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Abstract
Automatically generating video description is one of the approaches to enable computers to deeply understand videos, which can have
a great impact and can be useful to many other applications. However, generated descriptions by computers often fail to correctly
mention objects and actions appearing in the videos. This work aims to alleviate this problem by including external fine-grained visual
information, which can be detected from all video frames, in the description generation model. In this paper, we propose an LSTM-based
sequence-to-sequence model with semantic attention mechanism for video description generation. The model is flexible so that we
can change the source of the external information without affecting the encoding and decoding parts of the model. The results show
that using semantic attention to selectively focus on external fine-grained visual information can guide the system to correctly mention
objects and actions in videos and have a better quality of video descriptions.
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1. Introduction
In the past few years, the image captioning task has been
gaining popularity among researchers and high-quality im-
age captions can be generated by deep learning techniques
(Vinyals et al., 2014; Karpathy and Fei-Fei, 2015; Fang et
al., 2015; Xu et al., 2015; You et al., 2016). The first work
in this field was proposed by Vinyals et al. (2014). They
proposed an end-to-end system consisting of a Convolu-
tional Neural Network (CNN) and a Recurrent Neural Net-
work (RNN). The output of the last fully connected layer
of the image classification CNN is used as an image feature
and then is injected into the RNN-based language model to
produce a meaningful sentence. Later, Xu et al. (2015) has
proposed an attention-based framework for image caption-
ing which can selectively focus on a portion of an image
while producing each word. However, researchers still can-
not achieve a satisfying quality of video descriptions gen-
erated by computers yet. As with image captioning, auto-
matic video description generation combines two fields of
artificial intelligence, computer vision and natural language
processing, and has also been tackled by the combination of
RNN and CNN.
Venugopalan et al. (2015b) proposed the first end-to-end
system to translate a video to natural language by extend-
ing the CNN-RNN encoder-decoder framework for image
captioning proposed by Vinyals et al. (2014) to generate de-
scriptions for videos. They performed a mean pooling over
CNN feature vectors of frames to generate a single vector
representation for a video, and then use the vector as input
to the RNN decoder to generate a sentence, ignoring the
temporal ordering of videos. Subsequently, they have pro-
posed an RNN-based sequence-to-sequence model for gen-
erating descriptions of videos (Venugopalan et al., 2015a).
They used 2 layers of RNN for both encoding the videos
and decoding to sentences, so their model is able to learn
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both a temporal structure of a sequence of video frames and
a sequence model for generating sentences. Later, Laokul-
rat et al. (2016) applied the temporal attention mechanism
to the sequence-to-sequence model to focus on a set of
frames while generating each word of the describing sen-
tence. With their attention mechanism, they were able to
improve the scores without using any additional features.
Yao et al. (2015) used CNN for encoding video frames
and used RNN for building a language model at decoding
time. They have also incorporated an attentional mecha-
nism to video caption generation, taking into account both
local and global temporal structures of videos by incorpo-
rating a spatial temporal 3D CNN.
Venugopalan et al. (2017) have attempted to describe ob-
jects unseen in paired image-text training data, by taking
advantage of other external sources, e.g. labeled images
from object recognition datasets, and semantic knowledge
extracted from unannotated text.
One problem of video description generation is that gener-
ated descriptions by computers often fail to mention cor-
rect objects and actions appearing in videos. With the pre-
viously proposed sequence-to-sequence model, the video
showed in Figure 1 is described as ‘a man is riding a
car’. It is obvious that the model cannot detect the main
subject ‘woman’ and the object ‘boat’ appearing in the
video. In this work, we aim to solve this problem by in-
tegrating external information seamlessly to the conven-
tional sequence-to-sequence model. We want the model
to be flexible enough so that we can change the source
of the external information without affecting the encod-
ing and decoding parts of the model. Inspired by the im-
age captioning model with semantic attention proposed by
You et al. (2016), in this paper, we present a sequence-to-
sequence encoder-decoder model with semantic attention
mechanism, which is a novel approach to integrate fine-
grained visual information appearing in video frames to
help the model generate descriptions. By performing a set
of experiments, the results show that the semantic atten-
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Figure 1: Using semantic attention in video description
generation. The system attends to particular semantic
words while generating each word of the output sentence.
It focuses on the semantic ‘woman’ while producing the
word ‘woman’ (see blue boxes) and focuses on the semantic
words ‘boat’ and ‘water’ while producing the word ‘boat’
in the output sentence (see yellow boxes).

tion mechanism can guide the system to correctly mention
objects and actions, and a have better quality of video de-
scriptions.
In Figure 1, the semantic-attention model attends to (a)
the semantic word ‘woman’ when producing with output
word ‘woman’ (see blue boxes), (b) the semantic word ‘sit-
ting’ when producing with output word ‘riding’ (see green
boxes), (c) the semantic words ‘boat’ and ‘water’ when
producing the output word ‘boat’ (see yellow boxes). By
integrating the external information, we can fix the error
words ‘man’ and ‘car’ in the output sentence and recover
the correct objects ‘woman’ and ‘boat’.
The rest of this paper is organized as follows: Section 2
describes in detail the non-attention model and and Section
3 introduces the semantic attention model, along with the
mathematical formulas. Section 4 shows the experiments
and the results in both qualitative and quantitive aspects.
Section 5 discusses the experimental results and Section 6
concludes this paper.

2. LSTM encoder-decoder model
This section explains a sequence-to-sequence model (with-
out attention mechanism) for generating video description.
The model is based on the work previously proposed by
Venugopalan et al. (2015a).
Given a video as a sequence of frames V = {v1, v2, ..., vn}
where the video V has n frames and vt is the tth frame of
the video. We extract a frame feature et ∈ Rde of each
frame vt by using a pre-trained image classification model
IM , where de is the dimensionality of the original frame

feature. The input feature et of the input frame vt can be
described as

et =

{
IM(vt) , t ≤ n
~0 , t > n

(1)

Then, we embed it into a lower-dimensional vector xt =
Wexet ∈ Rdx , where dx is the dimensionality of the em-
bedded frame feature and Wex ∈ Rdx×de is a weight ma-
trix. We omit bias terms for simplicity.
As depicted in the light grey area in Figure 2, the video
frames are taken as input to the LSTMs one by one at en-
coding time, and are set to ~0 at decoding time. Then, we
can formulate the first (upper) LSTM layer as

h
(1)
t = LSTM (1)(xt, h

(1)
t−1) (2)

where h
(1)
t ∈ Rdh is the hidden state of the first LSTM

layer, defined as LSTM (1), at time step t, and dh is the
dimensionality of the hidden states. The hidden state is ini-
tialized with a zero vector.
Let wt ∈ Rr, where r is the vocabulary size including
〈UNK〉, 〈BOS〉 and 〈EOS〉, be the word generated at
time t. The input to the second (lower) LSTM layer is the
concatenation of the hidden state of the first LSTM layer
and the embedding of the word generated on the previous
time step q(wt−1) ∈ Rdq , where dq is the dimensionality
of the word embedding. So, the second LSTM layer can be
described as

h
(2)
t = LSTM (2)([q(wt−1);h

(1)
t ], h

(2)
t−1) (3)

where h
(2)
t ∈ Rdh is the hidden state of the second LSTM

layer, defined as LSTM (2), at time step t. Note that the
dimensionality of h(1)

t and h
(2)
t is the same. At encoding

time, wt−1 is set to ~0 since there is no actual word being
generated.
Let Y = {y1, y2, ..., ym} ∈ Rr be the target sentence with
m words. Lastly, the distribution over all the words at time
step t can be computed by taking softmax over all possible
words. This can be formulated as

p(wt|w1, ..., wt−1, V ) = softmax(Wsh
(2)
t ) (4)

where Ws ∈ Rr×dh is a weight matrix. The decoding pro-
cess iterates until 〈EOS〉 symbol is produced. The model
can be trained end-to-end by minimizing the softmax cross-
entropy loss between yt and wt. The loss is computed only
in decoding time.
At training time, we use yt−1 as an input to Equation 3 in-
stead of wt−1. As with (Venugopalan et al., 2015a), we
have xt = ~0 at encoding time and wt−1 = ~0 at decoding
time in order to share the weights of the encoding and de-
coding LSTMs. This can help speed up the model training
without losing much accuracy.

3. Semantic attention model
In this work, ‘semantic’ refers to any visual concepts ap-
pearing in the video frames, including object, actions, color,
shape, relationship, and so on. The objective of incorporat-
ing semantic attention mechanism is to enable the language
model to focus on related concepts when producing each
word of a sentence.
Figure 2 depicts our two-layer LSTM model with seman-
tic attention for generating description sentence from a
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Figure 2: System architecture of the sequence-to-sequence model with semantic attention. In the figure, we omit the image
embedding layer, the word embedding layer, and the softmax layer, due to the space constraint. The light grey area shows
the non-attention model.

video. Given a set of visual concepts of the video S =
{s1, s2, ..., sk} ∈ Rdq where si can be represented by a
word embedding in the same space as word input q(wt−1).
In the semantic attention model, the second-layer LSTM at
decoding time can be formulated as

h
(2)
t = LSTM (2)([q(wt−1); ct;h

(1)
t ], h

(2)
t−1) (5)

where the context vector ct ∈ Rdq , at the time step t in
the decoding stage, is the weighted sum of visual concepts.
The context vector ct can be calculated by

ct =

k∑
i=1

at(i)si (6)

where at(i) ∈ R1 is the alignment weight of semantic word
(visual concept) si at time step t. The weight at(i) is com-
puted at every decoding time step t by

at(i) =
escore(h

(2)
t−1,si)∑k

j=1 e
score(h

(2)
t−1,sj)

(7)

where score(h
(2)
t−1, si) is the score function used to calcu-

late alignment weights between every visual concept si and
the hidden state h(2)

t−1. The score function can be formulated
as

score(h
(2)
t−1, si) = v>a · tanh(Wa[h

(2)
t−1; si]) (8)

The parameters Wa ∈ R(dh+dq)×(dh+dq) and va ∈
R(dh+dq) of the score function are jointly learned during
training.

3.1. Visual concept detection
We use the pre-trained model provided by Fang et al.
(2015) to detect visual concepts from every frame of the
downsampled videos. The visual concepts include actions,
objects, attributes of objects, and also locations. The de-
tected visual concepts of all frames of a video are combined
into one collection. For one video, we select 20 concepts
from the collection and treat them equally, ignoring their
scores provided by the concept detector, as shown in the

Sentence Number of occurrences
a man is playing a guitar 217
a man cooking his kichen 196
a man is playing guitar 115
a woman is riding a horse 86
a man is playing the guitar 74
a baby is laughing 67
a person is cooking 59
a cat is playing 57
a woman is peeling a potato 53
a man is singing 52

Table 1: 10 most frequently occurring sentences in the
training set and the number of occurrences of each sen-
tence.

boxes in Figure 5.

4. Experiment
This section explains the dataset we used, the pre-
processing steps we performed, the visual concept detec-
tion process, the experiment setting as well as the experi-
mental results.

4.1. Dataset and pre-processing
We use Microsoft Research Video Description Corpus
(MSVD) (Chen and Dolan, 2011) which is a set of 1,970
Youtube clips. For fair comparison with previous work,
we split the dataset into train/validation/test sets following
(Venugopalan et al., 2015b) and (Yao et al., 2015). The size
of the train, validation, and test sets is 1,200, 100, and 670,
respectively.
Figure 3 shows the histogram of the number of captions
per a video clip in the training set. The average number is
≈40 captions/clip. The minimum number of sentence per a
video clip is 18, and the maximum is 66.
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Figure 3: Histogram of number of captions per a video.
mean = 40.65, min = 18, max = 66.

Figure 4: Histogram of number of words in a caption. mean
= 7.03, min = 1, max = 45.

Most of the captions contain a single activity and can be de-
scribed using only one sentence as shown in Table 1. Table
1 shows 10 most frequently occurring captions in the train-
ing set. The sentence ‘a man is playing a guitar’ appears
217 times which is the maximum number in the training
data.
Figure 4 shows the histogram of the number of words per a
caption. The average length of the captions in the training
set is ≈7 words. The minimum and maximum length are 1
and 45 words respectively.
We downsample the video clips by selecting every 8th

frame and resize them to 224x224. Then, we extract fea-
tures for each frame using a pre-trained image classification
model provided in Caffe Model Zoo (Jia et al., 2014). In this
work, we use the 4096-dimensional fc7 layer of the VGG16
model (Simonyan and Zisserman, 2014) as frame features
and embed them into 512-dimensional embeddings.
For text input, the pre-processing includes tokenizing, con-
verting to lower case, and removing punctuations. We
represent words with GloVe pre-trained word embeddings,
proposed by Pennington et al. (2014). The words outside
pre-trained GloVe embeddings are converted to 〈UNK〉.
We then map the 300-dimensional GloVe word vectors into
1000-dimensional vectors. The visual concepts are treated
in the same way as text input.

4.2. Experiment setting
In order to enable batch training, we constrain the number
of encoding and decoding time steps to be 60 and 20, re-
spectively. We use the Adam optimizer (Kingma and Ba,
2014) with the learning rate of 0.0001 and the mini-batch
size of 200. The LSTM hidden layer size is set to 1,000. To
avoid overfitting, we apply the dropout strategy (Srivastava
et al., 2014) with the ratio of 0.3 at the frame input layer.
All the parameters are jointly learned at training time. We
apply the beam search strategy at decoding time (beam size
= 5).
We implemented our system using Chainer (Tokui et al.,
2015), and used the caption evaluation package provided by
the Microsoft COCO Image Captioning Challenge (Chen et
al., 2015). We performed a quantitative analysis of results
based on four evaluation metrics, including
BLEU (Papineni et al., 2002), a precision-based evaluation
metric used in machine translation.
METEOR (Denkowski and Lavie, 2014), an automatic
metric for machine translation evaluation based on explicit
word-to-word matching.
CIDEr (Vedantam et al., 2014), an automatic consensus
metric of image description quality.
ROUGE-L (Lin, 2004), a recall-oriented evaluation metric
popularly used in summarization.
These metrics are common for evaluating image captioning
and video description generation systems.

4.3. Experimental results
Table 1 shows the experimental results on MSVD dataset
(Chen and Dolan, 2011). We compared our model to the
sequence-to-sequence models reported by Venugopalan et
al. (2015a) and Laokulrat et al. (2016), when using the
same image features (VGG16). We can see some promis-
ing results in Figure 5, even though the semantic attention
mechanism cannot clearly improve the scores of the test set.
The relevant visual concepts were focused and the align-
ment weights changed properly when each word of the sen-
tences were being generated. By focusing on visual con-
cepts, the model can generate more precise mentions of the
objects appearing in the scenes.
In the top-left example, the semantic attention model can
recover the mis-mentioned word (man) to the correct word
(girl) with high attention scores on the visual concepts
‘woman’ and ‘hair’. It is also interesting that the model fo-
cuses on the concept ‘brushing’ when correctly producing
the phrase ‘is doing make up’. In the bottom-left example,
with the help from the visual concept detector, the atten-
tion model can fix the error words ‘man’ and ‘car’ to the
correct words ‘woman’ and ‘boat’. In the top-right exam-
ple, the semantic attention model can correctly mention the
‘boy’, while the non-attention model cannot. Lastly, in the
bottom-right example, the mis-mentioned object (bicycle)
in non-attention model can be correctly identified (bike)
by the model with semantic attention. The visual concept
‘bike’ was given a high attention weight when producing
the word.
As we can see in Figure 5, many irrelevant visual concepts
were detected. This is because the visual concept detector
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Figure 5: Example of generated descriptions and alignment weights of visual concepts when each word of the sentences
was generated. The values are clipped at 0.1 for easier reading.

Model BLEU METEOR CIDEr ROUGE-L
System A
Mean pooling - 0.277 - -
Seq-to-seq - 0.292 - -
Seq-to-seq + flow - 0.298 - -
System B
Temp. attention 0.407 0.310 0.615 0.676
Ours
Non-att. 0.430 0.318 0.670 0.616
Semantic-att. 0.431 0.317 0.668 0.621

Table 2: Scores of video description generation results on
the MSVD dataset. System A is the results of the sequence-
to-sequence model reported by Venugopalan et al (2015a).
System B is the results of the sequence-to-sequence model
with temporal attention by Laokulrat et al (2016). Note
that, for System A, only METEOR scores were reported in
the original paper.

was trained on another image dataset, so it could not per-
form well in video frames. We can apply this model to any
kind of external information other than visual concepts.

5. Discussion
We have performed a deep analysis to find why the seman-
tic attention model gets low scores even though it gives us
very promising results. Below are the interesting points that
we have found from the analysis.

Too specific description. The attention model tends to
produce more specific descriptions and therefore is likely
to be given lower scores. As shown in Figure 6 (a)
and (b), in both examples, the sentences produced by the
NON-ATT model1 get perfect scores (BLEU=1.0, ME-
TEOR=1.0, ROUGE=1.0), while the sentences produced
by the SEMANTIC-ATT model get much lower scores
since they are not perfectly correct. The first video (Fig-
ure 6 (a)) shows ‘a man pouring oil into a pan’, and the
second video (Figure 6 (b)) shows ‘a man sprinkling spices
into a pan’.
Training data. The dataset contains bad examples. The
sentence ‘a man cooking his kichen’1 appears many times
in the training data and the ground-truth sentences of the
test data. So, if the model produces exactly this sentence, it
will get a perfect score. See Figure 6 (a) and (b) for refer-
ence.
Furthermore, the misspelling of the training captions and
the words outside pre-trained GloVe embeddings will both
be converted to 〈UNK〉 tokens, which can worsen the
learning of the models. We can fix this issue by correcting
the misspelled words and re-training the word embeddings
to cover our vocabularies.
Evaluation metrics. The evaluation metrics are not per-
fect. In Figure 6 (c), the sentence by the NON-ATT model
gets a higher BLEU score even though it is wrong. Also, the

1Note that the grammatical and spelling errors are originally
from the training data. For fair comparison with other previous
work, we did not modify the data.
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Figure 6: Videos used in the discussion. Read Section 5.
for more detail1.

word ’boy’ does not appear in the ground-truth sentences.
All of the ground-truth sentences use the word ‘baby’, so
the score of the SEMANTIC-ATT model is even lowered.
For these reasons, the quantitative improvement is small
and not obvious, but we believe that the results from the
attention model are promising and potentially useful, espe-
cially when the visual concept detector can work well. We
can replace the concept detector with other object/action
prediction models, or combine collections of words de-
tected by two or more detectors. Our semantic attention
model can flexibly incorporate that external information
into the conventional sequence-to-sequence model.

6. Conclusion
We have proposed a sequence-to-sequence model with se-
mantic attention for video description generation, which
can flexibly incorporate that external information into the
conventional sequence-to-sequence model. The results
show that the model is able to learn to focus on external
fine-grained information of videos and a have better quality
of video descriptions. The results from the attention model
are promising and potentially useful, especially when the
visual concept detector can work well. We can replace the
concept detector with other object/action prediction mod-
els, or combine collections of words detected by two or
more detectors.
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