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Abstract
We address the problem of mining code-switched data from the web, where code-switching is defined as the tendency of bilinguals to
switch between their multiple languages both across and within utterances. We propose a method that identifies data as code-switched
in languages L1 and L2 when a language classifier labels the document as language L1 but the document also contains words that can
only belong to L2. We apply our method to Twitter data and collect a set of more than 43,000 tweets. We obtain language identifiers
for a subset of 8,000 tweets using crowd-sourcing with high inter-annotator agreement and accuracy. We validate our Twitter corpus
by comparing it to the Spanish-English corpus of code-switched tweets collected for the EMNLP 2016 Shared Task for Language
Identification, in terms of code-switching rates, language composition and amount of code-switch types found in both datasets. We
then trained language taggers on both corpora and show that a tagger trained on the EMNLP corpus exhibits a considerable drop in
accuracy when tested on the new corpus and a tagger trained on our new corpus achieves very high accuracy when tested on both corpora.
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1. Introduction
Linguistic code-switching is the phenomenon by which
bilingual speakers switch back and forth between languages
during communication. Code-switching can be classified as
inter-sentential when the switch occurs between the bound-
aries of a sentence or utterance, or intra-sentential when it
occurs within those boundaries. For example a Spanish-
English speaker might say “Me dijo que Juanito is very
good at math,” which represents an intra-sentential switch,
or “Me dijo que Juanito mintió. I don’t believe it!”
Code-switching can be observed at various linguistic lev-
els of representation for different language pairs: phono-
logical, morphological, lexical, syntactic, semantic, and
discourse/pragmatic switching. However, very little code-
switching corpora exist from which researchers can train
statistical models. The question of how to acquire code-
switched data from web and social media resources auto-
matically and accurately remains largely unaddressed.
In this paper, we present a method to automatically col-
lect code-switched data from Twitter. Twitter data has been
mined extensively for many Natural Language Processing
and speech tasks (Mendels et al., 2015; Go et al., 2009)
as one of the only major platforms that provides an API
for data collection. The proposed method, which we term
“anchoring” can also be used for collecting data from other
sources.
The remainder of the paper is organized as follows. In Sec-
tion 2. we give an overview of previous work on the topic
of finding and collecting code-switched data. In Section
3. we present our anchoring method for retrieving code-
switched tweets. Section 4. provides the details of our
Twitter collection pipeline. Section 5. describes the lan-
guage identification (LID) task we used to crowdsource the
word language tags for the data collected. In Section 6.1.,
we compare the corpus we acquired using this method with
a corpus of tweets that was collected for the EMNLP 2016

†The first two authors contributed equally to this work.

Shared Task for Language Identification in code-switched
(CS) Data. We compare them in terms of the amount of
bilingualism they contain and their code-switching rate –
i.e., how frequently writers switch their language in the cor-
pus. In Section 6.2. we train and test language ID taggers
on our corpus and the Workshop corpus and compare their
performance. We present our conclusions in Section 7.

2. Previous Work
In the past few years there have been increasing efforts on a
variety of tasks using code-switched data, including part-
of-speech tagging (Solorio and Liu, 2008b; Vyas et al.,
2014; Jamatia et al., 2015; AlGhamdi et al., 2016), pars-
ing (Goyal et al., 2003), language modeling (Franco and
Solorio, 2007; Li and Fung, 2012; Adel et al., 2013b; Adel
et al., 2013a; Li and Fung, 2014), code-switching predic-
tion (Solorio and Liu, 2008a; Elfardy et al., 2014), senti-
ment analysis (Vilares et al., 2015; Lee and Wang, 2015)
and even speech recognition (Ahmed and Tan, 2012; Lyu-
dovyk and Pylypenko, 2014).
The task that has received most of the attention has been
Language Identification on code-switched data, thanks in
part to the First and Second Shared Tasks on EMNLP 2014
and 2016 (Solorio et al., 2014; Molina et al., 2016). Many
of the current state-of-the-art models for Language Identi-
fication perform sequence labeling using Conditional Ran-
dom Fields (Al-Badrashiny and Diab, 2016) or Recurrent
Neural Networks (Jaech et al., 2016b). In the 2016 Shared
Task the best performing system on the MSA-DA dataset
used a combination of both (Samih et al., 2016) on top
of word and character-level embeddings, and the best per-
forming system on the ES-EN dataset used logistic regres-
sion (Piergallini et al., 2016) and character n-gram features.
On the task of finding and collecting code-switched data
from the web, which is the focus of this paper, Çetinoglu
(2016) obtained a corpus of German-Turkish tweets by au-
tomatically computing dictionaries of pure German and
Turkish from a million Turkish, German and English
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tweets. They subsequently used those dictionaries to auto-
matically tag ten million Turkish tweets from which they
obtained 8,000 potentially code-switched tweets which
they manually filtered down to 680.
Samih (2016) obtained a corpus of forum posts written in
MSA and the Darija Dialect following this iterative pro-
cess: they first started with a list of 439 words exclusive to
Darija, they retrieved forum posts that contained one of the
exclusive words, and then they added all the words from the
retrieved posts to the list of Darija words. They repeated
the process until the corpus reached a certain size. Even
though their method offers no guarantees, they obtained a
corpus with 73.9% of code-switched forum posts.
Barman et al. (2014) used a group of university students
as data source to find code-switched media. They found a
Facebook group and 11 Facebook users from which they
collected 2,335 posts and 9,813 comments. Vyas et al.
(2014) collected almost seven thousand comments from
40 manually selected code-switched Facebook posts from
three celebrity pages and the BBC Hindi news page. Fi-
nally, Jamatia et al. (2015) collected tweets and Facebook
posts from a University billboard page, although it is un-
clear if they specifically targeted code-switched content or
not.
The organizers of the EMNLP Shared Tasks on Lan-
guage Identification in code-switched Data followed a
semi-automatic approach. For the first Shared task, code-
switched data was collected for the pairs Spanish-English
(ES-EN), Mandarin-English (MAN-EN), Nepali-English
(NEP-EN) and Modern Standard Arabic-Dialectal Arabic
(MSA-DA). The social media sources they targeted were
Twitter for all language pairs and Facebook for NEP-EN
and blog comments for MSA-DA. For Twitter, their ap-
proach consisted in first locating code-switchers and then
collecting their posts and posts from their followers and/or
followees. For ES-EN, they located a subset of code-
switchers by querying the Twitter API with frequent En-
glish words, and restricted results to tweets identified as
Spanish by Twitter from users based in Texas and Califor-
nia. For NEP-EN, they started from a group of acquain-
tances that were known to code-switch and then identified
their followers and followers of their followers that they
found were code-switchers too. For Mandarin-English,
they started by looking at the most followed Twitter users
in Taiwan. They then added those users that they manually
checked were code-switchers to their pool, and repeated
a similar process on their followees. For MSA-DA, they
seeded the search with text from Egyptian public figures.
For the Second Shared task the language pairs were ES-
EN and MSA-DA. For ES-EN they restricted the search of
code-switchers based in New York and Miami and seeded
the search from local radio station accounts. Again, they
continued looking for followers and followees of the radio
stations that tweeted code-switched messages. For MSA-
DA, the same collection method from the 2014 Shared Task
was reused.
All of these approaches to code-switched data collection,
except (Samih, 2016), rely on manual inspection to some
degree in order to either add a user to the code-switcher
pool or select a post for collection. In the next section we

introduce a fully automatic approach to finding and collect-
ing code-switched data that is not dependent on manually
curating lists of users.

3. Anchoring Methods
We define an anchor as a word which belongs to only one
language from a large pool of languages. The motivation
behind using anchor words stems from a simple rule to
detecting code-switched sentences: “A sentence is code-
switched in L1 + L2 if and only if it contains at least one
anchor from language L1 and at least one anchor from lan-
guage L2, and contains no anchors from any other language
from the pool of languages L.”
The set of anchor words for a language Li is computed as
the set difference between its word lexicon V (Li) and the
union of all other lexicons in the language pool:

AnchorSet(Li) = V (Li) \ ∪j!=iV (Lj) (1)

Note that the identification of the anchor sets for a given
language pair depends upon the monolingual corpora used.
We can relax the definition of anchors in two different
ways. First, in the context of detecting L1 + L2 language,
we say a word is a “weak anchor” if it is seen in mono-
lingual L1 corpora, and never seen in monolingual L2 cor-
pora. Second, querying the Twitter API with every possi-
ble pair of one Spanish and one English anchor is unpro-
ductive because there are billions of possible queries and
most of them would have no results. To avoid this problem
we relaxed the definition of code-switching to: “a sentence
is code-switched if and only if it is predicted to be L1 by
a monolingual automatic Language Identification program
and contains at least one weak anchor from the L2 anchor
set.” With this new rule we require only one anchor from
one of our language pair plus language id results favoring
the other member of the pair. We note that the definition
of weak anchors closely resembles the definition of black-
listed words used by (Tiedemann and Ljubešić, 2012), al-
though their application was to discriminate between a set
of very similar languages (Serbian, Croatian and Bosnian).
Using these definitions, we performed a preliminary study
on the task of classifying an utterance as monolingual or
code-switched on the EMNLP 2016 Shared Task Corpus of
Spanish+English tweets. Details of the collection and con-
tents of that corpus were given in Section 2.. We computed
the anchors for Spanish and English from the Leipzig cor-
pora Collection (LCC), released 2007 to 2014 (Goldhahn et
al., 2012). The LCC is a collection of corpora for a large
set of languages from comparable sources (e.g. Wikipedia,
news articles, websites). We computed the word lexicon
of every language in the corpus from the news dataset for
that language, and then we computed the anchor list first
following equation 1. Words that contained numbers or to-
kens from a list of 31 punctuation tokens were discarded.
In total the language pool contained 134 languages. The
Spanish anchor set contained 50.68% of the words from
the Spanish word lexicon and the English anchor set con-
tained 54.37% of the words from the English lexicon. In
both cases, this is one of the smaller percentages from the
pool of 134 languages. In comparison, German, French
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Method Class Prec. Recall F1-score

Anchors
Mono 0.58 1.00 0.73
CS 0.94 0.03 0.07

Weak Mono 0.68 0.98 0.80
Anchors CS 0.93 0.38 0.54
Weak Mono 0.66 0.98 0.79
+LID CS 0.93 0.33 0.49

Table 1: Performance on the task of code-switched sen-
tence detection using three definitions for anchoring.

and Italian kept 79.01, 59.67 and 62.94% of their lexicons,
while other languages like Chinese and Japanese kept 93.40
and 72.18%.
Table 1 shows Precision, Recall and F1-Score results on
the task of classifying a tweet as code-switched (CS) or
monolingual (mono) for the strong definition of anchors,
weak anchors and the weak anchor + LID approach. We re-
port results on the test partition of the EMNLP 2016 Shared
Task Corpus. The language ID used is langid.py (Lui and
Baldwin, 2012).
The top subtable from Table 1 shows the results we ob-
tained for this task using our strong definition of anchor.
Not surprisingly, we achieved very high precision, but very
low recall. High precision and low recall is a secondary ef-
fect from the restrictiveness of the definition of anchor set
and code-switched sentence, since anchors are not defined
exclusively in terms of L1 and L2, but from a large pool of
languages. This means that the words in the anchor set are
most likely to be very low-frequency words. Furthermore
the fact that a sentence must have at least one anchor from
both languages and none from all the other languages, guar-
antees that much of the data will be rejected as not code-
switched even when bilingual speakers of the languages in
question would agree that it is.
The middle subtable from Table 1 shows the results on the
task using weak anchors as defined above. At the expense
of 0.01 absolute precision points, recall is improved by al-
most 0.35 points.
The bottom subtable of Table 1 shows results using weak
anchors and Language Id. Although with this method the
recall drops 0.03 points with respect to the weak anchors,
we achieve the advantage of being able to reduce the num-
ber of queries we need for the collection, and make the
search less restrictive. In the next section of the paper we
use weak anchors with the Language ID restriction to col-
lect code-switched tweets.

4. Data Collection
We used Babler1 (Mendels et al., 2016) to collect code-
switched data from Twitter. Babler is a tool designed for
harvesting web-data for NLP and machine learning tasks.
Babler’s pipeline is launched by querying a seed word
s ∈ S using Twitter’s API. The tweets retrieved by the
query are later processed and passed through a set of fil-
tering rules R which are predefined for the task.
Following the definition of “weak anchor plus Language
Id” given in section 3. we used the “weak” anchors to

1Babler is publicly available from https://github.
com/gidim/Babler

seed the Twitter API and the filtering rules R to enforce
the LID restriction. To further reduce the number of re-
quired queries we also sort our “weak” anchors by fre-
quency. The weak anchors were computed from the Gi-
gaCorpus dataset of Broadcast News data (Consortium and
others, 2003; Graff, 2011). R uses Twitter’s LID to only
allow tweets that were seeded from a Spanish anchor and
classified as English or vice versa. Although we require the
Twitter API to return only exact matches to our seed terms,
we found that in fact Twitter performs stemming.
Our method differs from the prior art in two aspects. First,
we derive our word lists from non-noisy pure monolin-
gual corpora which reduces the risk of including out-of-
language tokens. Second, instead of performing local fil-
tration our method is implemented based only on API calls
thus increasing our potential dataset to every public tweet
available. Overall we collected 14,247 tweets that were
seeded from Spanish weak anchors and classified as En-
glish by the Twitter API and 28,988 tweets that were seeded
from English weak anchors and classified as Spanish.

5. Crowdsourcing Language Tags
While we designed our data collection pipeline to save only
code-switched tweets, we next needed to test this, as well
as to obtain manual annotations for our language modeling
research.
From the more than forty-three thousand tweets that were
collected, we randomly chose a subset of 8,285 tweets
for our “Anchored” tweets corpus 2. We crowdsourced
language tags for every word in our Anchored tweet
dataset. Each word was tagged as English (EN), Span-
ish (ES), Ambiguous between English and Spanish (AM-
BIG), Mixed English-Spanish (MIXED), Named Entity
(NE), Foreign Word (FW), Other (OTHER) and Gibber-
ish (UNK). “Named Entities” were defined as single proper
names or part of a name or title that refer to persons, places,
organizations, locations, brands, goods, initials, movie ti-
tles and song titles. A word is to be tagged as “Ambigu-
ous” when it can be used in both English and Spanish, but
there is not enough context to decide its use in the current
tweet. A word is to be tagged “Mixed” when the word does
not exist in Spanish or English, but consists of a combina-
tion of elements from both, e.g. the word “ripeado” which
contains the English root “rip” and the Spanish morpheme
“-ado”. The category “Other” is to be used to tag punc-
tuation, numbers, emoticons, retweet symbols, and other
non-lexical items. Finally the “Gibberish” category is for
tokens whose meaning cannot be identified.
We used the guidelines used for the annotation of the
EMNLP 2016 Shared Task dataset, with some minor
changes, including a large number of examples per lan-
guage tag, and reminders to the annotators throughout the
instructions and question statements that a) hashtags were
to be tagged with the language tag of the words in the hash-
tag, and b) Named Entities had precedence over any other

2All the anchor wordlists, tweet IDs and their
crowdsourced language tags are publicly available in
http://www.cs.columbia.edu/˜vsoto/files/
lrec_2018_package.zip
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Figure 1: Instance of the annotation task implemented in
Crowdflower.

Lang Tag #Tokens Avg. Conf
ES 40,208 0.97
EN 30,372 0.93
AMBIG 919 0.55
MIXED 129 0.54
NE 15,260 0.88
FW 1,815 0.77
OTHER 1,994 0.80
UNK 546 0.59

Table 2: Number of tokens and average confidence per Lan-
guage ID tag from the crowdsourced annotations for the
Anchored Twitter corpus.

language tag, since these were the test questions they had
the most difficulty with in our initial test.
We used Crowdflower to crowdsource language tags for our
tweets. An example of the task our workers were asked to
complete can be seen in Figure 1. Our workers were pre-
screened using a quiz of twenty test questions. If three or
more test questions were missed during the initial quiz, the
worker was denied access to the task. Furthermore, workers
were required to be certified for the Spanish language re-
quirement in Crowdflower. Only workers from Argentina,
Canada, Mexico, Spain, U.K. and U.S.A. were allowed ac-
cess to the task. The task was designed to present 20 ques-
tions per page plus one test question used to assess workers’
performance. When a worker reached an accuracy lower
than 85% on these test questions, all their submitted judg-
ments were discarded and the task made subsequently un-
available. Every set of 19+1 judgments was paid 1 cent
(USD).
In total, we collected three judgments per token. The av-
erage inter-annotator agreement was 92.33% and the av-
erage test question accuracy was 91.1%. These metrics
demonstrate that the crowdsourced language labels are of
high-quality. For every token for which we crowdsourced a
language tag, Crowdflower computes the confidence on the
language tag as the level of agreement between all the con-
tributors that predicted that language tag weighted by the
contributors’ trust scores. The language tag with highest
confidence is then chosen as aggregated prediction. Table
2 shows the average confidence per language tag across all
tokens. It can be seen that workers struggled the most when
tagging words as Mixed, Ambiguous or Gibberish.

Workshop Anchored
Train-Dev Test Full

#Tweets(K) 14.4 10.7 8.5
#Tokens(K) 172.8 121.4 130.7
#Switches(K) 7.4 7.8 10.2
Avg. #swts 0.52 0.73 1.19
Swt.words(%) 4.30 6.42 7.77
Swt.tweets(#) 4,116 4,617 5,958
Swt.tweets(%) 28.56 43.09 69.89
0 swt. (%) 71.44 56.91 30.11
1 swt. (%) 12.86 21.38 39.57
2 swt. (%) 11.34 16.65 19.53
3 swt. (%) 2.50 2.88 5.81
4 swt. (%) 1.27 1.66 3.32
5 swt. (%) 0.29 0.33 0.84
6 swt. (%) 0.20 0.17 0.43
7 swt. (%) 0.05 0.02 0.23
8 swt. (%) 0.03 0.00 0.12

Table 3: Code-switching statistics for the EMNLP 2016
Workshop and Anchored Tweets datasets. A code-switched
word is a word whose language is different from the word
that precedes it. The bottom subtable shows the percentage
of tweets that contain N code-switches.

6. Evaluation
6.1. Data Assessment
Given the crowdsourced LID labels, we can assess the qual-
ity of the retrieved anchored tweets by computing their de-
gree of bilingualism and how frequently code-switching
occurs within them. We compare these measures to the
EMNLP 2016 CS Shared Task corpus (Molina et al., 2016).
The train and dev tweets from the 2016 Shared Task were
the train and test sets from the 2014 Shared Task (Solorio et
al., 2014), whereas the test split was collected specifically
for the 2016 task. The collection schemes used in 2014 and
2016 were explained in detail in Section 2.. Table 3 pro-
vides the overall statistics describing this corpus in com-
parison to ours. We report the train-dev and test splits of
the EMNLP 2016 Workshop Shared Task corpus separately
since they were collected using different methods. As can
be seen in Table 3, our subset of 8,525 tweets had an aver-
age of 1.19 code-switches per tweet, with 7.77% of words
in a tweet being followed by a switch. 69.89% of our tweets
contained at least one or more switches. In comparison, the
Workshop corpus had an average of 0.61 code-switches per
tweet, with 5.17% of tokens followed by a switch. Only
34.75% tweets contained at least one switch. The test set of
the Workshop corpus shows greater degrees of bilingual-
ism and a better switching rate: Test corpus tweets aver-
aged 0.73 code-switches per tweet, with 6.42% of tokens
followed by a switch and contained 43.09% code-switched
tweets overall. Based on these metrics alone, it would ap-
pear that our anchoring method improves over the earlier
approach considerably.
Table 4 shows the language composition of the three
datasets: Workshop training-dev, Workshop test, and the
full Anchored dataset. From this table we can see that the
train-dev portion of the workshop corpus has a majority
(>55%) of English words, while the test split contains a
large majority of Spanish words (>63.44%), perhaps due to
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Workshop Anchored
Lang Tag Train-Dev Test Full
ES 24.51 63.44 34.44
EN 55.33 13.95 24.73
AMBIG 0.23 0.00 0.70
MIXED 0.04 0.00 0.10
NE 2.09 1.72 11.68
FW 0.01 0.02 1.39
OTHER 17.62 20.84 26.53
UNK 0.17 0.02 0.42

Table 4: Language composition (%, token level) for the
EMNLP 2016 Workshop and Anchored Tweets datasets.

seeding the collection of tweets on Spanish-language Ra-
dio accounts and followers/ees. In comparison, the An-
chored corpus is more balanced, with 34.44 and 24.73%
of Spanish and English tokens. It also has a higher rate of
Named Entities and Other tokens. We believe this is due
to the updated annotation guidelines that emphasized the
subtleties involved in annotating Named Entities and Other
tokens. While Table 4 compares the corpora by language

Workshop Anchored
Switch Type Train-Dev Test Full
ES EN 32.06 45.68 29.81
EN ES 31.47 28.36 22.86
EN Other+ ES 15.99 12.28 14.83
ES Other+ EN 15.16 11.05 10.86
ES NE+ EN 1.44 0.99 4.06
EN NE+ ES 0.91 0.36 2.45

Table 5: Types of code-switching sorted by frequency (%).
TAG+ indicates a sequence of one or more occurrences of
that language tag.

composition, Table 5 examines the corpora by type of
switch. The most frequent switch across datasets is Span-
ish to English (ES-EN), followed by English to Spanish
(EN-ES). These account for 63.53%, 74.04% and 52.67%
of switches for the Workshop Train-Dev, Workshop Test
and Anchored datasets respectively. The next most com-
mon type of switch is an English word followed by a se-
quence of Other tokens and a Spanish word (EN-Other-ES),
or Spanish followed by Other and then English (ES-Other-
EN). These make up for 31.15%, 23.33% and 25.69% of
the switches. Note that this type of switch can be indica-
tive of inter-sentential code-switching if the Other token is
a punctuation mark (like ‘!’ in “Holaaaa mis niños bellos!!!
I love you guys”) or it can be indicative of intra-sentential
code-switching if the other token is a Twitter mention, a
quote, and so on (e.g “En cuestiones de Rock ‘n’ Roll I
am pretty crossover”). Overall, the typing distribution is
more balanced in the Anchored dataset, whereas the Work-
shop test set has a significant majority of ES EN switches,
due perhaps, again, to the way the collection of tweets was
seeded.

6.2. Language Identification
Our second evaluation of the accuracy of our corpus con-
sists of training and testing Language ID taggers on the
new dataset and comparing its performance to a tagger

trained on the Workshop data. We made use of a high-
performing classification model from Jaech et al. (2016b).
The model did well on the English-Spanish code-switching
2016 Shared Task, especially considering that it was one
of only two models that did not use external resources for
training (Molina et al., 2016). The same model did well on
a sentence level language identification task (Jaech et al.,
2016a).
We summarize the model architecture and its motivation
here. For a full description see Jaech et al. (2016b). The
model is a hierarchical neural model with one level that op-
erates on character sequences to build a representation for
each word and a second level that operates on the sequence
of word representations to predict the language tag for each
word. In the first level, the model uses convolutional neu-
ral network layers to do a soft-version of n-gram matching.
The output of this layer is a feature vector that provides
a useful signal for the language of each word because lan-
guages tend to differ in their character n-gram distributions.
The second level of the model is a bidirectional LSTM that
takes as input the feature vectors from the previous layer
and outputs the predicted tag for each word. The use of the
LSTM allows the model to incorporate evidence from arbi-
trary far away in the word sequence. We made one tweak
that was not described in Jaech et al. (2016b): the standard
LSTM was replaced with an LSTM that has coupled input
and forget gates for a 25% reduction in the parameters in
the bi-LSTM and a corresponding improvement in speed
of computation (Greff et al., 2016). Operating on the word-
level representations allows the LSTM to predict the correct
tag for words whose language is ambiguous from just the
character-level feature vectors based on the fact that adja-
cent words are more likely to belong to the same language.
We tune the model hyper-parameters by training and test-
ing on the train and dev splits of the Workshop dataset, ef-
fectively making the task harder for the model trained on
the Anchored corpus. Table 6 shows the word-level and
sentence-level accuracy and the average F1-score of the
language ID tagset for each training/testing combination.
First, we trained our tagger on the Workshop data (Work-
shop Model, in Table 6) and observed that its performance
on the Workshop test set is similar to that reported for
this model in the Shared Task (95.93%). The performance
of this tagger however sees a big drop of performance
on word-level accuracy and sentence-level accuracy when
tested on the Anchored test set. This demonstrates that a
tagger trained on a corpus comprised of majority of mono-
lingual sentences, with a lower degree of bilingualism and
switching rates, has some difficulty generalizing to a more
balanced corpus like the Anchored Tweets Corpus.
Second, we partitioned the Anchored corpus in train and
test by randomly choosing 1,500 tweets for the test set and
leaving the rest for training. We trained a new tagger on the
Anchored dataset with the same hyper-parameter settings
as the Workshop tagger and report its test performance on
Table 6 as Anchored tagger. We observed that the perfor-
mance of this model on the Workshop data is very good,
despite the difference between the two datasets: the word-
level accuracy only decreases by 0.8% accuracy points with
respect to the Workshop model, whereas the sentence-level
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Training Word Accuracy (%) Avg. F1-Score Sentence Accuracy (%)
Corpus Workshop Anchored Workshop Anchored Workshop Anchored
Workshop 95.93 82.09 0.4218 0.3978 67.91 14.20
Anchored 95.13 91.86 0.4655 0.5937 62.60 40.13
Combination 96.91 91.61 0.4328 0.5617 73.53 39.87

Table 6: Language tagging accuracy (left) and average f1-score (center) at the word level and language tagging accuracy at
the sentence-level (right) for each training and testing combination.

Training Word Accuracy (%) Avg. F1-Score Fragment Accuracy (%)
Corpus Workshop Anchored Workshop Anchored Workshop Anchored
Workshop 85.46 78.96 0.3678 0.3802 84.29 61.67
Anchored 83.85 86.64 0.3617 0.4937 82.61 71.73
Combination 87.44 86.98 0.3722 0.5020 86.51 73.67

Table 7: Language tagging accuracy (left) and average f1-score (center) at the word level and language tagging accuracy
at the fragment-level (right) for each training and testing combination on the subset of code-switched fragments.

accuracy decreases by 5.31% points. However the F1-score
value sees a relative improvement of 10.36%, which indi-
cates that the new corpus is more similar to the Workshop
test split than the Workshop train-dev split. The Anchored-
trained tagger achieves 91.86% word-level accuracy on
its own test set, with 0.5937 average F1-score value and
40.13% sentence-level accuracy. These results indicate that
a tagger trained on the anchored corpus is able to generalize
quite well on the same corpus, although overall the classifi-
cation task is harder than on the Workshop corpus: the best
word-level and sentence-level accuracies in the Workshop
test set are much higher than in the Anchored test set.
Finally, we trained a tagger on a combination of the Work-
shop and Anchored training sets. This combined tagger
achieves the best word-level accuracy on the Workshop cor-
pus (96.91%) as shown in the last row of Table 6. Similarly
the combined tagger also achieves the best sentence-level
accuracy on the Workshop test set (73.53%).
Overall, the Anchored tagger achieves the best results on
the Anchored test set for every metric (91.86% word-level
accuracy, 0.5937 average f1-score and 40.13% sentence-
level accuracy), despite being trained on much less data
(the anchored train set has 7,025 tweets, the workshop
train set has 11,400 tweets and the combined train set has
18,425 tweets). It also achieves the best average f1-score
on the Workshop test set (0.4655). The Combination tagger
achieves the best word-level and sentence-level accuracy on
the Workshop test set (96.91% and 73.53% respectively).
We next examine the performance of the three taggers on
the subset of code-switched segments present in each test
set in Table 7, where we define a code-switched segment as
the minimal span of tokens where a point code-switch oc-
curs. Notice that a segment can be longer than two tokens
if there is a Named Entity, Other, Mixed or Ambiguous to-
ken in between. For example, from the sentence “I watched
The Godfather y me encantó”, the code-switched segment
would be “watched The Godfather y” where “The Godfa-
ther” is a Named Entity.
From this table we can see that, in fact, taggers have most
difficulty tagging words that occur in the context of a code-
switch, since the accuracy of all three models on both test
subsets of code-switched segments suffers a steep decline

for the results shown for the complete test set in the left
subtable of Table 6. In the case of the Workshop tagger, its
accuracy has relative changes of -10.91 and -3.81% on the
full workshop and anchored test sets respectively. The An-
chored model sees even larger relative decreases of -11.86
and -5.68%. In comparison, the Combination model has
the smallest relative decreases in accuracy, with -9.77 and
-5.05%. The same trends can be observed for the average
F1-Score and the fragment-level accuracy metrics.
Overall the best performing model is the one trained on the
combined training sets, followed by the Anchored model,
which always gets better metric values on its own test set
and achieves similar metric values on the Workshop test
set when compared to the Workshop tagger. Notice though
that the Anchored model was trained on less than 40% of
the number of tweets in the Combined train set.

7. Conclusions
In this paper we present a method, which makes use of an-
choring and monolingual Language ID, for detecting code-
switched text. We relax strict anchoring constraints to
query the Twitter API and retrieve code-switched tweets.
We crowdsource language tags for the tokens of 8,285
tweets and found that almost 70% of the collected tweets
are indeed code-switched. These tweet exhibit a rela-
tively balanced amount of Spanish and English text and
a high amount of code-switching per tweet. The aver-
age number of code-switches per tweet in the corpus is
1.19 switches while 7.77% of the tokens are followed by
a code-switch. These numbers compare favorably to the
2016 EMNLP Workshop Shared Task Code-Switched Twit-
ter corpus, which was obtained with a different, more labor-
intensive method. We evaluated the quality of our new An-
chored corpus by training state-of-the-art language taggers
and showed that a) a tagger trained on the original Work-
shop corpus exhibits a more considerable drop in accuracy
when tested on the Anchored corpus; and b) a tagger trained
on the Anchored corpus achieves very good accuracy on
both test corpora. These results show great promise for au-
tomatic collection of other code-switched corpora for use
in training language models and for other NLP and speech
tasks.
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