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Abstract 
With the growth of Internet usage, a massive amount of textual data is generated on social media and the Web. As the text on the Web 
are generated by different authors with various types of writing styles and different encodings, a preprocessing step is required before 
applying any NLP task. The goal of preprocessing is to convert text into a standard format that makes it easy to extract information 
from documents and sentences. Moreover, the problem is more acute when we deal with Arabic script-based languages, in which there 
are some different kinds of encoding schemes, different kinds of writing styles and the spaces between or within the words. 
This paper introduces a preprocessing toolkit named as Parsivar, which is a comprehensive set of tools for Persian text preprocessing 
tasks. This toolkit performs various kinds of activities comprised of normalization, space correction, tokenization, stemming, parts of 
speech tagging and shallow parsing. To evaluate the performance of the proposed toolkit, both intrinsic and extrinsic approaches for 
evaluation have been applied. A Persian plagiarism detection system has been exploited as a downstream task for extrinsic evaluation 
of the proposed toolkit. The results have revealed that our toolkit outperforms the available Persian preprocessing toolkits by about 8 
percent in terms of F1. 
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1. Introduction 

Preprocessing is one of the essential steps in Natural 
Language Processing (NLP) tasks that convert 
unstructured texts into a standard text format suitable for 
NLP applications. This makes it easy to extract 
knowledge from documents and sentences. Despite of its 
importance, few efforts have been accomplished on 
developing preprocessing tools in low-resource languages. 
Development of preprocessing tools is more challenging 
in Arabic script-based languages like Persian, in which 
there are some difficulties including the lack of enough 
linguistic resources, various character encodings, spaces 
between or within multi-token words and a wide variety 
of suffixes.  
In this paper, we introduce Parsivar, a Persian 
preprocessing toolkit that includes a set of tools necessary 
for different NLP tasks. It normalizes Persian texts to a 
standard format, corrects the spacing between or within 
the words, tokenizes words and sentences, extracts word 
stems, tags the words with their Part of Speech (PoS) and 
finally performs shallow parsing on sentences. For space 
correction, it also proposes two different kinds of 
solutions. The first solution is based on some pre-defined 
rules and the second one is based on learning methods. 
The evaluation results have revealed that the proposed 
toolkit outperforms the other existing preprocessing 
toolkits in Persian. 
The rest of the paper is organized as follows: Section 2 
discusses the previous works in the field of Persian text 
preprocessing. In Section 3 we describe the algorithms for 
implementing each of the modules in Parsivar toolkit in 
detail. In section 4, we present the experimental results for 
evaluating and comparing existing Persian preprocessing 
toolkits with respect to our approach. For the purpose of 
benchmarking the algorithms, we evaluate them on the 
performance of a Persian plagiarism detection application 
using extrinsic evaluation. Finally, in the last section, 

conclusion and recommendations for future works will be 
described. 

2. Related work 

Due to the importance of preprocessing in NLP 
applications, some attempts have been done to develop 
integrated Persian preprocessing packages in recent years. 
In 2010, Shamsfard et al. (Shamsfard, Sadat Jafari and 
Ilbeygi, 2010) proposed STeP1, which includes a 
combination of tools such as tokenization, morphological 
analysis and a POS tagging. The ParsiPardaz toolkit was 
proposed by Sarabi et al. (Sarabi, Mahyar and Farhoodi, 
2013) which provides the STeP1 capabilities along with 
some other tasks like normalization and spell checking. 
One of the issues related to the mentioned toolkits is that 
they are not publicly available as open source 
applications. Sobhe (Hazm, 2014) introduced Hazm, an 
open source preprocessing toolkit which includes some 
major tasks such as normalization, tokenization and POS 
tagging. Although Hazm outperforms STeP1 and 
ParsiPardaz toolkits from the run time point of view, its 
output results are not as accurate as them. 
The proposed preprocessing toolkit in this paper provides 
different kinds of tasks including normalization, 
tokenization, stemming, POS-tagging and shallow 
parsing. Moreover, Parsivar is publicly available on the 
web for research purposes1. We have compared the 
performance of our toolkit with ParsiPardaz and Hazm in 
an extrinsic evaluation platform using a Persian 
plagiarism detection algorithm. The results showed that 
our toolkit has a higher performance when compared with 
the other toolkits while its runtime is near to Hazm toolkit. 
 

                                                           
1 https://github.com/ICTRC/Parsivar 
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3. Our Approach 

Parsivar is an integrated package written in python which 

performs different kinds of preprocessing tasks in Persian. 

It should be noted that this toolkit allows for an 

adjustment between speed and accuracy depends on the 

user needs. Each task is described in detail in the 

following subsections. 

3.1 Normalization and Tokenization 

One of the main problems in Persian text processing is the 
existence of different character encodings in text 
documents. For example, the word "آب" (water), might 
have different encodings in different documents that 
causes the text processing algorithms to consider them as 
different words. This problem is more obscurant when we 
deal with various character encodings in punctuations. To 
solve this problem, for each character we extracted all 
different encodings from a corpus of text documents with 
more than 2 million documents which gathered from 
Persian weblogs.  

Another important task in this step is to find word 
boundaries in documents. In Persian language, multi-
token words can be written in three formats; completely 
separated by a space delimiter, separated by half-space2, 
or be attached to each other. Therefore, determining word 
and phrase boundaries is a complicated task in Persian. 
The challenge in Persian is that the space cannot be 
considered as the only delimiter in all cases.  

There are lots of multi-token words in Persian in which, 
parts of the word are separated by space. For example, in 
the sentence ".من یک برنامه نویس هستم" (I am programmer.), 
the word "برنامه نویس" (programmer) might be written in 
two ways of نویس""برنامه  and "برنامه نویس". Although the 
first form of writing is correct and the second one is 
incorrect, it’s usual to write this word in the second form. 
In this example, considering space as delimiter causes 
separation of the word "برنامه نویس" into two tokens "برنامه" 
and "نویس", while it should be taken as one token 

نویس""برنامه . Actually, the challenge is resulted from 
incorrect spacing in the words. We have tried to solve this 
problem in two different ways. First, we defined some 
rules to correct spacing within words. Second, we have 
tried to train a model that learns how to correct spacing 
within words.  

After the space correction, we tokenize the documents 
based on spaces and punctuations. In the following 
subsection, we describe our solutions for space correction 
in more details. 

3.1.1 Rule based space correction 

To correct the spaces within words, some certain rules 
have been defined in the first step using regular 
expressions. Using these rules, we are able to correct 
space in many cases such as "می روم" (I’m going),  زمین"
 There are still .(Analyzer) "تحلیل گر" and (geologist) شناس"
some words that do not match to the rules. These words 
usually consist of two or three parts which we can’t 
extract a general rule for them such as "گفت و گو" 

(Conversation). To overcome this problem, we construct a 

                                                           
2 A Non-Joint Zero Width (NJZW) letter 

dictionary containing such words and check their 
existence in the sentences. 

3.1.2 Space correction based on learning 

To correct the spaces within multi-token words based on 
learning methods, a model was trained to find words with 
multiple parts separated by spaces. As a result, we can 
take all parts of a word as one token. 

To train the model, we build a training set using 90% of 
Bijankhan corpus (Bijankhan et al. 2011). In this corpus, 
multi token words are placed in one line. We tagged the 
multi token words using IOB tagging format (Ramshaw 
and Marcus, 1995) such that the first part is tagged with 
label “B” and the other parts are tagged with the label “I”. 
Moreover, the other words are tagged with label “O”. 
Then for each word in the sentence, we take the label of 
previous word, the previous word itself and the next word 
as features. We trained a Naïve Bayes model to classify 
each part of the word into classes “B” and “I”. At last, we 
used these labels to find word boundaries. To evaluate the 
performance of this space correction model, we validated 
the model on the remaining 10% of Bijankhan corpus. 
Our model got 96.5% of F1 score in space correction on 
the validation set. 

3.2 Stemmer 

Stemming plays an important role in many NLP 
applications such as information retrieval and text mining. 
The final goal in stemming is to reduce words to their 
stem so that for different word forms in a text file, there 
would be only one stem (Willett, 2006). It is not necessary 
for the reduced form of the word to be exactly the 
morphological root. Instead, any other form that improves 
the performance is acceptable (Krovetz, 1993) There are 
many stemming algorithms proposed in English. Lovins 
stemmer (Lovins, 1968) and Porter stemmer (Porter, 
1980) are two common stemmers in English. They 
remove suffixes and prefixes from English words based 
on some predefined linguistic rules. One of the problems 
with rule-based stemmers is that they cannot be applied to 
other languages. Some algorithms are also proposed for 
stemming in Persian (Sharifloo and Shamsfard, 2008; 
Taghva, Beckley and Sadeh, 2005). In this section, we 
propose and implement an algorithm for stemming in 
Persian language. 

Persian words usually derive from other words based on 
some morphological rules. For example, the word 
 to (gan) ”گان“ is made up of adding suffix (stars) ”ستارگان“
the noun “ستاره” (star). We have used such rules to find 
word stems. In this way, we assumed two set of rules 
which consider words as verb and non-verb. In the 
following subsection we describe each of them in detail. 

3.2.1 Stemming the Verbs 

There are two main roots for present tense and past tense 
in Persian which can be used to construct various 
derivations of a verb. For this reason, we collected a list of 
verb roots in past tense and present tense forms. Then all 
of the rules were applied to the input verb in order to find 
the rule to be matched in the best way. Then we search for 
the resulted roots in the verb dictionary. The first root that 
is found in the dictionary returns as a word’s stem. Some 
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of the construction rules are shown in Table 1 (Note that 
the Persian text are read from right to left). 

There are also other kinds of verbs which is called prefix 
verbs. Similar rules like those shown in Table 1 have been 
used to construct these kinds of verbs, except that a prefix 
is added at the beginning of the verb. For these kinds of 
verbs, the algorithm checks for the existence of pre-
defined prefix at the first step. After finding and removing 
the prefixes, the algorithm searches for the stem of the rest 
of the word in a recursive process. 

Table 1 : Some rules for construction of verbs in Persian 

Rule Example 

 می + بن ماضی + شناسه ماضی

(/mi/ + past root + past person identifier) 

رفتممی  

(I was going) 

مضارعمی + بن مضارع + شناسه   

(/mi/ + present root + present person identifier) 

روممی  

(I’m going) 

 خواه + شناسه مضارع + بن ماضی

(/khah/ + present person identifier + past root) 

 خواهم رفت

(I will go) 

 

Algorithm 1 shows the process of finding the verb stem of 
a word. 

Algorithm 1: Verb Stemming 
Input: 𝑤 

foreach 𝑟𝑢𝑙𝑒 in 𝑣𝑒𝑟𝑏_𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛_𝑟𝑢𝑙𝑒 do 

        if 𝑤 matches the 𝑟𝑢𝑙𝑒 do 

                𝑤′ = 𝑟𝑜𝑜𝑡 𝑜𝑓 𝑤 

                if 𝑤′ 𝑖𝑠 𝑖𝑛 𝑣𝑒𝑟𝑏_𝑑𝑖𝑐𝑡 then 

                        add 𝑤′ to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑒𝑡 

                end 

        end 

end 

if 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑒𝑡 is not empty then 

        return shortest word in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑒𝑡 as stem 

else 

        return 𝑤 

end 

 

3.2.2 Stemming the non-Verbs 

We assume that the prefixes and suffixes in non-verbs 
have a pattern like follows: (to be read from right to left) 

{possessive suffix}{plural suffix}{other suffixes}[stem]{prefixes} 

Note that the items in the brackets are optional. 

{Possessive suffix} are suffixes that express ownership 
and {plural suffix} represents the plurality of the word 
(Taghva, Beckley and Sadeh, 2005). {Other suffixes} also 
represent all other kinds of suffixes and {prefixes} shows 
all kinds of prefixes that would be in the structure of a 
word. As an example in the word "کتابهایشان" (their books), 
the possessive suffix "شان" (their) represents the ownership 
and the suffix "ها" represents the plurality of the word 
  :So we have .(book) "کتاب"

  .(book) "کتاب" +(plurality sign) "ها" +(their) "شان" =(their books) "کتابهایشان"

Moreover, in the words "نیرومند" (powerful) and صدا""بی  
(quiet), the suffix "مند" and the prefix "با" are examples of 
the “other” category of suffixes. 

To find the stem, a list of common suffixes and prefixes 
for each prefix/suffix category was created. Then for a 
given word, the algorithm checks for the existence of all 
the suffixes and prefixes in the list. In the case of finding a 
suffix/prefix, it would be removed from the word. Then 
the algorithm checks if the resulted word exists in the 
lexicon dictionary. If it exists, it returns the resulted word 
as a stem. Otherwise, other categories of suffixes and 
prefixes will be checked. The lexicon dictionary is made 
up of 21151 usual stem words in Persian. 

For some cases in which there are more than one 
prefix/suffix matching of the word, we remove the one 
which results the smallest stem. This process is described 
in more details in Algorithm 2.  

Algorithm 2: non-Verbs Stemming 
Input: 𝑤 

foreach 𝑠𝑢𝑓𝑓𝑖𝑥_𝑠𝑒𝑡/𝑝𝑟𝑒𝑓𝑖𝑥_𝑠𝑒𝑡 do 

        foreach 𝑠 in 𝑠𝑢𝑓𝑓𝑖𝑥_𝑠𝑒𝑡/𝑝𝑟𝑒𝑓𝑖𝑥_𝑠𝑒𝑡 do 

                if 𝑤 ends with 𝑠 then 

                        𝑤′= 𝑤[0: (𝑙𝑒𝑛(𝑤) − 𝑙𝑒𝑛(𝑠))] 

                        if 𝑤′ is in 𝐿𝑒𝑥𝑖𝑐𝑜𝑛_𝑑𝑖𝑐𝑡 then 

                                add 𝑤′ to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑒𝑡 

                        end 

                end 

        end 

end 

if 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑒𝑡 is not empty then 

        return shortest word in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑒𝑡 as stem 

else 

        return 𝑤 

end 

 

In this algorithm we check the existence of each set of 
suffixes including {possessive suffix}, {plural suffix}, 
{other suffixes} and {prefixes}, respectively. After 
removing all of the found suffixes/prefixes, the algorithm 
searches for the reminder of the word in the lexicon 
dictionary.  

3.3 POS-tagger 

Part of Speech Tagging is a preprocessing step in NLP 
tasks that assign one of the parts of speech tags to the 
given word. For example, Part of Speech tags for English 
sentence “I go to school.” and its corresponding Persian 
translation are shown in Table 2.  

Table 2: POS-tags for an English sentence with its 

corresponding Persian translation 

Persian 

Sentence . من به مدرسه می روم 

English 

Sentence . Go School to I 

POS Tags Punctu

ation 
Verb Noun preposition Noun 
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The correct assignment of Part-of-Speech tags is an 
important issue in semantic analysis and syntax parsing. It 
can also be used as a suitable feature in Natural Language 
Processing tasks such as Named Entity Recognition, 
Statistical Machine Translation and also chunking. 

We incorporate Maximum Entropy (ME) and Conditional 
Random Fields (CRF) that has been proved to get 
successful results in sequence labeling problems such as 
POS tagging, Name Entity Recognition (NER), chunking, 
etc. (Lafferty, McCallum and Pereira, 2001; Ratnaparkhi, 
1996). ME and CRF are supervised classifiers with a 
probabilistic approach which determine the most probable 
tag of a token given its surrounding context  (Pisceldo, 
Adriani and Manurung, 2009). 

If we assume 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑛 = 𝑠1
𝑛 as a sentence 

containing n words, ME model estimates the probability 
of a tag sequence 𝑇 = 𝑡1, 𝑡2, … , 𝑡𝑛 = 𝑡1

𝑛 as 

𝑝(𝑡1
𝑛|𝑠1

𝑛) = ∏ 𝑝(𝑡𝑖|𝑡1
𝑖−1, 𝑠1

𝑖 ) ≈𝑛
𝑖=1 ∏ 𝑝(𝑡𝑖|ℎ𝑖),𝑛

𝑖=1     (1)                 

Where ℎ𝑖 is a contex window of word 𝑠𝑖. Assuming a 
context window of size 2, the probability of equation (1) 
becomes as: 

𝑝(𝑡1
𝑛|𝑠1

𝑛) ≈ ∏ 𝑝(𝑡𝑖|𝑡𝑖−2
𝑖−1, 𝑠𝑖−2

𝑖+2),𝑛
𝑖=1                              (2)                                                

At the last stage, the model assigns maximum likelihood 
tag sequence to the words of the sentence (Toutanova and 
Manning 2000). CRF is a probabilistic graphical model 
tries to estimate the conditional probability 𝑝(𝑇|𝑆) based 
on some independency assumptions (Lafferty, McCallum, 
and Pereira 2001). 

An annotated corpus is needed for training phase of these 
supervised methods. To generate a Persian POS-tagger, 
the Bijankhan corpus (Oroumchian et al. 2006) has been 
used. The Bijankhan collection contains more than 2.6 
million manually tagged words that have been labeled 
with a collection of 550 tag sets. We omitted more fine 
grained POS-tags and just used a tag set containing 40 
tags. We also applied Stanford POS-tagger (Toutanova et 
al. 2003; Toutanova and Manning, 2000) that is based on 
ME model and Wapiti tool that is based on CRF model 
(Lavergne, Cappé and Yvon, 2010). 

For getting reliable results, we trained the model with 
different sets of n-gram features and got the best feature 
set for Persian POS-tagger. In the experiments, we found 
that a feature set comprised of two preceding words, the 
current word, two following words and two preceding tags 
are suitable for POS-tagging. 

3.4 Shallow Parsing  

Shallow parsing or text chunking is a subtask of NLP 
applications that is used as an alternative to full-sentence 
parsing (Muñoz et al. 2000). The goal of the text chunking 
is to divide a sentence into some distinct phrases in a way 
that syntactically related words grouped as one phrase. 
These phrases don’t have overlap with each other, i.e. a 
word can only belong to one phrase or chunk (Ramshaw 
and Marcus, 1995; Tjong Kim Sang, 2002). As an 
example, in the following sentence the chunks are 
represented in brackets and each chunk is specified with a 
label which denotes its type. 

[NP I][VP saw][NP the yellow umbrella] 

Generally speaking, the models proposed to solve this 
problem are based on pre-defined rules (Grover et al. 
2006) or machine learning techniques (Muñoz et al. 2000; 
Zhai et al. 2017). There have been few efforts to solve this 
problem in Persian and there aren’t any suitable dataset to 
train a statistical model. In this section, we employed 
some linguistic rules to find chunks in Persian sentences 
using regular expressions. These rules are based on POS-
tags of the words in the sentence. For example one of the 
rules that is used in our model is: 

NP: {<N_SING><ADJ_SIM><N_SING>} 

It means that a singular noun following a simple adjective 
following another singular noun creates a noun phrase. 
The following is an example: 

 "ضخامت دقیق سیاره" 
 “Exact thickness of the planet” 

In our approach, we have extracted fifteen linguistic rules 
to find Persian noun phrases, verb phrases and 
prepositional phrases. The main advantage of using 
linguistic rules is that it doesn’t need a training corpus. 
The disadvantage of this approach is that extracting a set 
of rules which models language complexities is a 
challenging issue. Moreover, the use of a rule set causes 
the approach to be language dependent.  

4. Experimental Results 

The main challenge in evaluation of different parts of the 
model is the limitation of available resources. For this 
reason, the performance of some parts of the toolkit were 
checked manually. To evaluate and compare the 
performance of Parsivar with the other available toolkits, 
different types of experiments were performed. For 
evaluating the tokenization and stemming, we used 10 
random documents from the Hamshahri corpus 
(AleAhmad et al. 2009) which consist of 2552 tokens. 
After removing the stop words, 1465 words are remained. 
The accuracy of tokenization tool was 98.29% among 
these words. Table 3 also shows the evaluation results of 
stemming among these words. 

Table 3 : Evaluation results of Stemmer 

 Precision[%] Recall[%] F-Measure[%] 

Stemmer 98.71 81.91 89.53 

 

To train the space correction model mentioned in 
section 3.1.2, an IOB tagged dataset has been built using 
Bijankhan corpus. The dataset contains 2428732 words 
tagged with “O”, 160775 words tagged with “B” and 
169518 words tagged with “I”. Then it considered as a 
sequence labeling problem and a Naïve Bayes classifier 
was trained using 90 percent of this dataset to classify 
each word into classes “I”, “O” and “B”. Using these 
labels, we can specify word boundaries. To test the 
performance, we validated the model with the remaining 
10 percent of the dataset. The results are shown in Table 
4. 
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Table 4 : Evaluation results of space correction model 

IOB Accuracy [%] Precision[%] Recall[%] F-Measure[%] 

93.2 87.3 91.9 89.5 

 

For the POS tagger, as mentioned in section 3.3, two types 
of POS taggers have been trained. The training on ME and 
CRF methods were done with one million words of 
Bijankhan corpus. These models were tested using 10 
percent of Bijankhan corpus with different window sizes. 
At last, the best one of each type was chosen. Table 5 
shows the test accuracy for each model. The accuracy was 
measured in two levels. In the word level, it presents the 
correctness of the tagging for each word and in sentence 
level it presents the correctness of the tagging for a 
complete sentence. 

Table 5 : Evaluation results of POS tagger 

 
Window size 

3 5 

Maximum 

Entropy 

Word 

Accuracy [%] 
0.91 0.95 

Sentence 

Accuracy [%] 
0.75 0.78 

CRF 

Word 

Accuracy [%] 
0.93 0.95 

Sentence 

Accuracy [%] 
0.76 0.79 

 

To evaluate the Shallow Parser mentioned in section 3.4, 
we applied it on 100 randomly selected sentences from 
Hamshahri corpus. Based on the manually evaluation of 
the results, the performance was 76.8%. Since this model 
is based only on POS-tags extracted from sentences, a part 
of the error is the error propagated by POS-tagger. 

 

We also tried to measure the effect of applying different 
parts of Parsivar in a downstream NLP task such as 
plagiarism detection. In the task of  plagiarism detection, 
the goal is to find parts of a text which have been reused 
from other documents (Asghari et al. 2016). The process 
starts with a suspicious document 𝑑𝑞 and a collection 𝐷 of 
documents from which 𝑑𝑞’s author may have plagiarized. 
Within a heuristic retrieval step, a small number of 
candidate documents 𝐷𝑥, which are likely to be sources 
for plagiarism, are retrieved from 𝐷. Then, within a 
detailed analysis step, 𝑑𝑞 is compared section-wise with 
the retrieved candidates. All pairs of sections (𝑠𝑞 , 𝑠𝑥) with 
𝑠𝑞 ∈ 𝑑𝑞  and 𝑠𝑥 ∈ 𝑑𝑥, 𝑑𝑥 ∈ 𝐷𝑥, are to be retrieved such 
that 𝑠𝑞  and 𝑠𝑥 have a high similarity under some retrieval 
model (Potthast et al. 2010). For this purpose, we 
performed a preprocessing step on the input text using 
different toolkits including Hazm, ParsiPardaz and 
Parsivar. In the next step, we used the output of each 
toolkit as the input to the Persian plagiarism detection 
model. At the last step, we compared the results of the 
plagiarism detection algorithm for each preprocessing 
toolkit. In our experiments, we used a part of plagiarism 
detection corpus introduced in (Mashhadirajab et al. 2016) 
and also (Khoshnavataher et al. 2015) as well. 

For plagiarism detection model, we used a VSM based 
method proposed in (Zechner et al. 2009). In this model, 
all the sentences of both suspicious and source documents 
are converted into vectors using TF-IDF weighting 
method. Then, all sentences of the suspicious document 
are compared to all sentences of source ones using cosine 
similarity metric. Pairs of sentences which are similar 
(based on a pre-defined threshold) have been considered 
as cases of plagiarism. 

The experimental results of plagiarism detection are 
depicted in Figure 1. Each curve specifies the F-score of 
the plagiarism detection model for a particular 
preprocessing toolkit at a specific similarity threshold. 

 

 

Figure 1: The F-score of a plagiarism detection algorithm for each preprocessing toolkit in various similarity thresholds. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

F1

Threshold

Hazm

Parsivar

ParsiPardaz

1116



The character level F-measure has been used for 
evaluating performance of detection based on following 
equations: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑆, 𝑅) =  
1

|𝑅|
∑

⋃ (𝑠⨅𝑟)𝑠∈𝑆

|𝑟|𝑟∈𝑅                  (3)                              

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆, 𝑅) =  
1

|𝑆|
∑

⋃ (𝑠⨅𝑟)𝑟∈𝑅

|𝑠|𝑠∈𝑆                        (4)                                        

𝐹1 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                          (5)                                                         

Where 𝑆 denotes the set of plagiarism cases in the 
suspicious documents, and 𝑅 denotes the set of plagiarism 
that detected by detector for these documents. 

It should be noted that the plagiarism detection model is 
the same for all experiments. As depicted in Figure 1, our 
toolkit outperforms the other preprocessing toolkits for all 
threshold values. 

The main advantage of our preprocessing toolkit over the 
other toolkits is in normalization and tokenization steps. 
As they are used in almost all NLP tasks, the errors 
generated in these steps will propagate into the other 
stages and cause more error generation. Unification of the 
character encodings and correcting the spaces between/ 
within the words (which results in a better detection of 
word boundaries) are some reasons which cause a better 
performance in our toolkit with respect to the other 
preprocessing toolkits. 

5. Conclusion 

In this paper we proposed Parsivar, a Persian 
preprocessing toolkit written in python. This package 
provides some important preprocessing tasks for NLP 
purposes such as normalizing, tokenizing of words and 
multi-token words, stemming, POS tagging and shallow 
parsing. In the normalization step, we convert different 
kinds of character encodings to a unique format. In 
tokenization step, we correct the spacing between and 
within the words and multi-token words as well. In 
stemming and shallow parsing, we defined some rules to 
solve the problem. Finally, in POS-tagging, we trained a 
CRF and ME based model. As a final stage of this 
research, we tested our toolkit on a Persian plagiarism 
detection system. The results show that our toolkit 
outperforms other similar Persian preprocessing toolkits 
with respect to F-score.  

As a work for the future, we are planning to recognize 
Persian Ezafe tags as in (Asghari, Maleki and Faili, 2014) 
to our toolkit. Another work can be accomplished to 
improve the performance of the shallow parser using 
statistical approaches.  
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