Summary of the paper

Title Dynamic Oracle for Neural Machine Translation in Decoding Phase
Authors Zi-Yi Dou, Hao Zhou, Shu-Jian Huang, Xin-Yu Dai and Jia-Jun Chen
Abstract The past several years have witnessed the rapid progress of end-to-end Neural Machine Translation (NMT). However, there exists discrepancy between training and inference in NMT when decoding, which may lead to serious problems since the model might be in a part of the state space it has never seen during training. To address the issue, Scheduled Sampling has been proposed. However, there are certain limitations in Scheduled Sampling and we propose two dynamic oracle-based methods to improve it. We manage to mitigate the discrepancy by changing the training process towards a less guided scheme and meanwhile aggregating the oracle's demonstrations. Experimental results show that the proposed approaches improve translation quality over standard NMT system.
Topics Language Modelling, Other, Machine Translation, Speechtospeech Translation
Full paper Dynamic Oracle for Neural Machine Translation in Decoding Phase
Bibtex @InProceedings{DOU18.163,
  author = {Zi-Yi Dou and Hao Zhou and Shu-Jian Huang and Xin-Yu Dai and Jia-Jun Chen},
  title = "{Dynamic Oracle for Neural Machine Translation in Decoding Phase}",
  booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
  year = {2018},
  month = {May 7-12, 2018},
  address = {Miyazaki, Japan},
  editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {979-10-95546-00-9},
  language = {english}
Powered by ELDA © 2018 ELDA/ELRA