Summary of the paper

Title Classifying the Informative Behaviour of Emoji in Microblogs
Authors Giulia Donato and Patrizia Paggio
Abstract Emoji are pictographs commonly used in microblogs as emotion markers, but they can also represent a much wider range of concepts. Additionally, they may occur in different positions within a message (e.g. a tweet), appear in sequences or act as word substitute. Emoji must be considered necessary elements in the analysis and processing of user generated content, since they can either provide fundamental syntactic information, emphasize what is already expressed in the text, or carry meaning that cannot be inferred from the words alone. We collected and annotated a corpus of 2475 tweets pairs with the aim of analyzing and then classifying emoji use with respect to redundancy. The best classification model achieved an F-score of 0.7. In this paper we shortly present the corpus, and we describe the classification experiments, explain the predictive features adopted, discuss the problematic aspects of our approach and suggest future improvements.
Topics Social Media Processing, Statistical And Machine Learning Methods, Corpus (Creation, Annotation, Etc.)
Full paper Classifying the Informative Behaviour of Emoji in Microblogs
Bibtex @InProceedings{DONATO18.253,
  author = {Giulia Donato and Patrizia Paggio},
  title = "{Classifying the Informative Behaviour of Emoji in Microblogs}",
  booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
  year = {2018},
  month = {May 7-12, 2018},
  address = {Miyazaki, Japan},
  editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {979-10-95546-00-9},
  language = {english}
Powered by ELDA © 2018 ELDA/ELRA