Summary of the paper

Title Extracting an English-Persian Parallel Corpus from Comparable Corpora
Authors Akbar Karimi, Ebrahim Ansari and Bahram Sadeghi Bigham
Abstract Parallel data are an important part of a reliable Statistical Machine Translation (SMT) system. The more of these data are available, the better the quality of the SMT system. However, for some language pairs such as Persian-English, parallel sources of this kind are scarce. In this paper, a bidirectional method is proposed to extract parallel sentences from English and Persian document aligned Wikipedia. Two machine translation systems are employed to translate from Persian to English and the reverse after which an IR system is used to measure the similarity of the translated sentences. Adding the extracted sentences to the training data of the existing SMT systems is shown to improve the quality of the translation. Furthermore, the proposed method slightly outperforms the one-directional approach. The extracted corpus consists of about 200,000 sentences which have been sorted by their degree of similarity calculated by the IR system and is freely available for public access on the Web.
Topics Information Extraction, Information Retrieval, Corpus (Creation, Annotation, Etc.), Other
Full paper Extracting an English-Persian Parallel Corpus from Comparable Corpora
Bibtex @InProceedings{KARIMI18.674,
  author = {Akbar Karimi and Ebrahim Ansari and Bahram Sadeghi Bigham},
  title = "{Extracting an English-Persian Parallel Corpus from Comparable Corpora}",
  booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
  year = {2018},
  month = {May 7-12, 2018},
  address = {Miyazaki, Japan},
  editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {979-10-95546-00-9},
  language = {english}
Powered by ELDA © 2018 ELDA/ELRA