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Abstract 
Modern research on emotion recognition often deals with time-continuously labelled spontaneous interactions. Such data is much closer 
to real world problems in contrast to utterance-level categorical labelling in acted emotion corpora that have widely been used to date. 
While working with time-continuous labelling, one usually uses context-aware models, such as recurrent neural networks. The amount 
of context needed to show the best performance should be defined in this case. Despite of the research done in this field there is still no 
agreement on this issue. In this paper we model different amounts of contextual input data by varying two parameters: sparsing coefficient 
and time window size. A series of experiments conducted with different modalities and emotional labels on the RECOLA corpora has 
shown a strong pattern between the amount of context used in model and performance. The pattern remains the same for different pairs 
of modalities and label dimensions, but the intensity differs. Knowledge about an appropriate context can significantly reduce the 
complexity of the model and increase its flexibility. 

Keywords: time-continuous affect recognition, affective context analysis, multimodal emotion recognition. 

1. Introduction 
Real life human-human interaction consists of two main 
aspects: information contained in speech and emotion 
expressed by humans. Speech recognition techniques allow 
computers to understand human speech but they lack an 
emotional component. Exactly the same words or phrases 
may be a statement, a question or a guess if said with 
different emotions. These types of phrases should be 
recognised and processed by dialogue system differently. It 
is necessary for computers to understand human emotions 
in order to succeed in interaction with them.  
Modern research focus on natural interaction between 
computer-based systems and humans. These systems try to 
understand non-standardized questions and provide 
answers, similar to the spontaneous interaction between 
two humans. One of the most important parts of human 
understanding is the ability to identify and react to 
emotions. Emotion recognition may significantly improve 
the quality of human-computer interaction, speech 
recognition systems and artificial intelligence in general. 
Previous research on emotion recognition mostly dealt with 
utterance-level categorical data labelling, i.e. each data 
sample had one label from the list, e.g. anger, happiness, 
neutral, etc. However, recent research has focused on the 
dimensional time-continuous data that provides more 
flexibility and precision of emotion definition. This type of 
data requires more complex models and the definition of 
additional parameters, such as the amount of context to be 
used. Despite of the research conducted in this area, it is 
still an open question, how much previous data do the 
system need to provide the best performance. Studies on 
the effect of this parameter will help to build an effective 
end-to-end real time emotion recognition system. 
As shown in this paper, there is a strong correlation 
between the amount of context and the performance of an 
emotion recognition system despite of the amount of data 
i.e. the time steps used. 
This paper is structured as follows: Section 2 provides an 
overview of research related to multi-dimensional time-
continuous emotion recognition; Section 3 details the data 

used in this study as well as the pre- and postprocessing 
procedures; in Section 4 the methodology used is 
described; in Section 5 experimental results are shown and 
analysed; conclusions from this study and proposed future 
research are presented in Section 6, followed by 
acknowledgements in Section 7. 

2. Related work 
Previous research on emotion recognition mostly dealt with 
utterance-level categorically labelled databases. (Haq and 
Jackson, 2010; Burkhardt et al., 2005; Makarova and 
Petrushin, 2002). Corpora with time-continuous labelling 
emerged in the past years and they gain popularity among 
researchers (Schroeder et al., 2012; Ringeval et al., 2013). 
Time-continuous emotion recognition provides more 
flexibility for the system, but also creates new challenges. 
Firstly, is the amount of previous information that should 
be used to model emotions. According to Levenson, 1988 
it should be a value between 0.5 and 4 seconds, but is still 
remains an open question and depends on modality and 
emotional dimension (Gunes and Pantic, 2010). 
Another issue refers to the labelling process of emotional 
interactions. Annotations of emotions are performed by 
humans, hence, they yield a significant level of subjectivity 
and a suitable method is required for computing a gold 
standard. It can be based on correlation between individual 
ratings provided by annotators (Mariooryad and Busso, 
2013; Nicolle et al., 2012).  
When annotating time-continuous emotions, a reaction lag 
may also appear; therefore, it should be considered when 
synchronising features and labels. It may be done by 
maximising the correlation between some features and 
emotional ratings and/or ratings from annotators (Nicolaou 
et al., 2010; Mariooryad and Busso, 2014). 
Another related issue is the appropriate sampling frequency 
of data. Original data can be upsampled or downsampled to 
thr required value of frequency (Nicolaou et al., 2011; 
Metallinou et al., 2011). In this paper we used data sparsing 
to study the effect of amount of data combined with its 
intensity on system performance. 
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3. Data and data-related procedures 
The recently introduced time-continuously labelled corpus 
of spontaneous interaction in French called RECOLA 
(Remote COLlaborative and Affective interactions) 
(Ringeval et al., 2013) was used in this paper.  

3.1 Corpus description 
The RECOLA database was collected during the resolving 
of a cooperative problem. It consists of spontaneous 
interactions between 23 dyadic pairs of French-speaking 
participants, i.e. 46 persons. 34 participants gave their 
consent to share the data. The dataset was therefore reduced 
from originally recorded 9.5 to 7 hours. Annotations for 23 
of them are publically available in current version of 
database and were used in this research.  
The participants were aged between 18 and 25 years and 
have different mother tongue although they spoke French 
during recorded interactions: 17 of them had French as a 
mother tongue, 3 – Italian and 3 – German.  
RECOLA consists of recordings in 4 modalities: audio, 
video, electro-cardiogram and electro-dermal activity. 
Interactions were evaluated by 6 equally gender distributed 
French speaking annotators through ANNEMO 
(ANNotating EMOtions) tool (Ringeval et al., 2013). The 
annotations include two emotional (arousal and valence) 
and five social (agreement, dominance, engagement, 
performance and rapport) behaviour dimensions. 

3.2 Features 
Audio features were extracted with the openSMILE open-
source software. The feature set consists of 3 groups of 
low-level descriptors (LLDs): prosodic, spectral, cepstral 
and voice quality. (Eyben et al., 2010; Schuller et al., 2014). 
There are 65 LLDs and along with their first order derivate 
we have 130 features in total.  
The visual feature set consists of 20 LLDs and their first 
order derivate for each frame available. It includes 15 facial 
action units, 3-dimansional head pose and the mean and 
standard deviation of the optical flow in the region around 
the head (Ringeval et al., 2013). 

3.3 Data preprocessing 
The available part of the dataset was divided into 2 speaker 
disjoint subsets: train and evaluation. Subsets maintain age, 
gender and mother tongue distribution of original set (see 
Table 1). 

Set Age µ(σ) Gender Mother tongue 

Full 
21.35 
(2.04) 

10 males 
13 females 

17 French 
3 Italian 

3 German 

Train 
21.38 
(2.13) 

7 males 
9 females 

12 French 
2 Italian 

2 German 

Evaluation 
21.29 
(1.98) 

3 males 
4 females 

5 French 
1 Italian 

1 German 

Table 1: Partitioning of RECOLA database into train and 
evaluation subsets 

3.3.1 Features and labels preprocessing 
Provided audio and video features were normalised with 
the Z-transformation based on the train subset. 

There are two ways of using several ratings for each 
recording: merge them into a gold-standard rating or train 
model to produce separate predictions. The first approach 
was used in this paper. The gold-standard may be 
calculated by simple averaging the values provided by each 
evaluator. However, this methodology may lead to a loss of 
information contained in annotator’s perception of 
emotions. It effects the spread of emotional ratings as well 
as their “neutral” values, i.e. bias. For example, some 
annotators perceive emotions in a mild manner (e.g. 
Annotator 6) rather than in a strong one (Annotator 1). At 
Figure 1 a diversity of ratings from annotators of RECOLA 
database for all recordings available is shown. 

Figure 1: Ratings diversity from 6 annotators of RECOLA 
database 

Taking these differences into account, the gold-standard 
was based on the maximisation of the inner-rater agreement 
(Mencattini et al., 2016). 
While estimating emotions continuously, evaluators need 
some time to report the changes. The delay between an 
actual change of emotional behaviour and the moment it is 
annotated is called reaction lag (RL). It is not consistent for 
different speakers and label dimensions, although has 
negligible variation for different annotators (Mariooryad 
and Busso, 2014). 
The value of RL may be calculated based on the correlation 
of features with labels. Some features are strongly 
correlated with positive values of particular labels, some 
with negative. In previous research the RL was found to be 
3.89 s for arousal and 4.52 s for valence (Mencattini et al., 
2016; Ringeval et al., 2015; Mariooryad and Busso, 2014). 
The value of RL for arousal was corrected to be 3.88 due 
to label rate (25 Hz).  
Gold-standard labels were shifted backwards according to 
RL values mentioned above. The label values for the last 
frames of each speaker were lost after shifting and replaced 
with zeros. Labels were normalised with Z-transformation 
based on train subset and denormalised at estimation stage. 

3.3.2 Contextual pre- and postprocessing and 
sparsing 

To meet the requirements of the context-based model, 
features and labels were preprocessed from [samples × 
features(labels)] representation to [samples × time steps × 
features(labels)]. Time steps were taken only backwards 
for both features and labels. The time window size (TW) 
defines the number of previous steps to be taken for every 
sample in set. Previous frames could be used only if they 
exist and relate to the same speaker as the current frame, 
otherwise zero-padding was applied.  
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This procedure was combined with sparsing. If the sparsing 
coefficient (SC) is greater than one, then every n-th frame 
is taken into account at the stage of adding time steps. For 
example, for sample t with SC=3 and TW=6 the following 
frames are chosen at contextual preprocessing stage: [t-15, 
t-12, t-9, t-6, t-3, t]. 
The combination of TW and SC define the amount of 
context (in seconds) used by the model: 

𝐶𝐶 =
𝑆𝑆𝐶𝐶 × 𝑇𝑇𝑇𝑇
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓

 

The same context may be represented with different pairs 
of SC and TW. For example, the context is equal to 24 
frames with [SC=3, TW=8] and [SC=1, TW= 24]. To make 
a uniform grid, the following values of contextual 
parameters were chosen: TW = {2, 3, 4, 6, 8, 12, 16, 24, 32, 
48, 64}, SC = {1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64}. 
A sequence-to-sequence approach was applied in this 
research, i.e. features of TW previous frames were used to 
make a prediction of labels for the same TW previous 
frames. When the predictions were made, values obtained 
for the same frame at different time steps were average to 
smooth the final prediction.  

4. Methodology 
Traditional feed-forward neural networks are not capable 
of using the previous information as they lack feedback 
connections in their architecture. This leads to constraining 
the knowledge about the data only to the current frame. To 
overcome this problem, recurrent neural networks (RNN) 
with one time step of delay were introduced. However, 
networks of this type suffer from the vanishing gradient 
problem and cannot store the information about more than 
approximately 10 time steps (Hochreiter et al., 2001). To 
avoid the problem of exponentially decaying gradients, a 
long-short term memory recurrent neural network (LSTM) 
was introduced (Hochreiter and Schmidhuber, 1997) and 
then improved (Graves and Schmidhuber, 2005). LSTM-
RNNs use a fine regulation of the system state by special 
gates: input gate, output gate and forget gate. These gates 
allow to accumulate the information about previous time 
steps over long duration and drop the information when 
needed. The weights of self-loops are not fixed, but based 
on the gates which allows to change the level of data 
integration. 
Two LSTM layers with 20 and 15 neurons respectively 
were used in this research. The LSTM blocks had a ReLU 
activation function (Vinod and Hinton, 2010) and the 
neurons of the output layer had a simple linear activation 
function. To avoid overfitting, recurrent layers were 
followed by the dropout layers (Srivastava et al., 2014). 
Different dropout probability values were studied and 
p=0.1 was selected as it provided the best results. The 
LSTM models were optimized by root mean square 
propagation (RMSprop) using the concordance correlation 
coefficient (CCC) as a metric function. LSTM 
implementation is provided by Keras (Chollet, 2015). 
Our previous research has shown, that the performance of 
the system based on RNN significantly depends on the 
learning rate of optimiser. While too high values of the 
learning rate cannot provide any appropriate performance 
(zero performance), rather small ones may result in slow 
learning and the system may permanently get stuck. The 
value of learning rate, that provides the lowest loss is 

usually the highest one before the “zero performance” 

values, (see Figure 2).  
Figure 2: Learning rate against loss.  

Red – after 1st epoch; green – after 20th epoch; blue – after 
100th epoch. 

The appropriate learning rate varies with the number of 
previous time steps used; therefore, it cannot be fixed. As 
it has a critical effect on performance, an automatic 
procedure of the learning rate selection was developed. 
According to LeCun et al. (1998), the search of the best 
learning rate was conducted with the decreasing factor of 
2. The following values were used: 0.08, 0.04, 0.02, 0.01, 
0.005, 0.0025, 0.00125, 6.25e-4, 3.13e-4, 1.56e-4. The 
model training was started with the highest learning rate. 
The value of a loss function was calculated on the train 
sample after the first epoch. If the loss was greater than a 
predefined threshold (empirically set to t=0.85), training 
was terminated and the next learning rate was tried out. The 
training loss was further monitored during the training 
process and if the loss at current epoch was greater than at 
the first one, the same procedure of training termination 
was applied.  

5. Experiments and results 
A series of experiments was conducted to study the impact 
of context on the performance of an emotion recognition 
system. All pairs of contextual parameters described above 
were used for audio and video modalities as well as their 
feature-based multimodal fusion for two emotional 
dimensions.  
The performance of the emotion recognition system on 
evaluation subset was estimated with CCC. The results are 
shown at Figure 3. The results were obtained for each pair 
of sparsing coefficient and time window size and 
interpolated afterwards to create a surface of system 
performance, indicated with colour map. Diagonal lines 
represent the amount of used context in seconds. Red stars 
show the best sparsing coefficient that led to the best 
performance of system with each value of TW. The red stars 
in a circle represent the best performance obtained within 
the provided problem definition. One may notice a strong 
pattern between the amount of context and performance of 
the emotion recognition system. It is especially obvious 
with Audio-Arousal pair. Patterns may still be noticed in 
Audio-Valence and Video-Valence pairs.  
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Figure 3. Contextual dependencies of performance in RECOLA database. 
Top-left: Audio-Aruosal; Top-right: Audio-Valence; Bottom-left: Video-Arousal; Bottom-right: Video-Valence. 

 
Results for Video-Arousal do not show any trustworthy 
trends and the emotion recognition system does not 
perform well with this modality-label pair. The same 
methodology but with 80 and 60 neurons respectively was 
tried and it showed the same trends. 
Patterns for different modality-label pairs are similar and 
the best results are lying in the area of approximately 6 
seconds of context for arousal and 8 seconds for valence. 
Performance of the system obtained with different 
combinations of contextual parameters does not differ 
much; therefore, less amount of data may be used to obtain 
the same high results.  

6. Conclusion 
Experiments have shown a strong pattern between the 
amount of context and the performance of an emotion 
recognition system. Sparsing does not affect performance 
much, while allowing to use more simple and flexible 
models and get results much faster. The knowledge about 
sparsing coefficients may reduce the number of time steps 

for RNNs to 6-12. The information about the appropriate 
amount of required contextual data may be used in real-
time emotion recognition systems. 
Further research will be focused on other time-
continuously labelled corpora, such as SEMAINE and 
context-aware models (e.g. Hidden Markov Models and 
Gated Recurrent Units). 
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