Rules to Predict Conversations Polarity
To have a global view of user experience, one needs to
compute an opinion score for each conversation. As the
data was annotated by messages, simple rules were im-
plemented to predict the polarity of an entire conversation
based on the opinion of its messages. A conversation is
then:

• neutral when all messages are such,

• positive when at least one of its messages is such and
the remaining is neutral or positive,

• negative when at least one of its messages is such and
the remaining is neutral or negative,

• mixed otherwise.

16

Number of
messages %

Number of
conversations %

Positive 460,744 3.98 190,057 7.30
Neutral 9,903,323 85.50 1,746,296 67.07
Negative 1,218,890 10.52 541,549 20.80
Mixed 125,641 4.83
Total 1,1582,957 100 2,603,543 100

Table 3: Proportion of messages and conversations in the
corpus

Using these simple rules, table 3 shows the proportion of
messages and conversations in the corpus. These rules al-
lowed us incidentally to get strongly oriented conversations
(e.g. a conversation where nearly all of its messages are
negative would be very negative).

3.2. Histogram
The first representation we get from this labelling is the
proportions of the conversation classes (positive, negative,
neutral and mixed) depending of the detected themes. Fig-
ure 3 (annex) shows those proportions for December 2018.
For instance, the app site theme (related to the behaviour
of the Bank’s application) has more than 50% of its con-
versations being negative where the cheque theme remains
globally neutral, this can be explained by the fact that this
operation is rarely problematic. The representation of po-
larity gives us a rough idea of where to improve the user’s
experience. This type of plot can also be drawn for a differ-
ent time scale (year, day, etc.).

3.3. Heatmap
In the previous section, we presented a way of drawing the
proportions of the conversation classes for a particular time-
lapse. However, this type of plot does not give us informa-
tion about the evolution of this proportions across a time
scale. E.g. on Figure 3, the app site theme has a strong
part of negative conversations but one can wonder if those
proportions were similar through the year, whether it was
due to a temporary failure, or if it was a general trend.
In order to represent a potential evolution of those propor-
tions, we proposed a heatmap showing this evolution of the
opinion by theme. To get a polarity score as a single numer-
ical value for each case, a rule was implemented, consisting
of adding the neutral and positive proportions of conversa-
tion and subtracting the negative. This was given by the
following formula:

PS(th, t) =
N(neu, th, t) +N(pos, th, t)−N(neg, th, t)

NTotalConversations(th, t)

Where

• th: the theme of the conversation

• t: a date

• N(pol, th, t): the number of polarity (pol as negative,
positive or neutral) conversations of the theme th at
time t

Figure 1: Single Conversation Polarity Graph

• NTotalConversations(th, t): the total number of con-
versations of the theme th at time t

Figure 4 (annex) reports the heat map from November 2017
to March 2019. The bluer the case is the higher propor-
tion of positive conversations the corresponding theme has.
Conversely the red cases indicate negative conversations.
One can then watch the changes in the proportions of cases
throughout the months. For instance, we clearly see that the
Bonus theme in March 2018 had its lowest polarity score,
but its polarity score increased in the next few months. As
in the previous section, this plot can also be drawn for a
different time scale.

3.4. Graph of Polarity
We have been then studied the way polarity of messages
changes for a single conversation, especially when the user
switches from a chatbot to an agent. In order to have a
visual output, we converted the polarity (negative, neutral,
positive) of each message of the conversation to an integer
(0 for negative, 1 for neutral, 2 for positive). This provides
us with a list of integers that we can plot on a basic polarity
graph, as reported in Figure 1.
Since the conversations do not have the same length (dif-
ferent number of user messages), we converted the lists of
integers representing the polarity of the user messages into
lists of floats of fixed size. The size of the output lists can be
modified as an optional parameter.2 We then compute the
average of each point of the list. Figure 2 show the result of
the output with a padding of dimension 20.
On Figure 2, we first notice that for both types of users
(redirected and non-redirected or full IA), the conversation
starts with the same polarity (neutral) on average. After
the first third of the conversation, people who are not redi-
rected see the polarity of their conversation stagnate around
a value slightly below neutral, while people who will be
redirected see the polarity of their conversation decrease
until an agent takes over. As soon as people are cared for by

2Code available at https://github.com/
GuillaumeLNB/perso/blob/master/rounding.py

17

Figure 2: Polarity graph

a counsellor, the polarity of the conversation takes a more
positive trend (signs of politeness such as ”hello” are la-
belled as positive and are more present in conversations
with a human being). This is followed by a more neutral
phase, which generally corresponds to the advisor’s infor-
mation gathering. At the end of the conversation, the trend
is clearly becoming positive, we hypothetize that satisfying
solutions are being proposed by the human agent.

4. Discussion
There are however some limitations to the approaches dis-
cussed in this paper. First of all, the classification is based
on annotation, and it is quite difficult to annotate into only
three polarity classes. In the example: ”Mon épouse est
décédé et je souhaite réaliser une demande de succession /
My wife has died and I want to make a succession request”,
the user of the conversational agent reports a past event as
well as the willingness to take action. However, the part
”Mon épouse est décédé / My wife died” would have been
annotated as negative, while the part ”je souhaite réaliser
une demande de succession / I wish to make an estate ap-
plication” would have been annotated neutral. A new class
”positive-negative mix” could have been used as in DEFT
2018 3, but would have required a much more subtle and
fine-grained annotation work.
Secondly, polarity is useful information, but does not in-
dicate the subjectivity of the message. There is a signif-
icant difference between a user complaining about a par-
ticular Orange Bank service (example: Ma carte bancaire
ne marche pas / My credit card doesn’t work, negative po-
larity) and a dissatisfied user without a specific reason be-
ing stated (example: Orange c’est vraiment de plus en plus
pourri ! / Orange is really getting crap!, negative polarity).
Thirdly, the transition from the polarity of the messages to
the polarity of the conversation was carried out with a rule-
based approach, creating a mixed class. This class does not
take into account the intensity of certain messages. In the
example in Table 4, the conversation has a mixed polarity

3https://perso.limsi.fr/pap/DEFT2018/
annotation_guidelines/index.html

Message (translated) Predicted
Polarity

bonjour,
hello, positive

association loi 1901 peut elle
ouvrir un compte chez vous?
Can a association loi 1901
open an account with you?

neutral

compte + association oi 1901
account + aossociation 1901 [l]aw neutral

je ne parle pas aux robots, connards
I don’t talk to robots, assholes. negative

Table 4: Example of a conversation classified as mixed
where it should have been negative

(presence of positive and negative), but remains very neg-
ative by the presence of the last message. An annotation
at the level of the conversation would probably have classi-
fied this conversation as negative, but would not have made
a difference between this very negative and a less negative
conversation.
Finally, the thermal map display gives us an overview of the
evolution of the polarity, but does not detail the reasons of
this variation. In addition, we did not find a correlation for
all themes between their monthly polarity scores and their
redirection rates. We are wondering if this metric is suitable
for comparing these data.

5. Conclusion
In this paper, we have presented several applications of
opinion analysis on chatbot conversations. By developing
a model for polarity analysis (positive, negative, neutral)
using standard machine learning algorithms, we were able
to use the data to highlight trends. A real corpus of more
than 1.5 million of conversations between Orange bank cus-
tomers and Djingo was used for this study. For privacy and
confidential reasons, this corpus can not be shared at that
time but it may be released in the future after anonymiza-
tion of all personal data.
This analysis allowed us to look at which topics of the
conversational agent show the most customer satisfaction
or dissatisfaction, on a time scale. It also provides the
opportunity to bring out very focused conversations (very
positive or negative) from the corpus for educational pur-
poses for customer relationship centre agents. Finally, this
tool makes it possible to obtain a quantification of the cus-
tomers’ opinions on the spot.

6. Bibliographical References
Bird, S., Klein, E., and Loper, E. (2009). Natural Lan-

guage Processing with Python: Analyzing Text with the
Natural Language Toolkit. O’Reilly, Beijing.

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F.,
Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P.,
Gramfort, A., Grobler, J., Layton, R., VanderPlas, J.,
Joly, A., Holt, B., and Varoquaux, G. (2013). API de-
sign for machine learning software: experiences from the
scikit-learn project. In ECML PKDD Workshop: Lan-
guages for Data Mining and Machine Learning, pages
108–122.

18

Esuli, A. and Sebastiani, F. (2006). Sentiwordnet: A pub-
licly available lexical resource for opinion mining. In
In Proceedings of the 5th Conference on Language Re-
sources and Evaluation (LREC 06, pages 417–422.

Hancock, B., Bordes, A., Mazaré, P., and Weston, J.
(2019). Learning from dialogue after deployment: Feed
yourself, chatbot! CoRR, abs/1901.05415.

Hutto, C. J. and Gilbert, E. (2014). Vader: A parsimonious
rule-based model for sentiment analysis of social media
text. In Eytan Adar, et al., editors, ICWSM. The AAAI
Press.

Joachims, T. (1998). Text categorization with support vec-
tor machines: Learning with many relevant features.

Kim, Y. (2014). Convolutional neural networks for sen-
tence classification. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 1746–1751.

Lark, J., Morin, E., and Peña Saldarriaga, S. (2015).
Canéphore : un corpus français pour la fouille d’opinion
ciblée. In Actes de la 22e conférence sur le Traitement
Automatique des Langues Naturelles, pages 418–424,
Caen, France, June. Association pour le Traitement Au-
tomatique des Langues.

Lilleberg, J., Zhu, Y., and Zhang, Y. (2015). Support vec-
tor machines and word2vec for text classification with
semantic features, 07.

Liu, B. (2012). Sentiment Analysis and Opinion Mining.
Morgan & Claypool Publishers.

Pang, B., Lee, L., and Vaithyanathan, S. (2002). Thumbs
up: Sentiment classification using machine learning
techniques. In Proceedings of the ACL-02 Conference
on Empirical Methods in Natural Language Processing -
Volume 10, EMNLP ’02, pages 79–86, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Salton, G. and Buckley, C. (1988). Term-weighting ap-
proaches in automatic text retrieval. Inf. Process. Man-
age., 24(5):513–523, August.

Thierry Hamon, Amel Fraisse, P. P. P. Z. C. G. (2015).
Analyse des émotions, sentiments et opinions exprimés
dans les tweets: présentation et résultats de l’édition
2015 du défi fouille de texte (deft), 06.

Zhang, L. and Ferrari, S. (2014). Intensité et polarité : un
modèle opératoire articulant plusieurs travaux linguis-
tiques. In Langue française, /4 (num 184), p. . DOI :
10.3917/lf.184.0035., pages 35–54.

19

Figure 3: Basic polarity histogram

Figure 4: Heatmap of polarity

20

Proceedings of the LREC2020 Industry Track , pages 21–25
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

On the Importance of Text Classification Pipeline Components
for Practical Applications: A Case Study

Andrej Švec, Katarı́na Benešová, Marek Šuppa
Slido

Bratislava, Slovakia
{asvec, kbenesova, msuppa}@slido.com

Abstract
The worlds of academia and industry have different priorities for machine learning models. In the academic world, the model’s
performance is often the main focus, whereas finding the balance between the model’s performance, resource requirements, and the
ease of its deployment is often deemed more important in the production environment of the industry. In this paper we consider a
real world text classification problem, compare the specifics of different parts of natural language processing pipelines and inves-
tigate their contribution to the final model’s performance. We also take into consideration the practical aspects of the model’s use
and deployment, such as the size of the model and preprocessing time. Our case-study shows that in this particular scenario the
performance of simpler models can be on par with the more complex ones. We find this result valuable, as simpler and smaller
models are normally also easier to deploy in practice, e.g. in a serverless environment. To showcase the practical usefulness of our
final model, we deploy it to AWS Lambda and show that its execution time in this environment scales linearly with the input text’s length.

Keywords: text classification, NLP pipeline, production environment, serverless

1. Introduction
Text classification is one of the most common use-case of
Natural Language Processing (NLP) models. The choice of
a model type and architecture varies significantly from task
to task. It is also greatly affected by the requirements for
the final model. In production environments, these often
comprise training time, latency and resource requirements
(for instance CPU, memory or model size).
Many academic and state-of-the-art works propose solu-
tions incorporating different steps of preprocessing, data
augmentation and large model architectures, rendering
them time-consuming and resource-intensive to develop
and train (Strubell et al., 2019). On the other hand, there is
a great demand for simplicity and ease of setup in the pro-
duction environment, which renders some of the academic-
world solutions unsuitable for real-world use.
In this paper we compare several approaches to a specific
instance of text classification. Given its practical applicabil-
ity, we also investigate the deployment of the final model in
a serverless environment.

1.1. Use-case prediction task
We compare these approaches in a real-world multi-class
classification task. The task is to distinguish between dif-
ferent types of use-cases in which an online Q&A applica-
tion1 is used.
We call a single usage of the Q&A application an event.
Thus, the task is to predict the use-case of an event by look-
ing at the data associated with it. A use-case in this context
refers to the types of events at which this Q&A system gets
used, such as a conference, a team meeting or a lecture at a
university.
Formerly the events used to be classified into use-cases by
a set of 118 expertly chosen keyword-based regular expres-

1In our case the Q&A application is called Slido, reachable at
https://slido.com

sions matched against the event name. This approach is
based on the assumption that a keyword (for instance con-
ference) in the event name implies that the Q&A system
was used at a specific type of event (in this case a confer-
ence). A sample of these regular expressions is shown in
Table 1. The main disadvantage of this approach lies in
its low coverage (around 33%), as not every event name
contains a keyword. For example, an event with the name
LREC 2020 would not be classified as conference, despite
being an abbreviation for Language Resources and Evalu-
ation Conference 2020.

Use-case Regular expressions
Conference /conference/, /summit/
Company meeting /all(\s*)hand/,

/staff(.+)meet/
Team meeting /team(\s*)meet/,

/team(\s*)sync/
Learning /workshop/, /l&d/

Table 1: A sample of regular expressions used for use-case
classification, based on a match against the event name.

1.2. Serverless environment
Serverless (Function-as-a-Service) environments provide a
simple way of deploying code to production environments
by providing an abstraction over many standard operational
concerns. They are particularly suitable for stateless appli-
cations, such as small machine learning models (Ishakian et
al., 2018). Furthermore, they require minimal maintenance,
as the cloud infrastructure takes care of provisioning their
computational resources, as well as ensuring that they only
run when necessary. On the other hand, there are numerous
practical limitations as to what can be currently deployed in
a serverless environment. These are mainly related to stor-

21

age (250 - 500 MB) or RAM (2 - 3 GB), forcing the models
to be small in size and to also have a small RAM footprint.

2. Related work
Text classification (sometimes also referred to as text cat-
egorization) is a widely studied technique in Natural Lan-
guage Processing (Aggarwal and Zhai, 2012). Due to its
great versatility, numerous practical tasks can be viewed as
text classification problems. This results in a wide variety
of applications, ranging from linguistically-inspired prob-
lems, such as Word Sense Disambiguation (Raganato et
al., 2017), classification of sentiment or opinion polarity of
documents (Liu, 2015), to direct downstream applications
in which text classification can be helpful, such as online
suicide prevention (Desmet and Hoste, 2018).
In broad terms, the text classification pipeline can be
viewed as a three stage process: at first the pre-processing
part ensures that the inherent noise gets removed from the
raw input text, then the feature extraction part converts the
clean input text into representation that is then taken as the
input of the final classification part, in which a classifica-
tion algorithm predicts the category of the text using the
provided representation.
The standard approaches in pre-processing relevant to the
presented work include tokenization (Verma et al., 2014)
and utilization of pre-trained models for extracting part of
speech tags (Batanović and Bojić, 2015) as well as named
entities (Trask et al., 2015) from the input text and using
this information in further parts of the pipeline.
There exist a multitude of options for feature extraction,
such as Bag-of-Words, TF-IDF (Jones, 1972), word embed-
dings, e.g. word2vec (Mikolov et al., 2013), GloVe (Pen-
nington et al., 2014), FastText (Bojanowski et al., 2017) and
various contextualized word representations (Peters et al.,
2018). A different approach to representing text is called
sentence embeddings. These aim to provide semantically
meaningful vector representations of sentences, compara-
ble using cosine distance. Some of the popular methods in-
clude Skip-Thought vectors (Kiros et al., 2015), InferSent
(Conneau et al., 2017) and the Universal Sentence Encoder
(Cer et al., 2018).
A sizable body of work has been published on the topic
of classification algorithms. Popular choices include logis-
tic regression (Lee and Liu, 2003), Naı̈ve Bayes Classifier
(Kim et al., 2006), Support Vector Machines (Kwok, 1998)
as well as various approaches based on neural-networks
(Joulin et al., 2017), particularly in combination with Deep
Learning approaches (LeCun et al., 2015).

3. Dataset
Our dataset is composed of 80 000 events. An event con-
sists of various types of interactions with the Q&A applica-
tion, incorporating mainly questions posted by the audience
to the presenter, as well as the live polls used by the presen-
ter to find out the opinion of the audience about a topic.
Only a subset of the interaction data has been selected for
the purpose of our task. A preview of such data can be seen
in Figure 1. The event data can be categorized as follows:

• Aggregated features. These comprise high-level in-
formation about the events, for instance the number of

participants, the duration of the event or the number of
posted questions and activated polls.

• Textual features. The texts of the questions and polls
belonging to the events. All the texts are in English
language. We exclude the event name from the texts
to prevent the model from essentially extracting the
regular expressions from the event name.

Aggregated: participants=95, n questions=52, dura-
tion days=1, . . .
Questions: ”How much time / hours have you saved so
far in these 23 processes?”, ”How do you pay invoices?
Do you have any automated process?”, . . .
Polls: ”You are from”, ”How did you like this talk?”,
”What do you want me to elaborate more on?”, . . .
Label: Conference

Figure 1: An example of data about event.

Text length. The length of a question is limited to 160
characters in most cases but a few events use a maximum
length of up to 300 characters. The number of questions
ranges from zero to a few thousands, with a median of 16.
A poll consists of the question asked to the audience and
either poll options or audience replies (for a multiple-choice
poll or open-text poll, respectively). A poll question can
have up to 256 characters. The number of polls in an event
ranges from zero to a few thousand, with a median of 1.
The distribution of number of tokens per event is shown in
Figure 2. It suggests that the texts we are trying to classify
can easily contain hundreds of words.

Figure 2: The distribution of the number of words in con-
catenated questions and polls in our dataset.

Labels. The events are assigned a use-case based on the
matching regular expressions described in Section 1.1. We
exclude events that are assigned more than one use-case, as
they are not numerous and doing so would needlessly turn
our task into multi-label classification.
Our task considers four use-cases: company meeting (37%
of data), conference (31%), learning (17%) and team meet-
ing (15%). The main deficiency of these classes is the in-
evitable blending of team meetings into other use-case cat-

22

egories. Since some companies are smaller and some are
larger, a meeting with 20 attendants can either be a team
meeting or a whole company meeting depending on the size
of the company. We also note the inherent limits of this la-
beling scheme, as an event where a team is participating in
a workshop is both a team meeting and a learning event.

Train-test split. We split the dataset into train and test
parts using a stratified split with the 80 : 20 ratio.

4. Method
We experiment with multiple aspects of NLP pipelines. In
order to measure the importance of an aspect, we conduct
an ablation study by keeping the model fixed and only alter-
ing the studied aspect. Model performance is measured by
calculating the accuracy and the micro-averaged F1 score
of the model on the test set.
Two types of models were used in our experiments:

• FastText model (Joulin et al., 2017). The inputs to the
model are concatenated and preprocessed texts of all
questions and all polls. The model does not consider
the aggregated features.

• Two-stage pipeline model. The first step produces
a document embedding for both questions and polls
and in the second step we take the embeddings along
with the aggregated features and classify them using
a single-layer softmax neural network. The document
embedding layer is trained on a concatenation of pre-
processed questions and polls. The training of this
layer takes place separately from the rest of the net-
work.

4.1. Preprocessing
To assess the effect of various preprocessing approaches,
we study their effect on the final performance, using the
FastText model for the classification part. We focus on the
following areas of preprocessing:

Tokenization. Three types of tokenizers are compared:
simple whitespace with special characters striping, spaCy
(Honnibal and Montani, 2017) and Bling Fire2.

Part-of-speech (POS) tags. We use the spaCy POS tag-
ger to assign POS tags to each token. The tokens are
then concatenated with their POS tag, e.g. work|NOUN
or work|VERB, and used for training similarly to the
sent2vec method (Trask et al., 2015).

Named entities (NE). The spaCy NLP pipeline can also
find NEs in a text. We leverage this information to
join the tokens associated with a NE into a single token
and concatenate the joined token with the NE type, e.g.
01-04-1997|DATE. It is also possible to use both POS
and NE tags simultaneously. If this is the case, NE tags take
precedence over POS tags.

4.2. Embedding types
We also experiment with different types of embeddings
used in the two-stage pipeline model:

2https://github.com/microsoft/BlingFire

• Fast sentence embeddings (FSE) (Borchers, 2019).
We base the FSE embeddings on FastText word em-
beddings (Bojanowski et al., 2017) that are then com-
posed into higher-level embeddings. The FSE library
allows for three composition methods: Deep Averag-
ing Network (DAN) (Iyyer et al., 2015), Smooth In-
verse Frequency (SIF) (Arora et al., 2017) and Un-
supervised Smooth Inverse Frequency (USIF) (Etha-
yarajh, 2018).
The main advantage of the FSE embeddings is their
fast computation speed.

• Universal sentence encoder (USE) embeddings (Cer
et al., 2018). We experiment with multiple flavors
of pre-trained USE models available on TensorFlow
Hub3. The flavors of the USE model differ mainly in
size and performance, but also in the maximum num-
ber of tokens considered by the model: the large flavor
based on the Transformer architecture (Vaswani et al.,
2017) supports a maximum of 128 tokens whereas the
default flavor based on DAN is unbounded.
The advantage of the USE model is that is was trained
on a large corpus resulting in a fair coverage of differ-
ent domains. However, unless the model is fine-tuned
on the target domain, its performance can be lower
than that of a dataset-specific model.

• FastText embeddings. We use the average of the
FastText tokens in the texts to create the sentence em-
bedding as specified in (Joulin et al., 2017).
A possible advantage of the FastText embeddings is
that they can be trained in a supervised manner.

5. Results
In this section we present and discuss the results of different
experiments described in Section 4. We group these results
according to the aspects described above.

Method Size Time Acc F1

Whitespace - 4.5s 0.656 0.642
Bling Fire 1.4MB 12.6s 0.650 0.628
spaCy 80KB 6m 1s 0.657 0.642
spaCy+POS 3.7MB 42m 34s 0.654 0.636
spaCy+NE 4.0MB 1h 1m 0.656 0.644
spaCy+POS,NE 7.7MB 1h 26m 0.653 0.635

Table 2: Performance of the different preprocessing meth-
ods in combination with the FastText model on the test set.
We also report the size of the preprocessing model and the
time needed for preprocessing of the training set due to their
implications for practical usage.

5.1. Preprocessing
Table 2 shows the effect of testing various preprocessing
approaches on the FastText model. The simple method in-
corporating a whitespace tokenizer and punctuation strip-
ing is competitive with more complex methods like Bling

3https://tfhub.dev/google/collections/
universal-sentence-encoder/1

23

Fire or spaCy tokenizers. Furthermore, the latter methods
require increased preprocessing time. When they do POS
and NE tagging on top of tokenization, they can be up three
orders of magnitude slower than the baseline.
Models trained on data with tags (especially POS) also take
longer to converge, which can be seen in Figure 3. We
hypothesize that this can be caused by the model needing
more epochs to cope with increased vocabulary size.

Figure 3: Test accuracies of models using various token
tags at different points of the training process.

5.2. Embedding types
Table 3 shows the performance comparison of the two-
stage pipeline model using different types of embeddings
trained on texts preprocessed using whitespace tokenizer
and punctuation stripping.

Embedding type Dim Size Acc F1

FSE DAN 300 2.5GB 0.590 0.595
FSE SIF 300 2.5GB 0.585 0.593
USE default 512 1.0GB 0.575 0.584
USE large 512 850MB 0.557 0.562
FT unsupervised 150 1.3GB 0.584 0.590
FT supervised 20 180MB 0.645 0.647

Table 3: Performance of the different models on the test
set along with the respective embedding dimensions. FT
stands for FastText.

Despite using the largest embedding dimension and being
trained on the largest corpus, the USE model achieves the
lowest performance on our task. We hypothesize that this
is due to its training corpora being quite different from the
one available for our task.
We note that the default DAN-based USE flavor performs
better than the large Transformer-based flavor. This seems
to be due to the Transformer limiting the maximum num-
ber of tokens to 128. With the median of 285 words
per event, the words necessary for discrimination between
classes may not be considered by the Transformer.
The FSE and FastText unsupervised models reach higher
performance than USE. We think that this is because they
are trained on our data and manage to capture its specifics.

The model based on supervised FastText embeddings
reaches the highest performance. We assume this stems
from the fact that the supervised embeddings are tailored to
the task. As a result, the embedding layer filters out unim-
portant words and makes the task of the classifier simpler.

Embedding size. We observe that unsupervised embed-
ding models require much higher embedding size than the
supervised model. It seems that only a fraction of the fea-
tures captured in the unsupervised embeddings is finally
useful for the classification task.

5.3. Discussion and Deployment
The results listed in Section 5 show that the F1 score is
the highest in case of the two-stage pipeline model which
uses supervised FastText embeddings. On the other hand, a
simple FastText model (Table 2) trained end-to-end con-
sistently reaches higher accuracy than various two-stage
pipelines (Table 3). We find this particularly notable, as it
utilizes a subset of the available data: the model only con-
siders the texts of questions and polls associated with an
event. Furthermore, thanks to its simplicity and small size
(300 MB in RAM), we managed to deploy this model in the
AWS Lambda severless environment. As Figure 4 shows,
its execution time scales linearly up to 25 000 tokens.

Figure 4: Execution time of the FastText model deployed
in AWS Lambda as a function of the input text’s length.

6. Conclusion
In this work we present a case study of a text classification
task on longer texts. We evaluate the performance of var-
ious preprocessing and feature representation approaches,
and show that an end-to-end trained FastText model is able
to match the performance of more complex pipelines. To
showcase its practicality, we deploy it to AWS Lambda.
As the resulting model is still quite large, quantization
methods could be used to further reduce its size (Joulin et
al., 2016). Another interesting avenue of future research
would be distilling the text classification model back to reg-
ular expressions (Bui and Zeng-Treitler, 2014).

7. Bibliographical References
Aggarwal, C. C. and Zhai, C. (2012). A survey of text clas-

sification algorithms. In Mining text data, pages 163–
222. Springer.

24

Arora, S., Liang, Y., and Ma, T. (2017). A simple but
tough-to-beat baseline for sentence embeddings. In 5th
International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Confer-
ence Track Proceedings. OpenReview.net.

Batanović, V. and Bojić, D. (2015). Using part-of-speech
tags as deep-syntax indicators in determining short-text
semantic similarity. Computer Science and Information
Systems, 12(1):1–31.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2017). Enriching word vectors with subword informa-
tion. Transactions of the Association for Computational
Linguistics, 5:135–146.

Borchers, O. (2019). Fast sentence embeddings.
https://github.com/oborchers/Fast_
Sentence_Embeddings.

Bui, D. D. A. and Zeng-Treitler, Q. (2014). Learning
regular expressions for clinical text classification. Jour-
nal of the American Medical Informatics Association,
21(5):850–857, 02.

Cer, D., Yang, Y., Kong, S.-y., Hua, N., Limtiaco, N., John,
R. S., Constant, N., Guajardo-Cespedes, M., Yuan, S.,
Tar, C., et al. (2018). Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and
Bordes, A. (2017). Supervised learning of universal
sentence representations from natural language inference
data. arXiv preprint arXiv:1705.02364.

Desmet, B. and Hoste, V. (2018). Online suicide preven-
tion through optimised text classification. Information
Sciences, 439:61–78.

Ethayarajh, K. (2018). Unsupervised random walk sen-
tence embeddings: A strong but simple baseline. In
Proceedings of The Third Workshop on Representation
Learning for NLP, pages 91–100, Melbourne, Australia,
July. Association for Computational Linguistics.

Honnibal, M. and Montani, I. (2017). spaCy 2: Natural
language understanding with Bloom embeddings, con-
volutional neural networks and incremental parsing. To
appear.

Ishakian, V., Muthusamy, V., and Slominski, A. (2018).
Serving deep learning models in a serverless platform.
In 2018 IEEE International Conference on Cloud Engi-
neering (IC2E), pages 257–262. IEEE.

Iyyer, M., Manjunatha, V., Boyd-Graber, J., and Daumé III,
H. (2015). Deep unordered composition rivals syntac-
tic methods for text classification. In Proceedings of the
53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long
Papers), pages 1681–1691, Beijing, China, July. Associ-
ation for Computational Linguistics.

Jones, K. S. (1972). A statistical interpretation of term
specificity and its application in retrieval. Journal of
documentation.

Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou,
H., and Mikolov, T. (2016). Fasttext.zip: Compressing
text classification models. CoRR, abs/1612.03651.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T.

(2017). Bag of tricks for efficient text classification.
In Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguis-
tics: Volume 2, Short Papers, pages 427–431. Associa-
tion for Computational Linguistics, April.

Kim, S.-B., Han, K.-S., Rim, H.-C., and Myaeng, S. H.
(2006). Some effective techniques for naive bayes text
classification. IEEE transactions on knowledge and data
engineering, 18(11):1457–1466.

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urta-
sun, R., Torralba, A., and Fidler, S. (2015). Skip-thought
vectors. In Advances in neural information processing
systems, pages 3294–3302.

Kwok, J. T.-Y. (1998). Automated text categorization us-
ing support vector machine. In In Proceedings of the In-
ternational Conference on Neural Information Process-
ing (ICONIP. Citeseer.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. nature, 521(7553):436–444.

Lee, W. S. and Liu, B. (2003). Learning with positive and
unlabeled examples using weighted logistic regression.
In ICML, volume 3, pages 448–455.

Liu, B. (2015). Sentiment analysis: Mining opinions, sen-
timents, and emotions. Cambridge University Press.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–
3119.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In Pro-
ceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pages 1532–
1543.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M.,
Clark, C., Lee, K., and Zettlemoyer, L. (2018). Deep
contextualized word representations. arXiv preprint
arXiv:1802.05365.

Raganato, A., Camacho-Collados, J., and Navigli, R.
(2017). Word sense disambiguation: A unified evalua-
tion framework and empirical comparison. In Proceed-
ings of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Volume
1, Long Papers, pages 99–110.

Strubell, E., Ganesh, A., and McCallum, A. (2019). En-
ergy and policy considerations for deep learning in nlp.
arXiv preprint arXiv:1906.02243.

Trask, A., Michalak, P., and Liu, J. (2015). sense2vec-
a fast and accurate method for word sense disam-
biguation in neural word embeddings. arXiv preprint
arXiv:1511.06388.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017).
Attention is all you need. CoRR, abs/1706.03762.

Verma, T., Renu, R., and Gaur, D. (2014). Tokenization
and filtering process in rapidminer. International Jour-
nal of Applied Information Systems, 7(2):16–18.

25

Proceedings of the LREC2020 Industry Track , pages 26–30
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

Hybrid Tagger – An Industry-driven Solution for Extreme Multi-label Text
Classification

Kristiina Vaik, Marit Asula, Raul Sirel
TEXTA OÜ

kristiina@texta.ee, marit@texta.ee, raul@texta.ee

Abstract
This paper presents an industry-driven solution for extreme multi-label classification with a massive label collection. The proposed
approach incorporates a large number of binary classification models with label pre-filtering and employs methods and technologies
shown to be applicable in industrial scenarios where high-end computational hardware is limited. The system is evaluated on an Estonian
newspaper article dataset which contains almost 2000 unique labels and has shown to perform over 80 times faster than applying all the
binary models of the entire label set without negative impact on prediction scores.

Keywords: text classification, extreme multi-label classification, data processing workflows

1. Introduction
The interest of automating certain tasks in the news indus-
try and other sectors dealing with large volumes of textual
data has been growing rapidly. Today these tasks often rely
on human’s judgement and manual assignment which con-
sumes a lot of resources. However, the market has shown
a higher demand on using already existing data and NLP
technologies efficiently. One of such tasks is extreme multi-
label text classification, i.e automatically assigning a list of
most relevant labels based on the content of the text from
a large label set. In the industry multi-label text classifi-
cation can be used for many different applications, such as
describing the subject of a news article by assigning a gen-
eral topic (e.g. politics, history, sports, etc.) or add specific
keywords (e.g. NATO, Donald Trump, etc.) based on the
relevant content. Such scenarios produce an increasingly
large number of labels to predict making it a challenge for
extreme multi-label classification settings to synchronously
handle massive label sets.
We propose an industry-driven solution, Hybrid Tagger
(HT), for extreme multi-label classification combining su-
pervised and unsupervised text processing methods which
have been proven to be applicable in the industrial settings.
HT is part of TEXTA Toolkit1 – an open-source framework
for building and executing machine learning pipelines and
analysing textual content. HT categorizes each given text
in real-time with the most relevant labels from a massive
label collection. The development of the HT was motivated
by the need to perform classification with a high volume
of labels and the lack of existing out-of-box solutions. An-
other issue in industrial scenarios is the limited availability
of high-end computational hardware because clients often
require running production-grade applications using their
own infrastructure. Hence HT was designed to work with
fairly limited computational power regarding today’s stan-
dards. HT is currently used by two Estonian media corpo-
rations to label newspaper articles with topics & keywords
and the National Library of Estonia to label books, disser-
tations, periodicals, etc.
The paper is further structured as follows: Section 2. gives

1https://docs.texta.ee/

a brief overview of the existing research on this topic, Sec-
tion 3. provides an overview of the workflow used in Hy-
brid Tagger, Section 4. describes the results of applying
the Hybrid Tagger on a dataset of newspaper articles, and
Section 5. concludes the paper.

2. Related Research
Multi-class classification is a type of problem where an in-
put is assigned with a single label from a finite set of labels.
However, in real-life scenarios, the content of the text is se-
mantically far more variable, which means it most probably
contains many different topics as opposed to a binary topic
distribution. This limitation leads to the multi-labelled clas-
sification problem in which a subset of labels is assigned to
the input object from a finite set of labels (Tsoumakas and
Katakis, 2009; Godbole and Sarawagi, 2004).
A common approach to solve the multi-label classifica-
tion problem is the problem transformation, specifically the
binary relevance method (Tsoumakas and Katakis, 2009;
Godbole and Sarawagi, 2004; Zhang et al., 2017a) in which
the multi-label problem will be split into binary classifica-
tion subtasks. After splitting the task into binary subtasks,
these binary classifiers will be converted into the multi-
label representation meaning that n binary classifiers are
trained whereas each classifier gives a prediction of 0 or
1, i.e giving a corresponding label from a finite set of la-
bels. Binary relevance method has often been overlooked
because of the assumption that it ignores the correlations
between labels, meaning that in real life it will likely give
too many or too few labels. However, as Read et al. (2009)
point out that if the multi-labelled datasets grow in size,
methods taking label correlations into account struggle with
the exponential growth of the possible correlations.
On the industry level scalability in text processing is a very
important factor, although the number of labels to predict is
often disregarded. Existing extreme multi-label classifica-
tion papers use tree-based methods (Agrawal et al., 2013;
Weston et al., 2013; Prabhu and Varma, 2014) or reduce the
dimensions of the original label matrix, e.g. Bi and Kwok
(2013) reduced the number of labels by doing random sam-
pling; Zhou et al. (2012) have proposed a method called

26

compressed labelling which compresses the original label
matrix in order to reduce the number of binary classifiers.
Both of these methods can be generalized as two-stage ap-
proaches depending on complex matrix computations to
find a subset of most probable labels (stage one) and to ap-
ply the corresponding binary classifiers (stage two). Zhang
et al. (2017b) have applied deep learning by establishing
a non-linear embedding for both feature and label spaces
and combine it with a label graph, which is built from label
space (two nodes share an edge if corresponding labels co-
occur frequently enough). However, none of the referenced
works is applicable in the industry because of the computa-
tional, infrastructural, and (labelled) resource limitations.

3. Workflow of Hybrid Tagger
Hybrid Tagger incorporates a high number of binary clas-
sification models combined with unsupervised label pre-
filtering in order to achieve real-time predictions for thou-
sands of labels. HT uses traditional classification algo-
rithms because neural network classifiers require more
training data per label to provide adequate results.
The supervised part of HT has been developed by us-
ing scikit-learn (Pedregosa et al., 2011), primarily logis-
tic regression or SVM algorithms. The unsupervised pre-
filtering is achieved by using Elasticsearch2 engine’s docu-
ment retrieval features where all texts used for training and
validating the classification models are indexed. Elastic-
search is used because of its stable and scalable platform
for retrieving documents (for training) and performing doc-
ument similarity queries for the label pre-filtering. In con-
trast to existing extreme multi-label classification solutions,
Elasticsearch allows to disregard complex matrix compu-
tations and instead offers a fairly transparent way to filter
labels based on the document similarity they have been as-
signed to. In this section, the workflow pipeline of HT will
be described in detail.

3.1. Preprocessing
The preprocessing pipeline consists of tokenization,
lemmatization, part of speech (POS) tagging, and named
entity recognition (NER). This is done by using TEXTA
Multilingual Processor (MLP) which uses NLTK (Bird et
al., 2009) with Stanford models and EstNLTK (Orasmaa et
al., 2016). Preprocessing pipeline can be omitted, but it de-
pends on the language and domain HT is applied to. For
example, morphologically less inflective languages do not
necessarily require to be lemmatized to provide adequate
features, whilst for other languages (e.g. Estonian) it is cru-
cial. It decreases the size of the vocabulary, thus model size
and computation time. NER can be used for speeding up
the prediction process.

3.2. Training
Binary classifiers used in HT can be trained on any text
segment, e.g. title, content, author, etc. In our experimental
setup models are usually trained using lemmatized content
and also optional POS tags. For vocabulary reduction stop
words are removed from all texts prior to training.

2https://www.elastic.co/elasticsearch

Training data is selected according to the pre-existing la-
belling. For each label, all existing positive examples (texts
annotated with the specific label) and the same amount of
randomly selected negative examples (texts not annotated
with the specific label) are retrieved. Examples for all la-
bels are then randomly split into training and validation sets
(default 80-20).
In real-life scenarios, the training process may result in
thousands of classification models which have a significant
memory imprint when combined. To combat this problem,
HashingVectorizer (Pedregosa et al., 2011) is used to vec-
torize the training data. It has significantly smaller mem-
ory imprint than other vectorizers supported by scikit-learn
(e.g. commonly used TfIdfVectorizer) as it uses the hashing
trick to find the token string name to feature integer index
mapping.
For training models 5-fold cross-validation and grid search
is used to find the most optimal parameters for the C-
value; minimum and maximum length of n-grams used in
the model; and whether to use words (and word-based n-
grams) or word-bound character-based n-grams as features.
The best model from grid search is then validated using the
validation set. For each model, a confusion matrix with
precision, recall, and F1 score are computed.

3.3. Prediction
The training phase’s aftermath is a large volume of binary
models making it infeasible to apply them for label predic-
tion in a sequential manner. This limitation is handled by
devising an approach in which the number of executable
binary models are limited by finding a subset of models
which most likely will provide an accurate label predic-
tion. This is done by finding n (default n=10) similar texts
from the training data indexed in Elasticsearch and find-
ing m (default m=10) most frequent labels assigned to the
texts. Retrieving similar texts is done by using an Elastic-
search more like this query3 which calculates top k words
with the highest TF-IDF score per text and afterwards per-
forms a disjunctive query using the pre-existing labels to
match similar texts.
In general, the prediction pipeline is as follows:

• preprocess the input text (optional);

• find n similar texts indexed in Elasticsearch;

• find top m labels attached to the texts found in the pre-
vious step;

• apply named entity recognition on the input to identify
l entity-related labels and remove these binary models
from the list of m models which will be used later for
label prediction;

• retrieve all models for each of m-l top labels;

• apply models, retrieve and combine the list of pre-
dicted labels classified by the binary models and the
entity-related labels, and output the results.

3https://www.elastic.co/guide/en/
elasticsearch/reference/current/
query-dsl-mlt-query.html

27

In the presented pipeline both Elasticsearch-based label
pre-filtering and NER-based labelling are used to reduce
the number of binary classification models applied to each
text. We acknowledge that the effectiveness of NER greatly
depends on the specific domain and label set, nevertheless,
in our use cases, it has proven to be an effective method to
reduce the number binary models required.

4. Evaluation
The purpose of the evaluation is to show that Hybrid Tagger
performs significantly faster than the baseline model with-
out negative impact on prediction scores.
First, we provide a brief theoretical overview of how the ap-
plicability of Hybrid Tagger depends on the available com-
putation power and number of labels present in the dataset.
Then we evaluate Hybrid Tagger’s performance on a real
multi-label dataset.

4.1. Hybrid Tagger’s Applicability
Let nt be the number of classifiers used for prediction, nc
be the number of cores used for computation, µt the aver-
age prediction time of one binary classifier and tmlts the
time of Elasticsearch’s more like this query with number
of similar documents set to s. The approximate simplified
formula for time consumption of tagging one document is
thus:

ttag =
⌈nt
nc

⌉
· µt + tmlts (1)

However, it is important to note that more like this query
does not have a significant impact on time consumption in
most practical scenarios as s is usually set in the range be-
tween 10 and 100 resulting in query time under 1 second
(except for datasets containing very long texts, e.g. books).
Let n be the total number of labels in the dataset and m
be the number of top labels used for prediction by Hybrid
Tagger. The gain in time efficiency (i.e. how many times
faster are HT predictions compared to applying all binary
classifiers) depending on number of available cores and size
of the label set, can be calculated by the following formula:

HTgain =
(⌈ n
nc

⌉
÷
⌈m
nc

⌉)
− tmlts (2)

Figure 1 illustrates how the gain in time efficiency with HT
changes based on the number of available cores and the
number of labels with m set to 10 and tmlts set to 0 for
simplification. We can see that the gain in time with HT
grows as the label set increases while the number of avail-
able cores stays relatively low. For example, applying HT
with original label set size of 10 000 on a machine with
5 available cores is 1000× faster than applying all binary
classifiers.

4.2. Case Study: Õhtuleht Newspaper Dataset
Õhtuleht dataset contains newspaper articles spanning from
years 2013 to 2019, covering a wide range of topics (news,
sports, entertainment, crime, etc). The dataset is not pub-
licly available because of legal limitations. It contains 102

Figure 1: HT gain in time efficiency, if m = 10

450 documents with 1978 unique labels. The average num-
ber of labels per document is 4.4.
For evaluating HT, Õhtuleht dataset is split into train and
test set (100 000 and 2450, respectively), and trained 1870
binary classifiers on lemmatized articles’ content using lo-
gistic regression as the predictor function. The minimum
number of examples per each label was set to 50, resulting
in disqualifying 108 labels with a smaller number of ex-
amples. For choosing the best parameter configuration for
HT, we measured average precision, recall and f1-score on
the test data with (n label candidates, n similar texts) set to
(5,10), (10,10), (20,10), (50,30) and (100,30). Figure 2 il-
lustrates these results by showing how the prediction scores
change when the size of the label candidate set increases.
We see that precision starts decreasing after 10 candidate
labels while recall stabilizes after 100. The best trade-off
between precision and recall is obtained at 10 resulting in
the highest f1-score.

Figure 2: Label candidates set size effect on prediction
scores

To further evaluate the results, we measured average pre-
diction time, precision, recall, f1-score and the number of
predicted labels on the test data by applying:

1. Baseline model (BL) consisting of all binary classi-
fiers;

2. Hybrid Tagger with the best detected parameter con-
figuration (n label candidates = 10, n similar texts =

28

10) with NER enabled (HT NER) and NER disabled
(HT).

Table 1: Comparing Baseline with Hybrid Tagger

BL HT NER HT
n taggers 1870 10 10

n similar texts nan 10 10
n cores 24 24 24

NER enabled no yes no
Time (s) 82.34 1.01 1.01
Precision 0.07 0.70 0.71

Recall 0.85 0.92 0.75
F1-score 0.12 0.76 0.67

n predicted labels 128.87 6.21 4.89

Table 1 gives an overview of Hybrid Tagger’s performance
compared with the baseline model (BL). Figure 3 visual-
izes the prediction scores’ distribution of the same models,
while the times’ distribution can be seen on Figure 4 and the
distribution of predicted labels per one document on Figure
5.

Figure 3: Prediction precision, f1 and recall scores

To verify that our experimental results are in accordance
with theory, we can calculate the theoretical gain in time
with our HT configuration by inserting the chosen param-
eter combination into formula (2) and compare it with the
measured result. Thus, for theoretical gain in time we get:
HTgain =

(⌈
1870
24

⌉
÷
⌈
10
24

⌉)
= 78×.

BL model’s actual average prediction time is 82.34 seconds
while HT labels one document on average with 1.01 sec-
onds resulting in an actual gain of 81.5×. The minor dif-
ference in magnitude can be caused by practical reasons,
e.g. small variations of prediction times of individual tag-
gers (the slower models are always included in the BL label
set, while might not be in HT label candidates). Nonethe-
less, our experimental results prove that HT performs sig-
nificantly faster than the BL model.
Furthermore, BL’s f1-score is only 0.12 as a result of ex-
treme over labelling causing a very low precision of 0.07.
We can see from Figure 5 that the number of labels pre-
dicted with BL is close to 100, while the actual number of
labels seldom passes 10. As HT limits the number of la-
bel candidates, it does not suffer from the same problem

and precision remains 0.7 both with and without NER (see
Figure 3). HT’s recall without NER is 0.75 being slightly
lower than BL’s average of 0.85. However, HT with NER
obtains even better recall than the BL model with an aver-
age score of 0.92. It is still important to keep in mind that
the applicability of NER is dataset-specific as using entity-
related labels is fairly common with newspaper articles and
enabling NER helps to combat the problem of low num-
ber of training examples of such labels, but might make the
model prone to false positives in some other domains.

Figure 4: Prediction times in seconds

Figure 5: Number of predicted labels per document

5. Conclusion
This paper presented an industry-driven solution, Hybrid
Tagger, for extreme multi-label classification with a large
volume of unique labels. The proposed system incorporates
a high number of binary classification models coupled with
unsupervised label pre-filtering and named entity recogni-
tion to achieve real-time predictions with thousands of la-
bels. As the development of Hybrid Tagger was industry-
driven, it does not employ state-of-art methods but rather
relies on methods and technologies proven to work on an
industrial scale.
The evaluation of Hybrid Tagger on Õhtuleht newspaper
dataset shows that Hybrid Tagger helps to significantly im-
prove both the prediction times and precision scores in
comparison to executing all binary classification models of
the label set.
Hybrid Tagger is currently used by two Estonian newspaper
corporations and Estonian National Library to label their
content. Since the workflow of HT is language indepen-
dent, the next step is to apply the solution for industrial
projects in other languages.

29

6. Acknowledgements
The work described in this paper has been supported by
the language technology research and development pro-
gram ”Estonian Language Technology 2018–2027” of the
Ministry of Education and Research under grant EKTR3,
by European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No 825153,
project EMBEDDIA (Cross-Lingual Embeddings for Less-
Represented Languages in European News Media) and En-
terprise Estonia project No. EU48684, Research Project
No. 1.11 (Deep neural models and cross-lingual embed-
dings in TEXTA Toolkit).

7. Bibliographical References
Agrawal, R., Gupta, A., Prabhu, Y., and Varma, M. (2013).

Multi-label learning with millions of labels: Recom-
mending advertiser bid phrases for web pages. pages 13–
24, 05.

Bi, W. and Kwok, J. (2013). Efficient multi-label classifi-
cation with many labels. ICML, pages 405–413, 01.

Bird, S., Klein, E., and Loper, E. (2009). Natural Lan-
guage Processing with Python. O’Reilly Media, Inc., 1st
edition.

Godbole, S. and Sarawagi, S. (2004). Discriminative meth-
ods for multi-labeled classification. In Honghua Dai,
et al., editors, Advances in Knowledge Discovery and
Data Mining, pages 22–30, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Orasmaa, S., Petmanson, T., Tkachenko, A., Laur, S., and
Kaalep, H.-J. (2016). Estnltk - nlp toolkit for estonian.
In Nicoletta Calzolari (Conference Chair), et al., edi-
tors, Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC 2016),
Paris, France, may. European Language Resources As-
sociation (ELRA).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
(2011). Scikit-learn: Machine learning in Python. Jour-
nal of Machine Learning Research, 12:2825–2830.

Prabhu, Y. and Varma, M. (2014). Fastxml: A fast, ac-
curate and stable tree-classifier for extreme multi-label
learning. Proceedings of the ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, 08.

Read, J., Pfahringer, B., Holmes, G., and Frank, E. (2009).
Classifier chains for multi-label classification. In Wray
Buntine, et al., editors, Machine Learning and Knowl-
edge Discovery in Databases, pages 254–269, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Tsoumakas, G. and Katakis, I. (2009). Multi-label clas-
sification: An overview. International Journal of Data
Warehousing and Mining, 3:1–13, 09.

Weston, J., Makadia, A., and Yee, H. (2013). Label parti-
tioning for sublinear ranking. 30th International Confer-
ence on Machine Learning, ICML 2013, pages 840–848,
01.

Zhang, M.-L., Li, Y.-K., Liu, X.-Y., and Geng, X. (2017a).
Binary relevance for multi-label learning: an overview.
Frontiers of Computer Science, 12, 11.

Zhang, W., Wang, L., Yan, J., Wang, X., and Zha, H.
(2017b). Deep extreme multi-label learning. 04.

Zhou, T., Tao, D., and Wu, X. (2012). Compressed label-
ing on distilled labelsets for multi-label learning. Ma-
chine Learning, 88, 07.

30

Proceedings of the LREC2020 Industry Track , pages 31–35
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

Industrial Machine Translation System for Automotive Domain

Maria Sukhareva∗, Olgierd Grodzki†, Bernhard Pflugfelder∗
∗BMW Group

Bremer Straße 6, 80807 Munich
{maria.sukhareva, bernhard.pflugfelder}@bmwgroup.com

†Data Reply
Luise-Ullrich-Straße 14, 80636 Munich

o.grodzki@reply.de

Abstract
BMW Group, a large multinational company, inevitably faced the challenge of processing and creating large amounts of multilingual
data. As manual translation fails to provide sufficient coverage and cost efficiency on a large scale, an acute need for a reliable machine
translation service naturally arose. Translating highly technical automotive texts has proven to not be a trivial task and off-the-shelf
commercial cloud solutions fail to deliver satisfactory translation quality. In this paper, we present a customized machine translation
system tailored for automotive needs. Our system is well-suited for translating automotive texts and satisfies all data protection
requirements. The use cases that we discuss in this paper have a projected business value between one and five million euros.

Keywords: machine translation, industrial system, domain adaptation

1. Introduction
BMW Group is a multinational company: it currently op-
erates 30 production and assembly facilities in 14 countries
and has a global sales network in more than 140 countries.
As of December 2018, the BMW Group had a workforce
of 134,682 employees from 124 nationalities. Having a fast
and reliable machine translation infrastructure is vital for
the company’s value chain.

Assimilation of multilingual information in BMW
Group The BMW Group receives daily thousands of cus-
tomer comments in over 100 languages. These comments
further undergo qualitative and quantitative analysis. BMW
data scientists use machine learning methods to cluster,
classify and extract information from the comments while
customer relations specialists process the feedback individ-
ually addressing specific customer needs. Another source
of multilingual data is dealer feedback. Currently car deal-
ers operate in over 140 countries and BMW support service
receives tickets in dozens of languages. Manual translation
of such tickets is costly and causes unnecessary delay. Ap-
plying machine translation can significantly diminish the
processing time.

Dissemination of multilingual information in BMW
Group BMW Group creates a multitude of multilingual
texts on a daily basis such as car manuals and training ma-
terials for dealers, marketers and customers. These kind of
texts cannot tolerate any errors. Thus, the current approach
is to automatically pre-translate the texts and involve hu-
man technical translators as post-editors.

Multilingual communication The company operates
several support hotlines e.g. IT support, financial services
and dealer support. Support agents are reachable by tele-
phone as well as through an online chat. Machine trans-
lation here can be used for real time translation of low-
resource languages for which it is not plausible to create
a manned support service.

2. Automotive domain
The automotive domain includes a variety of texts, e.g. car
manuals, promotional texts, error reports, protocols of pro-
duction changes. All those texts pose a challenges of spe-
cialized terminology. While our machine translation en-
compasses a multitude of BMW domains and applications,
this paper will focus on two use cases: (i) translation of car
manuals and training materials and (ii) translation of pro-
duction protocols. The savings from the usage of machine
translation on these use cases are projected to be between
one and five million euros annually.
Car manuals are instructions for car mechanics, dealers and
customers on how to repair and maintain the vehicles. The
original texts are written in German and are to be translated
into multiple languages.
BMW Group has prescriptive terminological dictionaries
for human translators and technical writers. The dictionar-
ies contain lists of concepts and their lemmata in over 30
languages. The concepts are defined in German and, thus,
all the dictionary entries have a German lemmata. An en-
try can have several non-German entries in other languages
that should be used for translation. There is a list of syn-
onyms for a given concept which shall not be used in tech-
nical documentation and translation (negative terms). Lan-
guages are not equally represented in the dictionary: En-
glish has most of the entries while Ukrainian, Bulgarian
etc. have just a few thousands terms. Table 1 shows the
statistics over the corporate lexicon. The lexicon has a total
of 1241087 entries with 227590 being negative terms.
The dictionary is prescriptive i.e. the resulting translations
have zero tolerance for synonyms i.e. using a term that is
marked as negative invalidates the whole translation even
if the meaning is preserved. This kind of restrictions pose
several challenges, first of all, the challenge of integrating
the lexica into the translation and the challenge of the auto-
matic evaluation as commonly used measures such as TER
or BLEU treat all the n-grams equally.

31

lang entries lang entries lang entries lang entries lang entries
German 96032 Portuguese 54932 Turkish 48020 Swedish 13526 Bulgarian 6974

English (UK) 74404 Russian 53210 English (US) 47150 Slovene 12550 Portuguese (BR) 6632
French 73626 Greek 52832 Thai 46744 Hungarian 12174 Dutch (BE) 2284
Spanish 69050 Finnish 50932 Chinese 45946 Romanian 12096 French (BE) 2272
Italian 63466 Korean 50172 Czech 34888 Norwegian 9016 Ukrainian 2150
Dutch 60434 Danish 48332 Indonesian 34692 Chinese (TW) 8178 English (AU) 2104

Swedish 60358 Japanese 48090 Polish 28880 Arabic (SA) 7496 English (ZA) 1444

Table 1: The amount of entries per language in the prescriptive corporate lexicon

G34 ag upr/lwr seal/grommet opt. E34.234.2 assy line protection LU with ERWU.
If the electronic immobilizer (EWS) functionality is disabled, the TEE shall
prevent disengagement of the parking lock. G83 = Non-return valve, cylinder head.
Close the trim grille CS/JCW/Cooper/CooperD/One/OneD.

Figure 1: An example of a production protocol

Translation of production protocols is another challenging
MT use case. Daily, engineers protocol their actions e.g.
ordering car parts, changing design decision etc. The pro-
tocols are highly technical but also contain a lot of abbrevi-
ations, acronyms etc. for brevity. Figure 1 shows a snippet
of a production protocol. The texts are not easily decipher-
able by a person who lacks specialized training. Similarly,
machine translation systems trained on out-of-domain data
such as news corpora have a sub-par performance on this
data. The original protocols are written either in English
or in German. The German protocols are translated into
English and communicated to the plants in non-German
speaking countries. The English protocol translations are
sent to the plants in Germany. Apart from the obvious chal-
lenges of non-standardized punctuation and domain spe-
cific lexica, additional challenges of copying numbers and
translating abbreviation is added. Having erroneous trans-
lation of numbers has in fact proven to be worse than not
having a translation at all as post-editors may fail to notice
the error if the number is present in the text.
To sum up, the automotive domain is comprised of mul-
tiple genres of varying complexity: from easily readable
customer reviews to terminology-rich production protocols.
Implementing machine translation of automotive texts is
not trivial and involves various degrees of domain adap-
tation depending on the use case.

3. Customized machine translation
Industrial MT also have to comply with restrictions im-
posed by the EU’s General Data Protection Regulations1

that states that no personal data can be disclosed to a third
party without customer consent. This limits the options
for cloud-based machine translation systems as data com-
ing from customers and dealers may contain personal in-
formation. Another restriction is confidentiality: Produc-
tion protocols are confidential and cannot be passed to a
third party. Over the years, BMW Group has accumulated
a large amount of translation memories for the languages
listed in Table 1. The translation memories are parallel text

1https://gdpr-info.eu/

fragments that have been translated to or from German. The
fragments can be sentences and clauses, but are on average
much shorter phrases.
We have implemented customized machine translation so-
lutions for German and three high-resource languages: En-
glish, Italian and Spanish. English, unsurprisingly, has the
largest amount of parallel data with over 5.5 million frag-
ments. Spanish has 2.6 million parallel fragments and the
Italian data has 2 million fragments. Training a machine
translation system solely on this data is not possible as,
for example, the average sentence length of a fragment is
9 words in German and 11 words in English for the produc-
tion protocols and 7 words in German and 9 words in En-
glish for the car manuals. Thus, to ensure that the models
learn to handle longer sequences, we used out-of-domain
open-source data, which eventually doubled the training
sets for all the language pairs: over 11 million parallel frag-
ments for English and 5 million and 4 million for Spanish
and Italian correspondingly.

3.0.1. Data filtering and preprocessing
We filtered the data with a language detector and eliminated
all of the sentence pairs with a length discrepancy (the to-
ken ratio 0.6). We also deleted all the tags and non-ASCII
characters. To prevent mistranslation of numeric data, we
substituted all the tokens that contain digits (e.g. GB18,
10.02.2020, 24-241-123-123-432) with a placeholder and
used lexical constraints (Post and Vilar, 2018) to make sure
that all the digits are present in the translation. We also
use placeholders to integrate a list of BMW abbreviations
and untranslatables. Finally, we used byte-pair encoding to
tokenize the data.

3.1. Model training
The models are on 8 GPUs with a toolkit for neural machine
translation Sockeye (Hieber et al., 2017a). To avoid later
bias towards shorter translations, we also learn the brevity
penalty parameter during the training (Hieber et al., 2017b).
The Spanish and Italian models are only used for car man-
uals while the English model is applied to production pro-
tocol as well. Despite terminological similarity, production

32

protocols are hastily written texts with multiple acronyms,
abbreviations, digits and orthographic errors. Car manu-
als are, on the contrary, carefully crafted texts and void of
errors. Thus, we have experimented with various set-ups:
(i) training separate models for car manuals and protocols,
(ii) training a multitask model by adding a tag to differenti-
ate between use cases (Johnson et al., 2017) (iii) and train-
ing a joint model. The joint model has reached the highest
BLEU score (Papineni et al., 2002), followed by the disjoint
training for which the BLEU score dropped on average by
0.06. The multitask approach performed the worst mostly
because the model would opt for short translations biased
towards the length of the in-domain data.

3.2. Translation
We use the same preprocessing steps for translation as for
training. The models are deployed on the BMW AWS cloud
described in section 4. To accelerate inference, we also fol-
low Post and Vilar (2018) and integrate the lexical trans-
lation probabilities learned from the training data with fast
align (Dyer et al., 2013). The lexicon is learnt on the train-
ing data for each language pair and we set the top k candi-
dates to 200.

3.3. Evaluation
We have compared our machine translation system to
cloud-based commercial systems available on the market.
The goal of the evaluation was to show that our system can
achieve state-of-the-art performance and is more suitable
for translating automotive domain texts than the off-the-
shelf tools. While we are aware that some commercial sys-
tems allow in-domain data integration, our training data are
confidential and cannot be shared with third parties. There-
fore, our system has a clear advantage of having seen in-
domain data but as the goal of the evaluation is not to com-
pare algorithmic approaches but rather to show that an in-
house machine translation system can deliver high quality
translation while complying with data protection standards.
1000 reference sentences were translated by our CMT and
by two cloud-based commercial translators (CS1 and CS2)
Unsurprisingly, the cloud-based systems performed poorly
on both datasets (see Table 2) with CS1 reaching the BLEU
score of 0.55 and CS2 reaching the BLEU score of only
0.4. The CMT reached the BLEU score of 0.78 on the
same test set. We have conducted qualitative evaluation
of the results and observed that even for the sentences that
have lower n-gram overlap the CMT produces better trans-
lations than commercial systems. Table 3 shows examples
of sentences that were not translated perfectly by the CMT.
The subsequent qualitative analysis by human translators
concluded that CMT produces acceptable translations un-
like off-the-shelf commercial systems that frequently fail
to convey even the general idea of the sentence. As the
main practical objective of translating production protocols
was to facilitate information exchange between BMW en-
gineers, we have concluded that CMT satisfies the quality
requirements and the system has been launched into pro-
duction.
Translation of car manuals posed an additional challenge
as the end users are dealers and customers and, thus, the

Domain CS1 CS2 CMT
Protocols 0.56 0.4 0.73
Manuals 0.63 0.56 0.76

Table 2: BLEU Score evaluation of the CMT as compared
to industrial systems

translation should not only adequately transfer the mean-
ing but also be completely error-free as well as grammati-
cally, orthographically and punctuation-wise correct. This
could only be achieved by adding post-editors to the work-
flow. We have conducted three post-editing experiments
for three customized models: German to English, German
to Italian and German to Spanish. Human translators were
asked to post-edit five documents (10259 sentences) trans-
lated from German into a corresponding language. The
post-editors were instructed to only apply minimal edits in
order to reach publishable quality. As the main pragmatic
objective of integrating machine translation into the work-
flow was to accelerate the translation process, the useful-
ness of the system corresponds to the speed gains by post-
editors as compared to translators. The best results were
achieved for English with post-editing speed of 909 words
per hour. Italian post-editor gained the speed of 650 words
per hour and the Spanish post-editor was processing 641
words per hour. The better results for English can be eas-
ily explained by the fact that the English customized model
was trained on three times as much data as compared to
the other two languages. As the average translation speed
of a BMW technical translator is 330 words per hour, we
have shown that using our customized machine translation,
BMW translators can process double or triple text volumes
as compared to translation from scratch.

3.4. System updates and quality control
In order to improve the performance of the machine trans-
lation system and to keep the system up-to-date, the system
is retrained each time when 100,000 new sentence pairs are
available for a language pair. These data are then split into
training, development and test sets with both test and devel-
opment sets having 4,000 sentences. The evaluation is done
on the newly acquired test set as well as on the test sets kept
from previous (re-)trainings. In this way, we make sure that
the new system is not overfitting the new data. If after re-
training the model delivers satisfying performance on all
the test data, the model is moved into production.
We also monitor the quality of the productive models. The
post-editing results for each sentence are directly communi-
cated back to the system and two measures are computed:
the post-editing speed and the human-targeted translation
edit rate (HTER) (Snover et al., 2006).

4. Scaling CMT to production
The solution is deployed in Amazon Web Services (AWS,
2020b), the world’s most widely adopted cloud platform.
It offers reliable, scalable, and inexpensive cloud comput-
ing services. The translation system was designed using a
selection of the services offered by AWS. The architecture
diagram is presented in Figure 2. All components were de-

33

Original Human CS1 CS2 BMW CMT
Neusausleitung Sensor Fuss-
gaengerschutz G0x aufgrund
der Max Boole

New export of sensor pedes-
trian protection G0x due to the
Max Boole

Reuse sensor foot protector
G0x due to the Max Boole

New version sensor football
instrument protection G0x due
to the Max Boole

New export sensor pedestrian
protection G0x due to Max
Boole

Rippe an Auflage LT entfer-
nen, um Zugaenglichkeit
an Sitzaussenlager zu
gewaehrleisten

Remove rib at the support of
the side member to ensure ac-
cessibility at the outer seat
bearing.

Remove the rib on support LT
to ensure traction on the out-
side bearing

Remove rib to edition LT to
ensure access to seat outside
warehouses

Remove rib on support LT
to ensure accessibility to seat
outer bearing

Fruehester moeglicher
Wareneingangstermin BMW:

earliest possible incoming
goods date BMW:

Early arrival date BMW: Fruitful possible goods receipt
date BMW:

Earliest possible receipts of
goods BMW:

Freigabe der Bauteile die nicht
Inhalt Huelle sind.

Release of components that
are not part of the cover.

Release of components that
are not content hulle.

Release of the components
that are not content Huelle.

Release of the components
that are not contained in the
case.

Abloesung der BAW BET698 Replacement of deviation per-
mit BET698

The removal of the BAW
BET698

Abloation of BAW BET698 Release of the Closure of
dev.perm BET698

Table 3: Comparison of selected translations from two commercial systems (CS1 and CS2) and BMW CMT

Figure 2: Implementation of the customized machine trans-
lation on AWS

ployed within an BMW AWS VPC with only private sub-
nets and without any external connectivity.
The inference code was wrapped in a Flask application in
order to expose a REST API to perform translations. It was
then packaged in a Docker image and pushed to AWS Elas-
tic Container Registry (AWS, 2020a). The model artifact is
not a part of the image, instead it is packaged in an archive
and uploaded to AWS Simple Storage Service (S3). This
object storage service offers industry-leading scalability,
data availability, security, and performance (AWS, 2016).
This separation was done following engineering best prac-
tices - the model lifecycle should be managed separately
from the inference code.
The application is deployed in AWS SageMaker, which is
a fully managed service that provides every developer and
data scientist with the ability to build, train, and deploy ma-
chine learning models quickly (AWS, 2019a). It provides
many built in features needed for production, e.g. version-
ing, autoscaling, zero downtime redeployments, and canary
testing. The SageMaker deployment makes uses of the in-
ference application Docker image and the model artifact.
The translation system is exposed via an API deployed us-
ing AWS API Gateway (AWS, 2015). The API can be
called in one of the following request-reply patterns:

• synchronous - the client submits a translation request
and blocks execution until it receives a translation re-
sponse,

• asynchronous - the client submits a translation start

request, immediately receives a job ID as a response
and proceeds to use it to poll for status and retrieve the
results once the job is finished.

The asynchronous pattern is preferred because it leverages
the potential parallelism of the translation service, reduces
the risk of timing out, and accelerates the translation of
large text packages. The system also includes a web fron-
tend which allows users to engage with it from their web
browsers.
Robustness of the service is ensured through the auxiliary
code e.g. validation of the requests, choosing and invok-
ing the correct SageMaker endpoint, etc. This code was
deployed using AWS Lambda, which is a platform that
enables code execution without provisioning or managing
servers. The orchestration of the Lambda functions was
done by AWS Step Functions (AWS, 2019b), which al-
low for the coordination of multiple AWS services within
serverless workflows. In doing so it abstracts away the state
and transformation management in order to focus on the
business logic.
The production-readiness of the system is further enhanced
via the application of a number of engineering best prac-
tices. The infrastructure is managed by an infrastructure
as code (IaC) solution Terraform. Building and deploy-
ing the code for both the frontend and backend is managed
by CI/CD pipelines (Chapman, 2014). Every component
of the system provides logs and metrics to AWS Cloud-
Watch. Alarms, based on the CloudWatch metrics, are sent
to an SNS topic which delivers emails to subscribers in
both the alarm and OK states. The observability of the ser-
vice, meaning the distributed tracing of end-to-end requests
through all layers of the solution, is performed via the use
of AWS X-Ray to generate service maps and traces.

5. Conclusion
Machine translation has a wide spectrum of applications in
BMW Group. This paper has focused on two challenging
use cases: the translation of production protocols and the
translation of car manuals. These use cases have a pro-
jected business value of several million euros. Our CMT
systems have proven to deliver high quality translations of
automotive texts and to accelerate human translation. Our
future work includes introducing additional languages into
the CMT system, integrating lexica and extending our eval-
uation methodology to assess terminological consistency
according to corporate standards.

34

6. Bibliographical References
Dyer, C., Chahuneau, V., and Smith, N. A. (2013). A sim-

ple, fast, and effective reparameterization of IBM model
2. In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 644–
648, Atlanta, Georgia, June. Association for Computa-
tional Linguistics.

Hieber, F., Domhan, T., Denkowski, M., Vilar, D., Sokolov,
A., Clifton, A., and Post, M. (2017a). Sockeye: A
Toolkit for Neural Machine Translation. arXiv preprint
arXiv:1712.05690, December.

Hieber, F., Domhan, T., Denkowski, M., Vilar, D.,
Sokolov, A., Clifton, A., and Post, M. (2017b). Sock-
eye: A toolkit for neural machine translation. CoRR,
abs/1712.05690.

Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y.,
Chen, Z., Thorat, N., Viégas, F., Wattenberg, M., Cor-
rado, G., Hughes, M., and Dean, J. (2017). Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the Asso-
ciation for Computational Linguistics, 5:339–351.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics, pages
311–318, Philadelphia, Pennsylvania, USA, July. Asso-
ciation for Computational Linguistics.

Post, M. and Vilar, D. (2018). Fast lexically constrained
decoding with dynamic beam allocation for neural ma-
chine translation. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 1314–1324, New
Orleans, Louisiana, June. Association for Computational
Linguistics.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and
Makhoul, J. (2006). A study of translation edit rate with
targeted human annotation. In In Proceedings of Asso-
ciation for Machine Translation in the Americas, pages
223–231.

AWS, (2015). AWS Serverless Multi-Tier Architectures.
AWS, (2016). AWS Storage Services Overview.
AWS, (2019a). Deep Learning on AWS.
AWS, (2019b). Implementing Microservices on AWS.
AWS, (2020a). Amazon ECR User Guide.
AWS, (2020b). Overview of Amazon Web Services.
Chapman, D., (2014). Introduction to DevOps on AWS.

35

Proceedings of the LREC2020 Industry Track , pages 36–39
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

NERPy: A Framework for Named Entity Recognition Experiments

Constantine Lignos
Brandeis University

415 South St., Waltham, MA 02453, USA
lignos@brandeis.edu

Abstract
Creating a high-performing sequence named entity recognition (NER) system requires a series of interconnected design decisions,
including the choice of entity encoding, and for some models, the design and selection of features. In this paper, we introduce NERPy,
an MIT-licensed NER framework designed to support flexible experiments in named entity recognition. We demonstrate NERPy by
performing a sample experiment using the CoNLL 2003 English NER data that explores the performance of different entity encoding
schemes across a wide range of training data sizes.

Keywords: Named entity recognition, Sequence models, NLP frameworks

1. Introduction
Careful experimentation is a key part of producing high-
performing named entity recognition systems. However,
researchers, software developers, and students interested in
performing experiments in NER system design have limited
tools available to them, and constructing an experimental
framework for NER is a daunting task for non-experts. We
address this gap with the creation of NERPy, a Python-based
framework for NER experiments.
In addition to the substantial amount of work on develop-
ing state of the art systems, previous work has addressed
design questions for NER systems and released software
that allows for experimentation. Ratinov and Roth (2009)
provide one of the most comprehensive explorations of de-
sign considerations for NER systems, finding that BILOU
entity encoding (see Section 2.1) outperforms BIO in their
system and that standard Viterbi decoding approaches may
be slower and worse-performing in practice compared to
greedy decoding with non-local features. Dernoncourt et
al. (2017) introduce NeuroNER, a toolkit for neural NER
designed for non-expert use, which support tight integra-
tion with the annotation process. Yang and Zhang (2018)
introduce NCRF++ for performing experiments with neural
NER models, and Yang et al. (2018) carefully explore the
performance characteristics of models in that framework.
Many existing toolkits are primary targeted at NER re-
searchers looking to experiment with state of the art sys-
tems using standard datasets, and are built around specific
sequence model backends which provide for training and
prediction. Like NeuroNER, NERPy primarily targets non-
experts in the NER domain, especially software developers
in industry, and is constructed to allow them to build and ex-
periment with NER systems using standard datasets or their
own data. NERPy allows users without expertise in NER to
build NER systems and optimize their design by selecting
the features, entity encoding, sequence model backend, and
hyperparameters and then exploring the results.
NERPy’s primary focus is building non-neural models, pri-
marily using CRFsuite (Okazaki, 2007) for inference. In-
tegration with neural backends is currently ongoing; see
Section 4 for further discussion. Non-neural backends were
prioritized first due to the existence of NCRF++ and Neu-

roNER, which reduced need in this area, and because one of
NERPy’s strengths is the ease with which users can select
and customize features, which is of much lower importance
for neural systems. Many of NERPy’s users may lack the
expertise and/or computational resources to effectively train
neural NER models for custom tasks, and thus it is important
to provide a framework that meets their needs. Even if a neu-
ral model is desired for the final system, a non-neural model
can provide a strong baseline and may aid in the “booststrap-
ping” process where models are trained with small amounts
of data until more is available.
While NERPy is not designed to be used in production, it
can be used for prototyping, selecting the design parameters
of an NER system, performing research in NER system de-
sign, and as a strong but fast baseline for other systems to
beat. NERPy is designed to support comprehensive configu-
ration of every part of the system design, including selection
of hand-tuned features, use of unsupervised word represen-
tations such as word embeddings or Brown clusters, entity
encoding, and the sequence model backend. This frame-
work allows non-expert users to train NER systems from
scratch using large or small data sets and compare system
designs without having to implement any of the NER system
themselves. NERPy enables reproducible, comprehensive
experiments regarding the overall design of NER systems in
any natural language for which the user can provide data.

2. Design Goals for NERPy
A complete NER system. NERPy provides a complete
system for NER, including ingesting annotation, generating
features (Section 2.2), encoding entities, training, predict-
ing, scoring, and analyzing errors. It depends only on the
attrs, python-crfsuite, frozendict, numpy, and regex Python
packages, easing installation. NERPy uses a universal docu-
ment representation that consists of sentences, tokens (which
support storing properties such as part of speech and any
user-defined properties), and entity mentions. Unlike spaCy
(Honnibal and Montani, 2017), it supports representing
nested or overlapping names, but does require that names
are token-aligned, as is common for token-based sequence
models and is required by the CoNLL annotation format.

36

Encoding Labels

BIO B-MISC B-MISC I-MISC O B-PER I-PER
IOB I-MISC B-MISC I-MISC O I-PER I-PER
IO I-MISC I-MISC I-MISC O I-PER I-PER
BILOU U-MISC B-MISC L-MISC O B-PER L-PER

Table 1: Entity encodings for the tokens of the string Aus-
tralian Davis Cup captain John Newcombe.

NERPy can read CoNLL shared task1 and OntoNotes for-
mats and provides a CoNLL format writer. NERPy provides
evaluation scripts that can score output in the NERPy or
CoNLL formats and report overall and per-type entity F1 in
addition to producing delimited files to support error anal-
ysis (most frequent errors, etc.). Users can call a single
provided script to train and test a model, and can run ex-
periments without any code changes simply by specifying
different JSON files to configure features and select the
sequence model backend and its hyperparameters.
In addition to supporting running experiments from the com-
mand line, NERPy’s API can be used to perform in-memory
training and prediction without needing to write any data to
disk. This allows it to support rapid prototyping of appli-
cations that use named entity recognition. NERPy accepts
input consisting of tokenized, sentence-segmented data orga-
nized into documents of any length, and adds named entity
mentions to the document structure.

Interchangeable sequence model backends. NERPy
primarily uses CRFsuite (Okazaki, 2007) to support training
and decoding of sequence models. CRFsuite’s supported
training algorithms include L-BFGS, averaged perceptron,
passive aggressive, AROW, and SGD.

Tested and easy to extend. NERPy is licensed using the
MIT license. It is written in pure Python and supports
Python 3.7 and up. NERPy includes a comprehensive test
suite with 100% code coverage, allowing users to easily
verify that any modifications do not affect correctness. It is
extremely to add features or integrate a new backend other
than CRFSuite, and we have tested integration with other
backends during development.

2.1. Encoding Entities
To encode named entities in a sequence model, each en-
tity must be converted into a sequence of labels. Consider
this example from the CoNLL 2003 English NER anno-
tation: [Australian]MISC [Davis Cup]MISC captain [John
Newcombe]PER. NERPy supports the most popular entity
encoding schemes, which would encode the five tokens of
this example sentence as shown in Table 12, and provides
robust decoding that can handle invalid label sequences pro-
duced by the sequence model. With the exception of IO,

1The format varies across the four languages used in the 2002-3
CoNLL shared tasks, differing in the number of fields and the exact
manner in which the DOCSTART document separator was used.
NERPy maintains the original document boundaries and can read
all fields specified in any of the four languages and adds them as
attributes on each token.

2We can only briefly note that IOB and BIO have often been
confused, and that BILOU is isomorphic to BMES/BIOES/IOBES.

{
"word": {

"window": [-2, -1, 0, 1, 2],
"token_identity": {
"lowercase": true

},
"word_shape": {},
"is_capitalized": {},

},
"subword": {

"window": [0],
"suffix": {
"min_length": 1,
"max_length": 4

}
},
"distributional": {

"window": [-1, 0, 1],
"word_vectors": {
"scale": 2.0,
"path": "<path to embeddings>"

}
}

}

Figure 1: Sample JSON feature configuration

which is lossy in the case of adjacent entities, any of these
encoding strategies are capable of supporting separate, adja-
cent entities of the same type, and there is no a priori reason
to select one lossless encoding over another. We return to
entity encodings in Section 3.1.

2.2. Features
The currently-supported features include: the token itself
(lowercased if desired), the word shape of the token (capital
letters mapped to A, lowercase letters to a, digits to 0, all
other characters unchanged), whether the first character of
the token is capitalized, whether all characters in the token
are capitalized, whether the token is all digits, whether the
token contains a digit, whether the token is all punctuation
(using Unicode character categories for maximum gener-
alization across languages), the length of the token (either
as a binary feature for each length or a single continuous
feature), token prefixes and suffixes, Brown cluster paths
(and their prefixes), and word embeddings.
Figure 1 gives a sample feature configuration .json file that
shows how features can be defined. Multiple user-named
feature sets (word, subword, and distributional in this exam-
ple) can be simultaneously used, each with differently-sized
windows of application. For example, a window of [-1,
0, 1] will generate features for the current, previous, and
next word for that feature set. Some features have mandatory
or optional arguments, such as specifying whether to lower-
case tokens, or the path to the file to be used for embeddings.
Any arguments provided are passed as keyword arguments
to the constructor of a class that generates the feature. For
example, the string token identity in the configura-
tion is mapped to the TokenIdentity class which has a
constructor with the signature def init (self, *,
lowercase: bool = False). Thus, adding a new

37

●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

● ●

●
● ●

●
●

●
●

● ● ●
●

●

●

●

●

●

●

●
●

●
●

●

● ●
● ● ● ● ●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

● ● ●
● ●

●

●

74

76

78

80

82

84

86

88

250 500 750
Documents

F
1

Encoding ● ● ● ●BILOU BIO IO IOB

Figure 2: Entity F1 on CoNLL 2003 English test data for all
encoding schemes across training data sizes.

feature is as simple as defining a new class that implements
it and adding the class to the map of feature names to imple-
menting classes. Any added feature can be configured in the
same way as the built-in features by using JSON.

3. Discussion
3.1. Sample Experiment
To demonstrate NERPy’s capabilities, we report results for
an experiment that explores the impact of entity encoding
choice at varying sizes of training data. The features used
were: the token string, word shape, whether a token is capi-
talized, all caps, all punctuation, numeric, and/or contains a
number, the length of the token (as a binary feature for each
length), suffixes of length one to four, and word embeddings.
All features were computed on the focus token and in a win-
dow of the two previous and two next tokens. We did not use
part of speech features because we are particularly interested
in performance on small amounts of training data; as part of
speech taggers can produce tags that indicate proper nouns,
they can effectively pass information from the part of speech
training data into the NER training data, making the NER
training data in effect larger than it actually is. Word embed-
ding features were generated using fastText 300-dimensional
word embeddings with subword information (Mikolov et
al., 2018, wiki-news-300d-1M-subword). We selected these
embeddings because they retain the casing of the original
data and give some of the benefit of character-based models
by using subword information.
For the purpose of easy reproducibility and comparison

against other work, we use the CoNLL 2003 NER shared
task English data (Tjong Kim Sang and De Meulder, 2003),
reporting performance as entity F1 on the test set (the stan-
dard CoNLL NER shared task metric). To explore the effect
of varying the amount of training data, we evaluated at 20
points, using 5%–100% of the training documents in 5%
increments. For all training sizes except 100% (where doing
so is impossible), we report the mean F1 for five random
selections (without replacement) of training documents.
The training algorithm and hyperparameters were selected
based on validation set performance when training on the
full training set. Models were trained using L-BFGS for 100
iterations with an L1 regularization coefficient (c1) of 0.01,
and an L2 regularization coefficient (c2) of 0.001. As train-
ing is implemented deterministically and initializes with
zero weights, experiments from multiple random initializa-
tions are not required. We trained the model at each data
size point using each label scheme. In total, this resulted
in 80 experimental configurations, the cross product of four
encoding schemes and 20 data sizes. As a result of the large
number of configurations, the difference between encod-
ing schemes across data sizes and features configurations is
displayed in Figure 2 rather than presented in table form.
At the lowest data point, IO performs best, consistent with
the notion that when there is minimal training data, a min-
imal encoding scheme performs best. At the highest data
point, BILOU performs best, matching the findings of Rati-
nov and Roth (2009). The system performs similarly to
many of the configurations evaluated in by Turian et al.
(2010) which use Brown clusters or word embeddings.
These findings are not shocking, but serve to demonstrate
the capabilities of NERPy as an experimental framework.

3.2. Implementation Challenges
Working with word embeddings. NERPy originally
used gensim (Řehůřek and Sojka, 2010) for load-
ing word embeddings to generate features. How-
ever, this required loading vectors for all words in
the embeddings (not just the training vocabulary),
which is slow and memory-intensive. To address this,
we developed the QuickVec (https://github.com/
ConstantineLignos/quickvec) package as part of
NERPy, which can instantaneously load word embeddings
after a one-time conversion process, similar to Magnitude
(Patel et al., 2018). It can be installed with no dependencies
except numpy and can convert embeddings into its database
format much faster than Magnitude, over three times faster
for the 1 million-word vocabulary 300-dimensional embed-
dings used in the experiment described above.

Performance optimization. Due to CRFsuite’s extremely
fast C implementation of first-order linear chain CRF mod-
els, NER models can be trained rapidly. For example, using
a standard untuned feature set (including 300-dimensional
word embeddings) computed over a five-word window, train-
ing a model on the CoNLL 2003 English NER data using
L-BFGS takes approximately 13 minutes, and the result-
ing model attains an entity of F1 of 88.21 on the test data.
Substantial time was invested in optimizing NERPy’s code
to ensure that the code interfacing with the backend is as
fast as possible, including doing line-level code profiling

38

to optimize frequently-called functions, such as those used
in feature generation. However, especially when word em-
beddings are used, feature generation can take a significant
amount of time (2.5 minutes for the training data in this
example), as features for each position in each sentence are
represented as individual dictionaries before being provided
to the backend (which will typically use a more efficient
representation). While it is possible to slightly improve per-
formance while maintaining a pure Python implementation,
major changes such as implementing parts of NERPy in
C/C++ would come at the risk of making the code harder to
extend, interact with, and install. Thus we plan to keep the
current distinction of NERPy being pure Python but interfac-
ing with backends that may be written in other languages.

4. Conclusion and Future Work
NERPy provides a flexible and accessible framework for
named entity recognition that any user capable of us-
ing a command line could use to perform experiments
in NER system design, and any user capable of using
Python could use to create a prototype system. We have
publicly released the code (https://github.com/
ConstantineLignos/nerpy), and are in the process
of completing the documentation of NERPy and QuickVec
and releasing them on PyPI so that they are pip-installable.
There are many ways in which we believe that NERPy could
be extended to further enable experimentation with NER
system design and rapid prototyping. First, integration with
a neural NER backend, such as NCRF++ and NeuroNER
would enable a much broader set of experiments to be run.
Integration is currently underway, and we look forward to
releasing this soon. The challenge of integrating goes far
beyond the software engineering required to merely “pipe”
together systems; the configurations must be connected, and
errors have to be handled robustly. While using another
sequence model backend is relatively simple, connecting
NERPy to another feature-rich NER toolkit is complex.
Second, in addition to industrial and novice-user applica-
tions, we believe NERPy could provide a reliable baseline
for experimenting with NER in lower-resourced languages.
Using NERPy, users can experiment with building systems
before word embeddings are available, and later identify-
ing the best ways to train their embeddings in the context
of a simple, non-neural system before experimenting with
more complex neural models, which are often more difficult
to train due to the challenges of selecting hyperparameters
using small amounts of data.
NERPy could be extended so that users could import pre-
trained NER models for various ontologies and languages to
be used for rapid experimentation. While spaCy provides a
similar function, its models are only available for a small set
of languages and are chosen to reflect stable, common, on-
tologies as opposed to recording the research community’s
progress. We believe that NERPy can provide a framework
for researchers to produce models for less commonly studied
languages and NER tasks.

References
Dernoncourt, F., Lee, J. Y., and Szolovits, P. (2017). Neu-

roNER: an easy-to-use program for named-entity recog-

nition based on neural networks. In Proceedings of the
2017 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, pages 97–102,
Copenhagen, Denmark, September. Association for Com-
putational Linguistics.

Honnibal, M. and Montani, I. (2017). spaCy 2: Natural
language understanding with Bloom embeddings, con-
volutional neural networks and incremental parsing. To
appear.

Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., and
Joulin, A. (2018). Advances in pre-training distributed
word representations. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and Eval-
uation (LREC 2018), Miyazaki, Japan, May. European
Language Resources Association (ELRA).

Okazaki, N. (2007). Crfsuite: a fast implementation of
conditional random fields (CRFs).

Patel, A., Sands, A., Callison-Burch, C., and Apidianaki, M.
(2018). Magnitude: A fast, efficient universal vector em-
bedding utility package. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pages 120–126, Brus-
sels, Belgium, November. Association for Computational
Linguistics.

Ratinov, L. and Roth, D. (2009). Design challenges and mis-
conceptions in named entity recognition. In Proceedings
of the Thirteenth Conference on Computational Natu-
ral Language Learning (CoNLL-2009), pages 147–155,
Boulder, Colorado, June. Association for Computational
Linguistics.

Řehůřek, R. and Sojka, P. (2010). Software framework for
topic modelling with large corpora. In Proceedings of the
LREC 2010 Workshop on New Challenges for NLP Frame-
works, pages 45–50, Valletta, Malta, May. ELRA. http:
//is.muni.cz/publication/884893/en.

Tjong Kim Sang, E. F. and De Meulder, F. (2003). In-
troduction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In Proceedings of
the Seventh Conference on Natural Language Learning
at HLT-NAACL 2003, pages 142–147.

Turian, J., Ratinov, L., and Bengio, Y. (2010). Word rep-
resentations: a simple and general method for semi-
supervised learning. In Proceedings of the 48th annual
meeting of the association for computational linguistics,
pages 384–394. Association for Computational Linguis-
tics.

Yang, J. and Zhang, Y. (2018). NCRF++: An open-source
neural sequence labeling toolkit. In Proceedings of ACL
2018, System Demonstrations, pages 74–79, Melbourne,
Australia, July. Association for Computational Linguis-
tics.

Yang, J., Liang, S., and Zhang, Y. (2018). Design chal-
lenges and misconceptions in neural sequence labeling.
In Proceedings of the 27th International Conference on
Computational Linguistics, pages 3879–3889, Santa Fe,
New Mexico, USA, August. Association for Computa-
tional Linguistics.

39

Author Index

Asula, Marit, 26

Babouchkine, Jean-Marc, 1
Benešová, Katarína, 21
Blanchon, Hervé, 1

Dusserre, Emmanuelle, 6

Grodzki, Olgierd, 31

Jeziorski, Andrzej, 10
Junczyk, Michal, 10

Kalitvianski, Ruslan, 6
Kocabiyikoglu, Ali Can, 1

Le Noé-Bienvenu, Guillaume, 15
Lignos, Constantine, 36

Mostefa, Djamel, 15

Nouvel, Damien, 15

Padró, Muntsa, 6
Pflugfelder, Bernhard, 31
Portet, François, 1

Sawicki, Filip, 10
Sikora, Marcin, 10
Sirel, Raul, 26
Solop, Oleksandr, 10
Sukhareva, Maria, 31
Suppa, Marek, 21
Švec, Andrej, 21

Vaik, Kristiina, 26

Zietkiewicz, Tomasz, 10

40

	Spoken Medical Prescription Acquisition Through a Dialogue System on Smartphone: Perspective of a Healthcare Software Company
	Promises and Disappointments of Semantic Analysis of Speech-To-Text Applied to Call Center Conversations in an Industrial Setting
	Industrial ASR Troubleshooting Tool
	Measuring the Polarity of Conversations between Chatbots and Humans: a use Case in the Banking Sector
	On the Importance of Text Classification Pipeline Components for Practical Applications: A Case Study
	Hybrid Tagger - An Industry-driven Solution for Extreme Multi-label Text Classification
	Industrial Machine Translation System for Automotive Domain
	NERPy: A Framework for Named Entity Recognition Experiments

