
Indra: A Word Embedding and Semantic Relatedness Server

Juliano Efson Sales†, Leonardo Souza†, Siamak Barzegar§,
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Abstract
In recent years word embedding/distributional semantic models evolved to become a fundamental component in many natural language
processing (NLP) architectures due to their ability of capturing and quantifying semantic associations at scale. Word embedding models
can be used to satisfy recurrent tasks in NLP such as lexical and semantic generalisation in machine learning tasks, finding similar or
related words and computing semantic relatedness of terms. However, building and consuming specific word embedding models require
the setting of a large set of configurations, such as corpus-dependant parameters, distance measures as well as compositional models.
Despite their increasing relevance as a component in NLP architectures, existing frameworks provide limited options in their ability
to systematically build, parametrise, compare and evaluate different models. To answer this demand, this paper describes INDRA, a
multi-lingual word embedding/distributional semantics framework which supports the creation, use and evaluation of word embedding
models. In addition to the tool, INDRA also shares more than 65 pre-computed models in 14 languages.
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1. Introduction
Word embedding is a popular semantic model which rep-
resents words and sentences in computational linguistics
systems and machine learning models. In recent years a
large set of algorithms for both generating and consum-
ing word embedding models (WEMs) have been proposed,
which includes corpus pre-processing strategies, WEM al-
gorithms or weighting schemes, vector compositions and
distance measures (Turney and Pantel, 2010; Lapesa and
Evert, 2014; Mitchell and Lapata, 2010). Determining the
optimal set of strategies for a given problem demands the
support of a tool that facilitates the exploration of the con-
figuration space of parameters.
Furthermore, given the applicability and maturity achieved
by these systems and models, they have been promoted
from academic prototypes to industry-level applications
(Loebbecke and Picot, 2015; Hengstler et al., 2016; Moro et
al., 2015). In this new production scenario, a candidate tool
should be able to scale to large number of requests and to
the construction of models from large corpora, making use
of parallel execution and traceability. From the functional
point of view, integrated corpus pre-processing, generation
of predictive-based and count-based models and unified ac-
cess as a service are key features.
To support this demand, this paper describes INDRA,
a word embedding/distributional semantics framework
which supports the creation, use and evaluation of word
embedding models. INDRA provides a software infrastruc-
ture to facilitate the experimentation and customisation of
multilingual WEMs, allowing end-users and applications to
consume and operate over multiple word embedding spaces
as a service or library.
INDRA is available from two repositories (github.com/

Lambda-3/Indra and github.com/Lambda-3/
IndraIndexer) both licensed as open-source soft-
ware. Additionally, INDRA also provides a Python client
(pyindra) available via pip and from github.com/
Lambda-3/pyindra.

2. Related Work
S-SPACE is a library to support the construction of count-
based distributional methods unifying different approaches
in a common JAVA API (Jurgens and Stevens, 2010).
DEEPLEARNING4J1, on the other hand, is a library which
concentrates predictive-based models. DEEPLEARNING4J
is also written in JAVA and its API contains methods to ac-
cess word vectors and to find nearest neighbours (kNN).
GENSIM is one of the most popular word-embedding tool-
kits, mainly credited to its efficient implementation of near-
est neighbours function (Řehůřek and Sojka, 2010). GEN-
SIM is written in PYTHON and apart from its kNN function,
it supports the generation of predictive-based models and
methods to access word vectors.
Following a different motivation, DISSECT (DIStribu-
tional SEmantics Composition Tookit) focuses on vector
compositions (Dinu et al., 2013). DISSECT is a PYTHON
library containing methods to generate vector representa-
tion of sentences from the vector of its constituting words.
DISSECT partially supports the generation of count-based
models and brings an integrated baseline framework for
evaluation purposes.
JOBIMTEXT is a semantic similarity tool that implements
its own algorithm named JoBim (Biemann et al., 2013).
The tool supports the construction of the JoBim model and

1https://deeplearning4j.org/
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Features INDRA GenSim DeepLearning4J S-Space JoBim DISSECT
Word Embeddings

Simple vectors
Composed vectors
Translation-based vectors
Word embeddings as a service

Semantic Relatedness
Word pair relatedness
Top-k nearest neighbors
Score-based nearest neighbors
Translation-based relatedness
Composed-vector relatedness
Multiple score functions
Relatedness as a service

Model Generation and Other Functions
Integrated corpus pre-processing
Support to model generation P/C P P C JoBim C*
Support to sparse vector models
Bult-in word desambiguation
English pre-computed models
Multi-lingual pre-computed models
Multi-model querying

Table 1: List of functionalities and framework coverage. In the line Support to model generation, P stands for predictive-
based models and C for count-based models. *DISSECT partially supports the generation of count-based models.

also calculates semantic relatedness of pairs of terms, finds
nearest neighbours and offers a native web server.
EasyESA (Carvalho et al., 2014) and DInfra (Barzegar et
al., 2015) are also two initiatives to deliver distributional
semantics capabilities under a more specific set of distribu-
tional semantic models.
From the evaluation point of view, Barzegar et al. (2018c)
defined a multi-lingual dataset to measure semantic relat-
edness in eleven languages.
Table 1 summarises a comparative analysis of the main
frameworks and their features. Apart from INDRA, none
of the listed frameworks gives support to corpora pre-
processing (which will be detailed in Section 3.1.2.). Other
limitations addressed by Indra are (i) the generation of both
count-based and predictive-based models, (ii) the support
for vector composition and (iii) the support for translation-
based models.
Finally those libraries offer a limited set of pre-computed
models, which makes the process of exploration time-
consuming and computationally costly. INDRA aims at cov-
ering these gaps by providing an end-to-end infrastructure
to build, consume and evaluate multi-lingual word embed-
ding models.

3. Implementation Design
The INDRA PROJECT is divided into two major modules:
INDRAINDEXER and INDRA. INDRAINDEXER is respon-
sible for the generation of the models, whereas INDRA im-
plements the consumption methods.
INDRA is designed to be a stand-alone library and also a
web service. Figure 1 depicts the main components of its
architecture. INDRAINDEXER supports the generation of

WEMs directly from text files (Wikipedia-dump or plain-
text formats), passing through the corpus pre-processing
and multiword expression identification, to the model gen-
eration itself. INDRA dynamically builds the pipeline based
on the metadata information produced during the model
generation. This strategy guarantees that the same set of
pre-processing operations are consistently applied to the in-
put query. Additionally, the translation-based word embed-
ding (Freitas et al., 2016; Barzegar et al., 2018b) can be
conveniently activated in the pipeline as described in Sec-
tion 4..
Different languages, domains and application scenarios
require different parametrisations of the underlying em-
bedding models. Together with the availability of pre-
generated models, INDRA’s system architecture favours the
exploration of a large grid of parameters. INDRA currently
shares more than 65 pre-computed models which varies in
languages, model algorithms and corpora (general-purpose
and domain-specific). The list of available models are in
the Github project’s Wiki.

3.1. Functionalities
Table 1 shows the functionalities implemented in INDRA,
among which the following set deserves our attention: text
pre-processing, model generation, semantic relatedness,
nearest neighbours, vector server, semantic relatedness,
vector compositions and the support to translation-based
models.

3.1.1. Text Pre-processing
One important step in the construction of word embeddings
models is pre-processing the texts. Defining the tokenisa-
tion strategy, which depends on the language, whether or
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Figure 1: High-level architecture of the Indra framework.

not words must be lower-cased or stemmed is part of the
pre-processing step. Furthermore, the pre-process strategy
should be stated consistently during both construction and
consumption phases as exemplified further.
The corpus pre-processor is responsible for defining the to-
kenisation strategy and the tokens’ subsequent transforma-
tions. It defines, for example, if United States of
America corresponds to a unique or to multiple tokens.
Stem and lowercase are two other popular transformations
also supported by the pre-processor.
INDRA uses the Lucene’s StandardTokenizer, which
implements the Unicode Text Segmentation algorithm
based on the Word Break rules defined in the Unicode Stan-
dard Annex #29 (Davis and Iancu, 2017). Additionally, IN-
DRA allows users to specify a customised list of multi-word
expressions which will be considered a unique token, inde-
pendently of the tokeniser rules. This mechanism allows,
for example, modelling a unique vector for named entities
such as Nelson Mandela and Republic of Austria.
As in the context of WEM numbers are usually disregarded
tokens, the pre-processing step allows replacing them by
a default placeholder (¡NUMBER¿). INDRA pre-processor
also allows specifying stopwords, whose occurrences are
removed from the text. Table 2 shows the full list of opera-
tions supported by the pre-processor.
The pre-processor is defined as a package that is attached to
both INDRAINDEXER and INDRA in order to guarantee that
the consuming functions apply the same set of operations in
retrieval time.

3.1.2. Model Generation
INDRAINDEXER is the module responsible for the genera-
tion of word embedding models. It defines a unified inter-
face to generate predictive-based models (e.g. Skip-gram
(Mikolov et al., 2013) and Global Vectors (Pennington et
al., 2014)) and count-based models (e.g. Latent Semantic
Analysis (Dumais et al., 1988) and Explicit Semantic Anal-
ysis (Gabrilovich and Markovitch, 2007)) whose imple-

mentation comes from the libraries DeepLearning4J2 and
S-Space (Jurgens and Stevens, 2010) respectively. In ad-
dition to creating a unified interface for WEM algorithms,
INDRAINDEXER integrates the corpus pre-processor pack-
age.
INDRAINDEXER receives as input the pre-processed corpus
and outputs the vectors in binary files in a format compat-
ible with GenSim (Řehůřek and Sojka, 2010). In addition
to the vector file, INDRAINDEXER also generates a meta-
data file containing all the parameters from both the pre-
processing and generation steps. Figure 3 shows an exam-
ple of a metadata file.

{
{
"windowSize" : 5,
"minWordFrequency" : 5,
"corpusMetadata" : {

"corpusName" : "wiki-2014",
"stopWords" : ["been", "don't", ...],
"replaceNumbers" : false,
"applyStemmer" : 3,
"removeAccents" : true,
"maxTokenLength" : 100,
"minTokenLength" : 3,
"description" : null,
"language" : "en",
"encoding" : "UTF-8",
"applyLowercase" : true

},
"vocabSize" : 1181258,
"sparse" :false,
"model" : "w2v",
"dimensions" : 300

}
}

Figure 2: Example of metadata file generated by INDRAIN-
DEXER which describes how the user configured both the
pre-processor and the WEM generator.

During the consumption phase, INDRA applies the same set
of options to guarantee consistence. For instance, let’s as-
sume a given model was generated by applying the stem-
mer and lowercase to the tokens. It means that the term
University is represented in the model as univers.
When it is required to retrieve the vector representation of
University, INDRA guarantees this consistence by exe-
cuting the pre-processing steps in the query at runtime. This
method simplifies the execution of experiments that con-
sumes models using different set of pre-processing trans-
formations.

3.1.3. Nearest Neighbours
Given a term and an integer k, the Nearest Neighbours func-
tion lists the set of its k closest terms. This method is ap-
plied, for instance, in topic modelling (Řehůřek and Sojka,
2010) and vocabulary expansion (Atzori et al., 2018). IN-
DRA implements this function using the SPOTIFY ANNOY

2https://deeplearning4j.org/
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Parameter Description/Options
input format Wikipedia-dump format or plain texts from one or multiple files.
language 14 supported languages.
set of stopwords a set of tokens to be removed.
set of multi-word expressions set of sequences of tokens that should be considered a unique token.
apply lowercase lowercase the tokens.
apply stemmer applies the Poter Stemmer in the tokens.
remove accents remove the accents of words.
replace numbers replaces numbers for the place holder <NUMBER>.
min set a minimum acceptable token size.
max set a maximum acceptable token size.

Table 2: Parameters supported by the INDRA’s pre-processing package.

library 3, since a preliminary study suggests ANNOY’s per-
formance is an order of magnitude better performing than
GENSIM’s (Řehůřek, 2014). In addition to the identifica-
tion of term’s neighbours, the function also accepts a vector
as input.
Another related function present in INDRA is the selection
based on thresholds, in which INDRA gets a query term and
a set of target terms as inputs, and returns those target terms
whose relatedness score is greater (or lower) than a given
threshold. The threshold can be determined both statically
or dynamically(Freitas et al., 2012).

3.1.4. Vector Server
As a primary use, INDRA acts as a central repository of
WEMs, serving vectors for terms in different languages and
models. The set of pre-processed models allows the user to
experiment different WEMs configurations as a one-stop-
shop fashion. INDRA can act as a central server in an en-
terprise context, or as a local library in more constrained
environments.

3.1.5. Semantic Relatedness
Natural language understanding systems use semantic re-
latedness in fine-grained tasks such as word disambiguation
(Freitas et al., 2013) or more coarse-grained such as para-
phrase detection (Sales et al., 2016; Silva et al., 2018), se-
mantic parsing (Sales et al., 2018) and question answering
(Freitas, 2015). INDRA implements two semantic related-
ness methods. The first is the pair-wise semantic related-
ness in which the user provides pairs of terms to calculate
their semantic relatedness. The other option is integrated to
the nearest neighbours function which returns the related-
ness of the k closest terms.
Additionally Indra can support the application of various
distance or correlation measures (Lapesa and Evert, 2014).
Currently INDRA supports more than ten different distance
and correlation functions, including Cosine, Jaccard, Eu-
clidean and Spearman Correlation.

3.1.6. Vector Compositions
In simple terms, vector composition aims at generating
a vector representation of phrases and sentences from
the combination of individual vectors of its compound
terms(Kartsaklis, 2014). For example, the vector represen-
tation of modern Democratic Party is generated by

3https://github.com/spotify/annoy

the composition of the corresponding vectors of the three
compounding terms modern, Democratic and Party.
Currently, INDRA implements three composition methods
(Sum, Normalised Sum and Average) and supports the ex-
tension of user-defined functions as described in Section
3.2..
Vector composition is automatically associated to the se-
mantic relatedness function or the retrieval of vectors.
Whenever a expression comprehending more than one to-
ken is submitted, INDRA composes their corresponding
vectors before executing the required function.

3.1.7. Support to Translation-based Models
Some languages do not have large text corpora publicly
available. As word embedding models are sensitive to the
corpus size, (Freitas et al., 2016; Barzegar et al., 2018a)
propose the use of translation-based models. In simple
words, the translation-based strategy translates the original
query terms to a second language for which a high qual-
ity WEM is available. INDRA gives native support to this
operation as described in Section 4..

3.2. Extensibility
INDRA implements a plugin-based extensible mechanism
built on the top of the JAVA SERVICE API which allows
including new compositional methods, score functions and
threshold functions without recompiling Indra’s code. To
do so, it is required to pack the new functions’ implemen-
tations in a JAR file and place it in the INDRA’s classpath4.

4. Use Examples
INDRA’s service exposes the functions as POST methods,
whose data are passed as a JSON payload. For simplicity,
we suppress the request headers to concentrate our attention
in the payload itself.
Every request has at least three mandatory fields: language,
model and corpus. The first naturally specifies the request’s
language. The second and the third name respectively the
algorithm and the corpus from which the word embedding
model were generated. This trio is the model’s unique iden-
tifier.

4For more information about The Java Archive (JAR) and
CLASSPATH, please refer to official Java documentation.
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Word Embedding: Figure 3 shows a payload to the end-
point /vectors which returns the respective word em-
bedding vectors of the terms. In the case a term is com-
posed of more than one token, termComposition is ap-
plied.

{
"corpus": "googlenews300neg",
"model": "W2V",
"language": "EN",
"terms": ["love", "best of you"],
"termComposition" : "AVERAGE"

}

Figure 3: Payload to request the word embedding of the
term love and the expression best of you.

Pair Relatedness: The endpoint /relatedness re-
turns the semantic relatedness of the pairs. The related-
ness operation is defined by the field scoreFunction as
shown in Figure 4. In the case that termComposition
is not defined, the default function is used.

{
"corpus": "wiki-2014",
"model": "ESA",
"language": "PT",
"scoreFunction": "COSINE",
"pairs": [{

"t1": "economia",
"t2": "Rio de Janeiro"
},
{
"t1": "economia",
"t2": "soja"

}]
}

Figure 4: Payload to request the cosine relatedness of two
pairs of terms in Portuguese.

One-to-many Relatedness: The endpoint
/relatedness/otm returns the semantic related-
ness of one term against a set of many terms. Similarly to
the previous operation, the relatedness operation is defined
by the field scoreFunction as shown in Figure 5.

Nearest Neighbours: The nearest neighbours function is
exposed in two methods. The endpoint /neighbors/
relatedness returns the relatedness score between the
target terms and theirs top-k neighbours, according to the
payload depicted in Figure 6.
When submitting the same payload to the endpoint
/neighbors/vectors, the service returns the list of
the neighbours and their respective vectors.

Translated-based Word Embbedings: The requests
support the translated-based function, in which the vec-
tors is extracted from the corresponding English cor-
pus after translating the terms from the original query.
The translated-based function is activated by appending

{
"corpus": "wiki-2014",
"model": "ESA",
"language": "EN",
"scoreFunction": "JACCARD",
"one": "Germany",
"many" : ["France", "China", "Brazil"]

}

Figure 5: Payload to request the Jaccard relatedness of the
implicit pairs [Germany, France], [Germany, China] and
[Germany, Brazil].

{
"corpus": "wiki-2014",
"model": "GLOVE",
"language": "SV",
"topk": 10,
"terms": ["ekonomi", "flicka", "frihet"]

}

Figure 6: Payload to request the 10 most related terms in-
dividually to ekonomi, flicka and frihet. This call returns
three set of 10 terms, each one corresponding to one of the
terms.

"mt"=true in the payload. INDRA offers seven pre-
computed light-weight translation models.
For a complete description of the methods and parameters,
please refer to the project documentation.

5. Python Client
Our project also offers a client to access the service from
Python application. The pyindra package is available in
the pip repository.
The client source code is at https://github.com/
Lambda-3/pyindra.

6. Summary
Many applications of word embedding models require the
customisation of the models in the direction of domain-
specific vocabularies, specific languages or specific seman-
tic approximation behaviour (e.g. paradigmatic vs syntag-
matic behaviour), distance measures as well as composi-
tional models. This work introduces the INDRA framework
which manages the complexity of experimenting and us-
ing word embedding models in exploratory scenarios and
production environments. INDRA also shares more than 65
pre-computed models and is available as an open-source
software.
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