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Abstract
We propose a novel bootstrapping approach for the acquisition of lexicons from unannotated, informal online texts (in our case, Yelp
reviews) for polar-opposite emotion dimension values from the Ortony/Clore/Collins model of emotions (e.g., desirable/undesirable).
Our approach mitigates the intrinsic problem of limited supervision in bootstrapping with an effective strategy that softly labels
unlabeled terms, which are then used to better estimate the quality of extraction patterns. Further, we propose multiple solutions to
control for semantic drift by taking advantage of the polarity of the categories to be learned (e.g., praiseworthy vs. blameworthy).
Experimental results demonstrate that our algorithm achieves considerably better performance than several baselines.
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1. Introduction
Bootstrapping is a lightly-supervised learning approach in
which supervision comes in the form of a small number
of initial examples (or seeds). While bootstrapping is an
attractive choice for NLP, the limited supervision involved
also yields important drawbacks. First, the training of boot-
strapping models often “drifts” semantically from the orig-
inal task into different tasks (e.g., from learning women
names into learning flower names). Second, the lack of la-
beled data (i.e., only a small set of seed examples is anno-
tated) impedes the capacity of the model to correctly assess
the quality of the generated model during training.
In this paper we propose solutions for the above issues in
the context of learning lexicons for the emotion dimen-
sions (e.g., Desirability, Praise-/Blame-worthiness) neces-
sary to assemble the Ortony/Clore/Collins (OCC) cognitive
model of emotions (1990). According to the OCC frame-
work, 22 different emotion types are generated from several
emotion dimensions. In this work, we focus on the dimen-
sions of Desirability, Praise-/Blame-worthiness and Like-
lihood because they are central emotion dimensions that
contain both positive values (e.g., desirable, praiseworthy,
certain) and negative values (e.g., undesirable, blamewor-
thy, likely). For example, the emotion type JOY combines
the dimensions Desirability with value desirable and Like-
lihood with value certain.
The contributions of this work are:

1. We propose multiple lightly-supervised solutions for
the acquisition of emotion dimensions that control for
semantic drift by taking advantage of the polarity of
the classes to be learned (i.e., positive/negative ap-
praisals).

2. We introduce an effective strategy to softly label unla-
beled terms, i.e., unlabeled terms are assigned a value
that indicates how close they are to a given category,
and use these soft labels to better estimate the quality
of extraction patterns in the above bootstrapping ap-
proaches.

3. We show that multiple resources (WordNet, word em-
beddings that project words in a continuous vector
space that capture distributional similarity, and edit
distance similarity) all help for the above two contri-
butions, and are complementary to each other.

4. We empirically demonstrate that our approach outper-
forms several strong baselines for the acquisition of
emotion dimensions lexicons from informal texts such
as product reviews on the web.

2. Related Work
In the vast bootstrapping literature, a few works attempted
to address the two limitations mentioned in the introduc-
tion. With respect to mitigating semantic drift, Kozareva
and Hovy (2010) used stronger constraints for their lexicon
extraction patterns, encouraging them to stay within the de-
sired category to be acquired. Yangarber (2003) proposed
“counter training”, which introduces competition between
the multiple categories (e.g., lexicon or event types) that are
learned simultaneously (i.e., they are not allowed to over-
lap). This idea was generalized by the NELL system (Carl-
son et al., 2010). McIntosh and Curran (2010) extended
counter training with negative categories that are discov-
ered on the fly. Our approach is closest to counter training,
with the extension that we propose multiple “soft” exclu-
sion criteria.
With respect to the better handling of unlabeled data, Gupta
and Manning (2014) improved the scoring of extraction
patterns by predicting the labels of unlabeled terms, and us-
ing this information to better estimate the precision of the
candidate patterns. Gupta and Manning (2015) extended
this idea with a k nearest neighbors (kNN) formulation
that expands the labeled training data with unlabeled en-
tities that are close (according to kNN) to seed examples.
Popescu and Etzioni (2005) applied a similar idea to the
extraction of opinion words, where the unlabeled terms are
labeled using a combination of syntactic, WordNet con-
straints, and relaxation labeling. Our work builds on these
ideas with a simpler approach (no classifier is used). We
also investigate more resources to measure the distance
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Algorithm 1: Bootstrapping for emotion dimensions
input : A set of documentsD; seed words S for k emotion dimension values,

k ∈ {praiseworthy, blameworthy, desirable, undesirable}
1 Z = 〈〉// stores extraction patterns for each k
2 E = S// stores terms for each k
3 foreach epoch t do

// expand the known set of terms:
4 foreach dimension value k do

// we denote with −k the dimension value
opposite to k, e.g., if k is desirable,
−k is undesirable; if k is praiseworthy,
−k is blameworthy

5 E(k) = expandTerms(E(k), E(−k),D)

// discover new extraction patterns:
6 foreach dimension k do
7 P (k) = extractAndRankPatterns(E(k), E(−k))

// keep most relevant patterns:
8 Z(k) = Z(k) + getTop(P (k))

// discover new terms:
9 foreach dimension k do

10 T (k) = extractAndRankTerms(Z(k),Z(−k))
// keep most relevant terms:

11 E(k) = E(k) + getTopWithPolarityChecking(T (k))

output: E

from known examples, ranging from WordNet (Miller et
al., 1990) to word2vec (Mikolov et al., 2013), and show
that they provide complementary information.

3. Approach
Algorithm 1 lists our proposed algorithm that extracts lex-
icons corresponding to emotion dimension values (or cate-
gories). Our algorithm builds on the traditional bootstrap-
ping approach, which starts with a small set of seed ex-
amples, and alternates between learning extraction patterns
and using them to discover new information (Riloff, 1996;
McIntosh and Curran, 2008).
There are two fundamental differences between our ap-
proach and previous work. First, by using external infor-
mation such as word embedding similarity, we expand the
current set of acquired terms for each category, which are
then softly labeled with category information (lines 4 – 5).
The expanded term set is then used for the discovery of new
extraction patterns (lines 6 – 8). Second, unlike McIntosh
and Curran (2008)’s approach, which defined mutually ex-
clusive categories, we remove the hard mutual-exclusivity
constraint between categories. Instead, by taking advantage
of the inherent polarity of the emotion dimension values,
e.g., desirable is the opposite of undesirable, we introduce
multiple soft constraints between opposite categories (k vs.
−k). Such constraints are used throughout the algorithm
(lines 5, 7, 10, 11). We detail these steps next.

3.1. Term Expansion
Expanding the terms (discussed below in this section) used
for pattern ranking (see Section 3.2.) is important as it
mitigates the sparsity of pattern-based methods with other
complementary resources (akin to co-training (Blum and
Mitchell, 1998)). We show in Section 4. that this step is
important, especially in domain-specific settings, which are
driven by “little data” scenarios.
The algorithm for term expansion relies on three resources:
edit distance, word embeddings, and WordNet. We use
these to generate candidate terms as follows: (a) We calcu-
late the edit distance between every term in our corpus and

the current term pool for category k (E(k)); we consider
new terms as candidates for category k if their edit distance
is below a threshold (we used the same formula and thresh-
old as (Gupta and Manning, 2014)). (b) We compute the
average cosine similarity between every term’s word em-
bedding vector and the vectors of known terms in category
k, and consider a term as a candidate if this similarity is
above a threshold.1 (c) Lastly, we use WordNet synonyms,
derived wordforms, direct hypernyms and hyponyms of the
term currently in the pool of category k as expansion can-
didates for k, and their antonyms as candidates for −k.
It is important to note that these three resources have com-
plementary strengths and weaknesses. For example, edit
distance naturally captures misspellings, but it also intro-
duces false positives, e.g., “goods” as a candidate for the di-
mension containing “good”. However, using the similarity
of word embedding vectors mitigates this problem because
the distributional similarity of the two words is low. On the
other hand, antonyms (e.g., “good” vs. “bad”) tend to have
a high distributional similarity (Yih et al., 2012). WordNet
addresses the latter problem, but its coverage is far more
limited than that of word embedding models, which limits
its applicability to domain-specific texts.
In order to allow these different resources to help each
other, they have to interact. To do this, we assign to each
candidate term produced above a score that combines the
three resources:

cscore(ck) = EDP − EDN+
EMP − EMN +WNP −WNN

(1)

where ck is a candidate term for category k. EDP and
EDN use the discretized edit distance from the current
positive/negative entities (i.e., terms belonging to category
k vs. −k) of Gupta and Manning (2014). EMP and EMN
are the average cosine similarities between the embedding
vector of ck and the embedding vectors of the terms in the
positive category k (for EMP) and negative category −k
(for EMN).
Lastly, WNP and WNN measure the overlap of the can-
didate term WordNet synset information with the terms
in the positive and negative category, respectively, as fol-
lows. In particular, the WNP score of a candidate term ck
is computed as the term overlap between the synonyms of
ck (Syn(ck)) and the set of expanded terms in k from the
previous epoch E(k)t−1 plus the the term overlap between
the antonyms of ck (Ant(ck)) and E(−k)t−1.2 This count
is then normalized. WNN is computed similarly, but with
the two categories (k and −k) flipped:

WNP(ck) = (
n1

|Syn(ck)|
+

n4

|Ant(ck)|
)× log(

4∑
l=1

nl) (2)

1We used word embeddings of 200 dimensions generated with
word2vec’s skip-gram algorithm over the English Gigaword.
We used 0.6 for the threshold. These values were not tuned.

2We used 1st and 2nd order synonyms and antonyms. For ex-
ample, for each ck, we construct Syn(ck) from its synonyms and
the synonyms of the synonyms. E(k)0 is set to the seed terms of
k.
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n1Syn(ck) E(k)t-1 n2Ant(ck) E(k)t-1

n3Syn(ck) E(-k)t-1 n4Ant(ck) E(-k)t-1

Figure 1: Illustration for the computation of the WNP and
WNN scores for a term ck, using the overlap between its
synonyms (Syn(ck)) and antonyms (Ant(ck) vs. the cate-
gory at hand (k) and its polar opposite (−k).

WNN(ck) = (
n3

|Syn(ck)|
+

n2

|Ant(ck)|
)× log(

4∑
l=1

nl) (3)

where n1, n2, n3, and n4 are the number of terms in the set
intersections shown in Figure 1. The log component fol-
lows the intuition of (Riloff, 1996) to promote terms that are
frequent; but here we adapt it to use the size of the overlap
between WordNet synsets and the pools of known terms.
We use the score in Eq. 1 in multiple ways. First, we
implement two “cautiousness” (Collins and Singer, 1999)
constraints, i.e., we accept only candidate terms that: (a)
have all the following three conditions true: EDP≥ EDN,
WNP≥ WNN, EMP≥ EMN (i.e., their association with
the positive class is stronger than the one with the negative
class under all resources); and (b) have at least one of the
constraints satisfied: EDP−EDN ≡ 1.03, WNP − WNN
≥ λ2, EMP − EMN≥ λ3. Second, we use the score to
estimate the quality of extraction patterns, as detailed next.

3.2. Pattern Learning
In this work, we define patterns similarly to McIntosh and
Curran (2008), as five- or four-grams over surface tokens
that include the term under consideration.
Our pattern learning algorithm expands upon existing
methods by taking advantage of: (a) the set of expanded
terms E, and (b) the polarity of the emotion dimensions to
be learned. For each category k, each pattern (or template)
t is assigned the following relevance weight:

weight(t ∈ Z(k)) =
(
∑

c∈E(k) score(t, c)−
∑

c∈E(−k) score(t, c))
×log(

∑
c frequency(t, c))

(4)

where frequency(t, c) captures the number of times a pat-
tern t and a term c matched in the text; and score(t, c) mea-
sures the association between the pattern and the term c
using the formula:

score(t, c) = log(cscore(c) p(t,c)2

p(t)p(c)
+ 1) (5)

Eq. 5 builds upon the squared mutual information (MI2)
formula of McIntosh and Curran (2008). We follow McIn-

3Note that the values of EDP and EDN are discretized edit
distances, and can take only values of 0 or 1 (Gupta and Manning,
2014).

tosh and Curran (2008) by choosing squared MI over plain
MI.4 We weigh the MI2 term by the association strength
between term c and the current category k (i.e., cscore from
Eq. 1). Further, we replace the hard mutual exclusive con-
straint from McIntosh and Curran (2008), which does not
allow term and patterns to belong to multiple categories,
with the soft constraint captured in Eq. 4, where opposite
categories (k and −k) compete for pattern t.
Patterns are ranked in descending order of their weight, and
the top M patterns are added to the cumulative pattern pool
of category k in each epoch.

3.3. Term Learning
Lastly, we add new terms to the pool of known terms (E)
using the patterns previously learned. Terms are ranked by
the following formula:

weight(c ∈ E(k)) =
(
∑

t∈Z(k) score(c, t)−
∑

t∈Z(−k) score(c, t))
×log(

∑
t frequency(c, t))

(6)

Eqs. 4 and 6 are nearly symmetrical for terms and patterns.
Similarly, score(c, t) measures the association between the
pattern and a term c using the formula:

score(c, t) = log(tscore(t) p(t,c)2

p(t)p(c)
+ 1) (7)

Eqs. 5 and 7 are symmetrical for terms and patterns, but
in Eq. 7 tscore(t) is set to 1.0 because we rely solely on
patterns from the pools of known patterns (i.e., no pattern
expansion was implemented).
Similar to the previous step, the candidate terms are ranked
in descending order of their weight, and the top N are
added to the cumulative pool of terms.5 Additionally, this
step implements the “cautiousness” constraint from Section
3.1..

4. Experiments
Corpus: we are interested in learning from small datasets
containing informal language. Here, we used a corpus of
reviews for 1,439 sellers of e-cigarettes that we collected
from Yelp. We downloaded all reviews from each page.
The final corpus contains 1,600,151 tokens. The texts were
stripped of URLs, then tokenized using CoreNLP (Man-
ning et al., 2014). Note that our dataset contains only free
text, without any hashtags or emoticons. We split data into
training (75%) and testing (25%). We used the training
dataset solely to tune the model’s hyper parameters: λ1, λ2,
and λ3 from Section 3., as described later in this section.
The tuning happened exclusively on the training dataset.

Terms and patterns: we consider terms to be single-word
adjectives, nouns, verbs, or adverbs (e.g., “horrific”), and
patterns to be 4- or 5-grams surrounding them (e.g., “avoid
the burn lead” pattern captures the previous term).

4Similar to (McIntosh and Curran, 2008), we observed that
this formula performed better than p(t|c) and regular MI.

5To mitigate the sensitivity to low frequencies, we set a candi-
date term’s weight to 0 if

∑
t frequency(c, t) ≤ 3 in Eq. 6. These

terms are separately ranked using Eq. 1 instead.
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Figure 2: Precision/throughput curves of our approach and the three baselines. All systems were run for up to 30 epochs.

Evaluation measures: we report cumulative precision and
throughput of terms for 30 epochs. Here, cumulative preci-
sion means the fraction of the words retrieved that are cor-
rect for the given category; cumulative throughput means
the number of words that are retrieved by a system. All ex-
tracted terms were manually evaluated for their correctness,
i.e., their membership in the corresponding category. There
are three annotators (who were not authors), two of which
are native speakers. We use the majority vote as the ground
truth.

Baselines: we compare our system against three baselines:
(a) OurApproach – Expansion: this baseline removes lines
4-5 in Algorithm 1 and uses the known terms (E) rather
than the expanded terms (E) for pattern ranking (Eq. 4);
(b) OurApproach – Polarity: this model removes all polar-
ity information: only the positive category is used in Eqs. 1,
2, 3, 4, and 6, and no cautionessness constraints in Section
3.1. and Section 3.3.; and (c) McIntosh++: our implemen-
tation of the mutually-exclusive approach of McIntosh and
Curran (2008): no term expansion, no polarity, and cate-
gories are required to be mutually exclusive. Our extension
to this system was to add log(frequency) to their ranking
formula based on MI2 (similar to Eq. 4 and 6); we found
this performs better on our small data.

Hyper parameters: there are three hyper parameters in
our approach: λ1, λ2 , and λ3 (see Section 3.). Intu-
itively, we aim for a relatively high value for λ1 because we

prefer fewer, high-quality expanded terms (i.e., the expan-
sion should be cautious). We aim for relatively low values
for λ2 and λ3 because these are coupled with additional
constraints in Section 3. that reduce the risk of introduc-
ing noise. We tuned all these parameters on the training
dataset, and found that performance is best when λ1 = 0.5,
λ2 = 0.2, λ3 = 0.1.

Results: Figure 2 plots the cumulative term precision and
throughput (i.e., number of terms learned in a given cat-
egory) for our approach and the three baselines, for four
emotion dimension categories. The figure shows that all
our contributions are important. Term expansion yields a
considerable improvement in both precision and through-
put, especially for the negative emotion dimensions, which
are more affected by sparsity. Polarity information consis-
tently improves precision for all categories. Our approach
has considerable higher precision than McIntosh++, at a
small loss in throughput for two categories.
An ablation test (shown in Figure 3) of the resources
used indicates that WordNet has the highest contribu-
tion to precision (e.g., yielding an increase of 15% (ab-
solute) for blameworthy, and 20% for undesirable), and
word2vec has the highest contribution to throughput (e.g.,
yielding an increase from 80 to 145 terms for praisewor-
thy). Edit distance has a small contribution to precision for
undesirable and desirable, confirming that misspellings oc-
cur in informal texts, but it impacts negatively the blame-
worthy category, suggesting that it can also accumulate er-
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Figure 3: Ablation test for the three resources used in our approach: edit distance, word2vec, and WordNet. All systems were run for
up to 30 epochs.

rors, e.g., by generating multiple spellings of terms that are
incorrect.

5. Conclusion
We introduced a novel bootstrapping approach for the ex-
traction of lexicons for polarized categories, in our case
emotion dimensions of the OCC cognitive model of emo-
tions (Ortony et al., 1990). We focused on small datasets
containing informal texts, and made several contributions.
First, we mitigated the sparsity of the data with a term
expansion component that takes advantage of multiple re-
sources: WordNet, word embeddings, and edit distance,
and showed that these resources used have complementary
contributions. Second, we addressed the semantic drift lim-
itation of bootstrapping with multiple solutions that take
advantage of the polarity of the classes to be learned. Our
approach yields considerable higher precision than a tra-
ditional counter-training system (in some cases more than
double), with only a small loss of throughput for some cat-
egories.
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