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Abstract
Word embeddings capture a string’s semantics and go beyond its surface form. In a multilingual environment, those embeddings need
to be trained for each language, either separately or as a joint model. The more languages needed, the more computationally cost- and
time-intensive the task of training. As an alternative, pretrained word embeddings can be utilized to compute semantic similarities of
strings in different languages. This paper provides a comparison of three different multilingual pretrained word embedding repositories
with a string-matching baseline and uses the task of ontology alignment as example scenario. A vast majority of ontology alignment
methods rely on string similarity metrics, however, they frequently use string matching techniques that purely rely on syntactic
aspects. Semantically oriented word embeddings have much to offer to ontology alignment algorithms, such as the simple Munkres
algorithm utilized in this paper. The proposed approach produces a number of correct alignments on a non-standard data set based on
embeddings from the three repositories, where FastText embeddings performed best on all four languages and clearly outperformed the
string-matching baseline.
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1. Introduction
Word embeddings constitute a distributed word representa-
tion to leverage the semantics of words by mapping them
to vectors of real numbers, where each dimension of the
embedding represents a latent feature of the word (Turian
et al., 2010). They have been shown to be very success-
ful in many NLP tasks (Mikolov et al., 2013; Camacho-
Collados et al., 2016) and also ontology alignment (Zhang
et al., 2014). Evaluations of embeddings mostly focus on
English standard datasets with high frequency single words
(Baroni et al., 2014; Riedl and Biemann, 2017) and the few
available multilingual comparisons, such as by Camacho-
Collados et al. (2016), usually focus on one type of em-
bedding. This paper proposes the use of a non-standard,
domain-specific and multilingual dataset with multi-word
expressions to compare three different pretrained embed-
ding repositories. Re-use of existing embeddings is attrac-
tive since no training time or expertise in learning embed-
dings is required.
Embeddings abstract away from the string’s surface form,
which is not the case with syntactic similarity metrics,
such as the Levenshtein edit distance (Levenshtein, 1966),
conventionally used in ontology alignment (see Cheatham
and Hitzler (2013) for a comparison). A semantic repre-
sentation of words is important in ontology alignment for
two major reasons. First, it allows to consider synonyms
and terminological variants. For instance, “Schuhe”@de
(shoes) should have a lower similarity when compared to
“Schule”@de (school) than compared to its actual syn-
onym “Fußbekleidung”@de (footwear). Second, shortened
strings, such as abbreviations, co-occur in the same con-
text as their full form but differ strongly in their surface
form. However, the computational cost of training word
embeddings increases proportionally with a rising number
of languages considered.
In this paper, we evaluate three existing embedding li-
braries, that is, Polyglot (Al-Rfou et al., 2013), a Fast-

Text (Bojanowski et al., 2016), and a word2vec embed-
ding repository (Park, 2017) on an ontology alignment task
in four languages: English, Spanish, German, and Italian.
We compare the embedding libraries to a Jaccard base-
line, which is a string-matching technique that has been
shown to perform well on multilingual ontology alignment
(Cheatham and Hitzler, 2013). For this task, two mul-
tilingual ontologies that exist in all four languages with
enough overlap to allow for an alignment are needed and
the structure of each ontology should be the same in all
its languages, whereas the structure of the two multilin-
gual ontologies might not be exactly the same. We test the
application of word embeddings to the mapping of ontol-
ogy labels of two lightweight industry classification ontolo-
gies: the GICS (Global Industry Classification Standard1)
and the ICB (Industry Classification Benchmark2) classifi-
cation systems. To reduce the Out Of Vocabulary (OOV)
ratio, we present and utilize a decomposition for German
compounds. Our main contribution is, on the one hand,
an experiment with existing embedding repositories on a
new kind of task, namely multilingual, domain-specific on-
tology alignment, and, on the other hand, a cost-effective
semantic string matching method for multilingual ontology
alignment. We also publish the code utilized in this experi-
ment3.
As regards structure, we first describe the utilized embed-
ding repositories and ontologies before we specify the cho-
sen methodology including the compound decomposition,
vector concatenation, and ontology alignment method. Sec-
tion 5 quantifies and describes the obtained results, which
are discussed in Section 6. We conclude by providing some
related approaches and concluding remarks.

1https://www.msci.com/gics
2http://www.icbenchmark.com/
3https://github.com/dgromann/

OntologyAlignmentWithEmbeddings
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2. Embedding Resources
Polyglot (Al-Rfou et al., 2013) represents a repository of
word embeddings in more than 100 languages trained on
the Wikipedia corpus for each language (Al-Rfou et al.,
2013). The used vocabulary consists of the 100,000 most
frequent words in each language and the vectors use a di-
mensionality of 64. The embeddings were trained using a
neural network implementation in Theano (Bergstra et al.,
2010). Surface forms of words are mostly preserved, that
is, a minimum of normalization is applied, which allows for
a querying of the resource without major preprocessing for
most languages (German is an exception in our dataset, see
4.1. for details).
The FastText embeddings (Bojanowski et al., 2016) are
available in 294 languages, use the most common vector
dimensionality of 300 and are trained on the Wikipedia cor-
pus using FastText (Bojanowski et al., 2016). In contrast to
the other resources, this embedding library considers sub-
word information of the vocabulary in the corpus. By using
a skipgram model, a vector representation for each char-
acter n-gram is produced and words are the sum of their
character representations.
A repository of word2vec embeddings (Park, 2017), called
word2vec for short from now on, available in more than
30 languages was used as a comparative library to fast-
Text and trained on the Wikipedia corpus using the pop-
ular word2vec approach (Mikolov et al., 2013). The di-
mensionality of the vectors is also 300, but no subword in-
formation was considered here. The cited word2vec em-
bedding library does not contain English, which is why we
trained the English word embeddings using the exact same
method as for the other languages with the code provided in
the repository (Park, 2017) and also compare to the results
obtained with the pretrained embeddings trained on the
Google News corpus with dimensionality 300 (Mikolov,
2013).

3. Ontology Alignment Data Set
Industry classification systems enable the comparison of
companies across borders and languages. They help in-
vestors to diversify their asset portfolios by sorting stocks
into sectors and industries. Thus, a portfolio manager can
choose stocks from different classes to mitigate the risk
of centering extensively on one sector or industry. How-
ever, due to numerous and often competing classification
systems, the resulting resources are inconsistent on a tax-
onomic and terminological level. We utilize two widely
accepted classification systems in our multilingual align-
ment method in English, German, Spanish, and Italian: the
Global Industry Classification Standard (GICS) and the In-
dustry Classification Benchmark (ICB). The English ver-
sion of GICS has been translated to other languages, which
means that all languages of GICS are fully parallel in struc-
ture, which is also true for ICB.

3.1. Global Industry Classification Standard (
GICS)

The Global Industry Classification Standard (GICS) repre-
sents industry sectors in a lightweight ontology developed

by MSCI and Standard & Poor’s4. The GICS structure con-
sists of 10 sectors, 24 industry groups, 68 industries and
154 sub-industries. GICS is offered in 11 different lan-
guages. It contains 256 labels for each language, that is,
a total of 2,816 labels. For our experiment dealing with 4
languages, we have thus 1,024 labels. Each sub-industry is
equipped with a natural language definition.

3.2. Industry Classification Benchmark (ICB)
The Industry Classification Benchmark (ICB) developed by
Dow Jones and FTSE5 consists of four major levels. There
are ten main industries which are subcategorized in an in-
creasingly finer classification into 19 supersectors, 41 sec-
tors and 114 subsectors. Each stock is uniquely classi-
fied into one of the 114 subsectors, which consequently
uniquely classifies it into one of the sectors, supersectors,
and industries. ICB is offered in 14 languages and con-
tains 184 labels for each language, that is, 2,576 labels in
total for all languages. For our experiment with four of
those languages, we have thus 736 labels. Each subsector
is equipped with a natural language definition.

3.3. Comparing ICB and GICS
Both systems classify a company according to its primary
revenue source, apply four major levels to their structure
and have a comparable number of subcategories. We com-
pare the ten top levels of both hierarchies. Apart from the
consumer related sector they seem to be very similar, four
of them are even exact string matches. One major differ-
ence is to be found in the consumers section. GICS differ-
entiates between staples and discretionary containing both
goods and services, whereas ICB distinguishes consumer
goods from consumer services. As this regards the top-level
classification, it is an important aspect to be considered in
the alignment strategy. The terms used to designate equiv-
alent categories differ substantially.
Both classifications apply unique integers for indexing the
concepts, to which the labels are associated. While GICS
and ICB have both four conceptual levels, they use each
a different strategy for encoding the taxonomic positions.
GICS adds 2 digits per level (15 > 1510 > 151010 >
15101010), while ICB increases the numbers for marking
each level (1000 > 1300 > 1350 > 1353). Both clas-
sifications at times use identical strings to label elements
at different levels, e.g. “Banks”@en (ICB8300, ICB8350,
ICB8355).

4. Methodology
We use an element-level matching algorithm to calculate
the semantic similarity between sets of multilingual labels.
The embeddings for each word in each label are retrieved
individually and then combined. The similarity is calcu-
lated based on a cosine function, the most frequently used
similarity metric for embeddings, between the combined
vectors of each label in each ontology.

4See respectively http://www.msci.com/
products/indices/sector/gics/ and http://
www.standardandpoors.com/indices/gics/en/us

5See http://www.ftse.com/Indices/Industry_
Classification_Benchmark/index.jsp
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4.1. Preprocessing
Our preprocessing focuses on optimizing short textual se-
quences for word embedding retrieval since we align ontol-
ogy labels. To this end, we remove stop words, numbers,
and punctuation and decompose complex German com-
pounds to reduce the OOV rate. We decided against further
preprocessing, such as lemmatization or stemming.

Normalization
To minimize the OOV value, we repeat the retrieval attempt
with several case representations of the word, that is, upper
case initial letter, lower casing all letters, and representing
all characters as upper case (title casing).

German Noun Decomposition
Compounding languages, such as German, allow a poten-
tially infinite creation of new words, which cannot possibly
be covered by a single embedding repository. Decompo-
sition of such word constructs does indeed reduce this po-
tential infinity to a nearly finite set of words that are used
in compounds, and which have a much higher probabil-
ity of being covered by the utilized repositories. But de-
composition is not a trivial task. Fortunately, we can use
two data sources in our experiment: the GermaNet list of
66,059 compounds together with the explicit description of
their components6. The second resource we use is gener-
ated directly from the data of GICS and ICB: a program
first traverses all the labels and definitions used in the Ger-
man version of the classification systems and collects all
the words used. In a second run, words that are re-used
in larger strings are marked as components of a compound
and thus also as independent words. This strategy allows to
significantly increase the number of German words covered
by the individual repositories and bring them closer to the
other languages (see Table 1 for details).

4.2. Vector Composition
In order to obtain the best estimation of the similarity of two
labels sim(label1, label2) each label is split into its k num-
ber of individual words. We then retrieve the vector repre-
sentation ~vi for each word from the individual embedding
repositories, so we query for the vector ~vi : ∀wk ∈ labeli
for all words wk in each label labeli.
Since OOV occurrences are possible, we need to compose
the vectors in a way that allows for the indication of miss-
ing words in a longer sequence of words representing the
label. To this end, we adapt the concept of lexical seman-
tic vectors (Konopik et al., 2016). We create a combined
vocabulary L = unique(label1 ∪ label2) of all unique
words in label1 of GICS and label2 of ICB as represented
in Figure 1. Similarity of the first word of L and the first
word of label1 is calculated as the cosine metric of their
respective embeddings, which we retrieve from the embed-
ding repositories (in this example we used Polyglot embed-
dings). Then, the first word of L is compared to the second
word of label1 until the first word of L has been compared
to all words of label1. We create a vector ~m that contains
the maximum cosine similarities between each word of L

6http://www.sfs.uni-tuebingen.de/lsd/
compounds.shtml

and all other words in label1. For instance, the “Renew-
able” embedding in L obtains the highest similarity (1.0)
with the “Renewable” embedding in label1 of GICS. The
process is iterated for the second word of L to obtain the
second value of vector ~m. To obtain ~n, the words of L
are compared to all words of label2 as described for label1.
For instance, the “Renewable” embedding of L obtains the
highest similarity value (0.695) with the “Conventional”
embedding of label2 of ICB. The dimensionality of the re-
sulting vectors ~m and ~n depends on the number of words
in L. The similarity sim(label1, label2) is calculated as the
cosine value between ~m of GICS and ~n of ICB for each of
their labels.

Figure 1: Vector Comparison Method to Measure Semantic
Distance

If a word is not in the vocabulary of the embedding repos-
itory, we do not have an embedding to calculate the co-
sine similarity with other word embeddings. To solve this
problem, we fill the slot of this word in the final vector ~m
respectively ~n with the average of all other values7. This
means that we sum all calculated cosine similarities for in-
vocabulary words of the label with an OOV and divide the
sum by the number of in-vocabulary elements of the same
label. The resulting value provides us with the cosine-
similarity value in vector ~m respectively ~n for the OOV
words as depicted Figure 2, where “Nondurable” is not in
the embedding library, which in this example case is the
Polyglot library.

Figure 2: Handling OOV in Vector Composition

4.3. Ontology Alignment Task
Two ontologies modeling the same domain frequently dif-
fer due to design choices of the engineers. To enable their

7We tested with values of -1, close to zero, and the average
similarity of all other words in the same label for OOV words
and found a better performance using the average similarity of all
other values in the vector.
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re-use, extension, and comparison, ontology alignment is
useful. It has been shown that string similarity metrics
alone can achieve results competitive to state-of-the-art on-
tology alignment systems (Cheatham and Hitzler, 2013).
For instance, the Jaccard distance, which is based on the
number of words two strings have in common divided by
the total number of words of the two strings, has been found
to be very effective in multilingual ontology alignment sce-
narios (Cheatham and Hitzler, 2013). For this reason we
chose Jaccard as the baseline for measuring the perfor-
mance of the proposed embedding-based approach. How-
ever, linguistic condensation strategies, such as compound-
ing or abbreviations, and the lack of semantic context can
pose a serious challenge to string-based ontology alignment
methods.
Ontology alignment represents the problem of identifying
a set of correspondences {e1, e2, sim|e1 ∈ O1, e2 ∈ O2}
where e1 is an element in O1 and e2 is an element of O2

and sim represents the confidence of each individual corre-
spondence in the set of alignments. In this first experiment,
our entities e correspond to class labels only. The cor-
respondence is represented as an equivalence relation be-
tween two entities e1 ≡ e2, where each entity is represented
by its natural language label. This correspondence relation
is based on the assumption that a one-to-one matching be-
tween entities exists. We repeat the alignment process for
each language-specific ontology, since they are provided
separately.
To align the two input ontologies in each language, we em-
ploy the Munkres assignment algorithm (Munkres, 1957).
Given a non-negative n x n matrix it optimizes the align-
ment of the i-th row with the j-th column. Our similarity
matrix represents all GICS labels as rows and all ICB labels
as columns and the value if the i-th row and j-th column
represents their similarity simij = (labeli, labelj).

4.4. Cross-Lingual Experiment
Cross-lingual approaches to ontology labels range from
benefiting from an alignment across languages to comple-
ment elided content in labels (e.g. Gromann and Declerck
(2014)) to cross-lingual ontology matching (e.g. Spohr et
al. (2011)). Even though our paper focuses on a multilin-
gual alignment process, we conducted a small experiment
utilizing cross-lingual information. In order to benefit from
the parallel structure across languages, we aggregate each
similarity value and related ICB identifier from each lan-
guage for a given GICS element. In other words, for each
GICS element we obtain four ICB ids and four similarity
values. We first count the frequency of occurrence of each
ICB id in the list of four ids. If the id occurs more than
once, it is selected as the chosen alignment target for this
specific GICS element. If no id occurs more than once,
we select that ICB id with the highest associated similarity
value. For instance, the element GICS 15102010 with label
“Construction Materials” is mapped to the following ICB
elements8: “Heavy Construction” (ICB 2357) in English,
“Household Goods & Home Construction” (ICB 3720) in
Italian, “Building Materials & Fixtures” (ICB 2353) in

8For a better understanding of the example we only provide
the English labels of the ontology elements here.

German and Spanish. The assigned similarity values are
[2357 : 0.812, 3720 : 0.797, 2353 : 0.884, 2353 : 0.924]
where the last two values correspond to first the German
and then the Spanish cosine value. In this example our
simple algorithm selects ICB 2353 because it occurs twice,
which is a correct mapping that corresponds to the man-
ual alignment. If it had occurred only once, our basic ap-
proach would have still selected ICB 2353 since it also has
the highest similarity value with 0.924 in Spanish.

4.5. Evaluation
In order to evaluate our method, two experts created a man-
ual alignment of GICS and ICB elements based on their
labels and natural language descriptions in English. This
monolingual mapping is sufficient, since the other language
versions of each standard are translated from English and
remain structurally equivalent to the source language. We
calculate the inter-annotator agreement to be 0.75. Align-
ments that reached no agreement were evaluated by a third
expert. The automatically created alignment is compared
to the manually created alignment, which is how we ob-
tain the metrics presented in Section 5. We only consider
elements that can directly be mapped across the two on-
tologies - elements that require a one-to-many mapping are
ignored for this first experiment. For instance, “Marine”
(GICS 20303010) in GICS is defined as any maritime trans-
portation of goods and passengers excluding cruise ships,
while ICB differentiates between “Marine Transportation”
(ICB 2773) for commercial markets, such as container ship-
ping, and “Travel & Tourism” (ICB 5759) providing pas-
senger transportation including ferry companies. Thus, a
direct mapping of the GICS concept to one ICB element
could not be established in this particular example. Our fi-
nal dataset contains 155 labels from each ontology in each
language, that is, a total of 620 labels per ontology across
all languages combined.

5. Results
To quantify our comparison, we first evaluate the coverage
of our vocabulary by each embedding library. We continue
to quantify the performance of all embedding libraries by F-
score on the described dataset and in comparison to a string-
matching baseline.

5.1. OOV scores
To provide a better explanation of the F-measure results,
Table 1 provides statistics on Out Of Vocabulary (OOV)
scores for each set of multilingual embeddings across both
ontologies, ICB and GICS, without duplicates. To increase
coverage, each word of a label not directly available in the
library was queried again with different case settings, i.e.,
lower, upper, and title case. For German, the compound
decomposition described in Section 4.1. was conducted.
Reasons for an inability to find specific words from a la-
bel in the embeddings library varied strongly with each li-
brary. Polyglot had difficulty finding abbreviations, such
as “REITs” (Real Estate Investment Trusts), and unusual
compounds, such as “Multi-Utilities”. FastText only strug-
gled with unusual compounds in all languages but Italian,
where nouns with articles constituted the biggest problem,
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Polyglot FastText word2vec
English 21 5 41
Italian 22 17 43
German* 70 (198) 38 (99) 125 (218)
Spanish 21 4 43

*value in brackets is before decomposition

Table 1: Word Coverage Across Resources

e.g. “all’Ingrosso”. Articles where no problem for Poly-
glot and FastText handled abbreviations without any diffi-
culty. So the type of further preprocessing that would be
required to further increase coverage differs with the em-
bedding library. The extraordinarily high number of OOVs
in German can be attributed to high frequent ellipses in the
vocabulary, such as “Abfall-” (waste) in the label “ Abfall-
und Entsorgungsdienstleister” (ICB 2799 “Waste and Dis-
posal Services”), and complicated compounds, such as
“Arzneimitteleinzelhändler” (ICB 5333 “Drug Retailer”).
Results for word2vec could be improved for Spanish and
Italian by lemmatizing, however, for German the major
problem are the compounds that are not considered in the li-
brary. Using the proposed decomposition method, we could
improve on this situation as shown in Table 1 where the
values in brackets represent the OOV words prior to de-
composing.

5.2. Alignment Statistics
A generated similarity matrix calculated on the basis of
the individual word embeddings is submitted to the sim-
ple Munkres algorithm to compare the obtained alignment
to the manual gold standard alignment. Table 2 quanti-
fies the comparison across embedding repositories and to
a Jaccard baseline. The English embeddings of Polyglot
seem to largely outperform all other tested languages of the
same repository. The same could be observed for the other
repositories in Table 2. All embeddings were trained on
the Wikipedia corpus but different methods were utilized in
obtaining the embeddings. It can be seen from Table 2 that
FastText and its encoded subword information outperforms
the other embedding representations. However, the sim-
ple string-matching Jaccard similarity baseline outperforms
Polyglot in all languages and outperforms the word2vec
pretrained embeddings in German.

Jaccard Polyglot FastText word2vec
English 0.692 0.652 0.830 0.760 (0.826*)
Italian 0.488 0.385 0.686 0.517
German 0.473 0.434 0.652 0.418
Spanish 0.495 0.360 0.745 0.582
All 0.678 0.675 0.812 0.750

* Using embeddings trained on the Google News Corpus.

Table 2: Embedding Comparison by F-Score on Ontology
Alignment Task

The first four rows of Table 2 quantify the results of all
four languages, while row five describes a cross-lingual

optimization experiment. Results of this first experiment
quantified in Table 3 show that FastText has the highest cor-
respondence across all languages, since it has the highest
number of recurring ICB ids across languages. Incidentally
FastText also has the highest F-measure in all languages,
while Polyglot, the repository with the lowest F-measure
of all methods also has the lowest correspondence of ICB
target ids across languages. This simple cross-lingual com-
parison will be replaced by a more principled cross-lingual
approach in future work.

Jaccard Polyglot FastText word2vec
most common 89 71 138 107
high sim 66 84 17 47

Table 3: Cross-Lingual Experiment

Interestingly this cross-lingual experiment leads to quite
different F-scores as can be seen from the last row of Ta-
ble 2. In general, the composition across languages has
a positive impact on the F-score in Italian, German, and
Spanish in all cases. However, Jaccard, FastText, and
word2vec provide better results in the monolingual English
setting, while the composition of results across languages
outperforms the English results for Polyglot.

6. Discussion
When using pretrained embeddings, the handling of OOV
is an important issue. Decomposition and preprocessing for
the German data proposed in this paper could still be re-
fined to include for instance ellipses resolution (Gromann
and Declerck, 2014). While FastText provides a compar-
atively high coverage of vocabulary across all languages,
the other libraries could benefit from some more refined
preprocessing of the GICS and ICB labels. Nevertheless,
the performance of the pretrained embeddings on domain-
specific multi-word labels of lightweight ontologies is very
promising, in particular FastText.
FastText outperforms all the other three methods in all lan-
guages. We attribute the success of this embedding li-
brary to two main factors: i) the library has fewer OOV
words than the other embedding repositories, ii) subword
information is considered when training the embeddings
and each embedding is the aggregated result of its char-
acter n-grams. It seems as if this more morphologically
oriented type of embedding in FastText is more adequate
for domain-specific multi-word expressions as found in on-
tologies. FastText is also the one repository with most cor-
responding results across all languages, as our small cross-
lingual comparison shows.
One of the main assumptions for Polyglot’s performance
below the Jaccard baseline is the high degree of OOV words
in the library in all languages. However, word2vec has a
higher OOV rate and provides better results than Polyglot.
Thus, it can be followed that the settings and parameters of
the training method of the embeddings make a difference
since all three repositories are trained on the Wikipedia cor-
pus and applied to the same task in this paper but differ in
resulting F-score. Those parameters include the chosen di-
mensionality of the embedding, which in case of Polyglot
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is 64 as opposed to 300 in the other libraries. The factor
of dimensionality has been shown to have a substantial im-
pact on the accuracy that can be obtained with the vector
representations (Mikolov et al., 2013). Of course, also the
corpus chosen for training has a large impact as can be seen
by the comparison to the word2vec embeddings trained on
the Google News Corpus.
Similarity in the vector space is not necessarily semantic
similarity, but might be any type of relatedness. Thus, la-
bels such as “Renewable Electricity” and “Conventional
Electricity” might obtain a very high cosine value as shown
in our vector composition example even though they are not
synonymous and in fact almost are opposites. We would
expect this problem to be more prominent in this highly
domain-specific scenario, however, as can be seen from the
good results obtained by FastText, this difference in simi-
larity relation does not seem to be detrimental to the overall
application of word embeddings to a label-centric ontology
alignment task.
In our results, English embeddings obtain better results than
embeddings used in other languages to align ontology la-
bels. Both ontologies were originally produced by English-
speaking companies in English and then translated to the
other languages. It has been shown that non-native lan-
guage and translations are closer to each other than they are
to the native language (Rabinovich et al., 2016). Thus, this
difference in accuracy cannot necessarily be attributed to
the embeddings but more likely to the input labels. For this
purpose it would be interesting to repeat the experiment on
a multilingual and structurally parallel standard dataset.
We believe that this method can also be applied to other
interesting scenarios. The similarity between the labels
also hints at the similarity between the entire resources.
Thus, this method could potentially be used to find sim-
ilar resources in a repository of ontologies, which is off-
set in comparison to simple string matching by embeddings
and multilinguality. It can also be used to do a lightweight
checking of structural problems in ontologies. For instance,
it can be considered bad practice to assign identical or al-
most identical labels to different concepts. Identical surface
forms and equivalences can be detected using the proposed
method.

7. Related Approaches
Two main lines of research are related to the proposed com-
parison of word embeddings on the task of multilingual on-
tology alignment: (i) comparisons of word embeddings in
general, (ii) use of word embeddings on ontology alignment
tasks. Most embedding comparisons focus on high frequent
English words for various tasks (Baroni et al., 2014; Riedl
and Biemann, 2017) or if multilingual, evaluate specific
embeddings (Camacho-Collados et al., 2016). However,
approaches for multilingual, domain-specific multi-word
expressions are hard to find for embedding comparisons.
The use of word embeddings in ontology-related tasks is
a rather recent development. Zhang et al. (Zhang et al.,
2014) utilize word embeddings they learn from Wikipedia
texts to match the OAEI 2013 benchmark ontologies and
three real-world ontologies including Freebase in English.
In their embedding comparison, the ones trained solely on

Wikipedia performed best but in an overall evaluation a hy-
brid embedding and edit-distance method outperformed the
others.

8. Conclusion
In this initial experiment we evaluate the use of pretrained
word embeddings in four languages for the task of real-
world domain-specific ontology alignment. We propose
a method that is able to handle missing embeddings for
individual words applied to a non-standard dataset. One
of the reasons for this decision is our interest in domain-
specific labels and multilingual, aligned contents. Further-
more, we were interested in a real-world scenario that also
has a practical value for industry. Pretrained embedding
libraries achieve promising results, particularly FastText
with a greater consideration for morphological structures
seems very apt for the task of string-based ontology align-
ment. Future work will consider the integration of taxo-
nomic and axiomatic knowledge from the ontologies with
the embeddings to improve the alignment results as well as
the utilization of existing knowledge-rich embeddings, e.g.
ones that integrate ConceptNet structures into their repre-
sentation. Furthermore, we are interested in the further uti-
lization of cross-lingual information in the alignment pro-
cess, such as treating OOV words in one language by using
word embeddings available in another language.
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