
Parsivar: A Language Processing Toolkit for Persian

Salar Mohtaj1, Behnam Roshanfekr2, Atefeh Zafarian3, Habibollah Asghari4
1,2,3,4 ICT Research Institute, Academic Center for Education Culture and Research, Tehran Iran

{salar.mohtaj, b.roshanfekr, atefeh.zafarian, habib.asghari}@ictrc.ac.ir

Abstract
With the growth of Internet usage, a massive amount of textual data is generated on social media and the Web. As the text on the Web
are generated by different authors with various types of writing styles and different encodings, a preprocessing step is required before
applying any NLP task. The goal of preprocessing is to convert text into a standard format that makes it easy to extract information
from documents and sentences. Moreover, the problem is more acute when we deal with Arabic script-based languages, in which there
are some different kinds of encoding schemes, different kinds of writing styles and the spaces between or within the words.
This paper introduces a preprocessing toolkit named as Parsivar, which is a comprehensive set of tools for Persian text preprocessing
tasks. This toolkit performs various kinds of activities comprised of normalization, space correction, tokenization, stemming, parts of
speech tagging and shallow parsing. To evaluate the performance of the proposed toolkit, both intrinsic and extrinsic approaches for
evaluation have been applied. A Persian plagiarism detection system has been exploited as a downstream task for extrinsic evaluation
of the proposed toolkit. The results have revealed that our toolkit outperforms the available Persian preprocessing toolkits by about 8
percent in terms of F1.

Keywords: Preprocessing Tasks, Natural Language Processing, Language Processing Toolkit

1. Introduction

Preprocessing is one of the essential steps in Natural
Language Processing (NLP) tasks that convert
unstructured texts into a standard text format suitable for
NLP applications. This makes it easy to extract
knowledge from documents and sentences. Despite of its
importance, few efforts have been accomplished on
developing preprocessing tools in low-resource languages.
Development of preprocessing tools is more challenging
in Arabic script-based languages like Persian, in which
there are some difficulties including the lack of enough
linguistic resources, various character encodings, spaces
between or within multi-token words and a wide variety
of suffixes.
In this paper, we introduce Parsivar, a Persian
preprocessing toolkit that includes a set of tools necessary
for different NLP tasks. It normalizes Persian texts to a
standard format, corrects the spacing between or within
the words, tokenizes words and sentences, extracts word
stems, tags the words with their Part of Speech (PoS) and
finally performs shallow parsing on sentences. For space
correction, it also proposes two different kinds of
solutions. The first solution is based on some pre-defined
rules and the second one is based on learning methods.
The evaluation results have revealed that the proposed
toolkit outperforms the other existing preprocessing
toolkits in Persian.
The rest of the paper is organized as follows: Section 2
discusses the previous works in the field of Persian text
preprocessing. In Section 3 we describe the algorithms for
implementing each of the modules in Parsivar toolkit in
detail. In section 4, we present the experimental results for
evaluating and comparing existing Persian preprocessing
toolkits with respect to our approach. For the purpose of
benchmarking the algorithms, we evaluate them on the
performance of a Persian plagiarism detection application
using extrinsic evaluation. Finally, in the last section,

conclusion and recommendations for future works will be
described.

2. Related work

Due to the importance of preprocessing in NLP
applications, some attempts have been done to develop
integrated Persian preprocessing packages in recent years.
In 2010, Shamsfard et al. (Shamsfard, Sadat Jafari and
Ilbeygi, 2010) proposed STeP1, which includes a
combination of tools such as tokenization, morphological
analysis and a POS tagging. The ParsiPardaz toolkit was
proposed by Sarabi et al. (Sarabi, Mahyar and Farhoodi,
2013) which provides the STeP1 capabilities along with
some other tasks like normalization and spell checking.
One of the issues related to the mentioned toolkits is that
they are not publicly available as open source
applications. Sobhe (Hazm, 2014) introduced Hazm, an
open source preprocessing toolkit which includes some
major tasks such as normalization, tokenization and POS
tagging. Although Hazm outperforms STeP1 and
ParsiPardaz toolkits from the run time point of view, its
output results are not as accurate as them.
The proposed preprocessing toolkit in this paper provides
different kinds of tasks including normalization,
tokenization, stemming, POS-tagging and shallow
parsing. Moreover, Parsivar is publicly available on the
web for research purposes1. We have compared the
performance of our toolkit with ParsiPardaz and Hazm in
an extrinsic evaluation platform using a Persian
plagiarism detection algorithm. The results showed that
our toolkit has a higher performance when compared with
the other toolkits while its runtime is near to Hazm toolkit.

1 https://github.com/ICTRC/Parsivar

1112

3. Our Approach

Parsivar is an integrated package written in python which

performs different kinds of preprocessing tasks in Persian.

It should be noted that this toolkit allows for an

adjustment between speed and accuracy depends on the

user needs. Each task is described in detail in the

following subsections.

3.1 Normalization and Tokenization

One of the main problems in Persian text processing is the
existence of different character encodings in text
documents. For example, the word "آب" (water), might
have different encodings in different documents that
causes the text processing algorithms to consider them as
different words. This problem is more obscurant when we
deal with various character encodings in punctuations. To
solve this problem, for each character we extracted all
different encodings from a corpus of text documents with
more than 2 million documents which gathered from
Persian weblogs.

Another important task in this step is to find word
boundaries in documents. In Persian language, multi-
token words can be written in three formats; completely
separated by a space delimiter, separated by half-space2,
or be attached to each other. Therefore, determining word
and phrase boundaries is a complicated task in Persian.
The challenge in Persian is that the space cannot be
considered as the only delimiter in all cases.

There are lots of multi-token words in Persian in which,
parts of the word are separated by space. For example, in
the sentence ".من یک برنامه نویس هستم" (I am programmer.),
the word "برنامه نویس" (programmer) might be written in
two ways of نویس""برنامه and "برنامه نویس". Although the
first form of writing is correct and the second one is
incorrect, it’s usual to write this word in the second form.
In this example, considering space as delimiter causes
separation of the word "برنامه نویس" into two tokens "برنامه"
and "نویس", while it should be taken as one token

نویس""برنامه . Actually, the challenge is resulted from
incorrect spacing in the words. We have tried to solve this
problem in two different ways. First, we defined some
rules to correct spacing within words. Second, we have
tried to train a model that learns how to correct spacing
within words.

After the space correction, we tokenize the documents
based on spaces and punctuations. In the following
subsection, we describe our solutions for space correction
in more details.

3.1.1 Rule based space correction

To correct the spaces within words, some certain rules
have been defined in the first step using regular
expressions. Using these rules, we are able to correct
space in many cases such as "می روم" (I’m going), زمین"
 There are still .(Analyzer) "تحلیل گر" and (geologist) شناس"
some words that do not match to the rules. These words
usually consist of two or three parts which we can’t
extract a general rule for them such as "گفت و گو"

(Conversation). To overcome this problem, we construct a

2 A Non-Joint Zero Width (NJZW) letter

dictionary containing such words and check their
existence in the sentences.

3.1.2 Space correction based on learning

To correct the spaces within multi-token words based on
learning methods, a model was trained to find words with
multiple parts separated by spaces. As a result, we can
take all parts of a word as one token.

To train the model, we build a training set using 90% of
Bijankhan corpus (Bijankhan et al. 2011). In this corpus,
multi token words are placed in one line. We tagged the
multi token words using IOB tagging format (Ramshaw
and Marcus, 1995) such that the first part is tagged with
label “B” and the other parts are tagged with the label “I”.
Moreover, the other words are tagged with label “O”.
Then for each word in the sentence, we take the label of
previous word, the previous word itself and the next word
as features. We trained a Naïve Bayes model to classify
each part of the word into classes “B” and “I”. At last, we
used these labels to find word boundaries. To evaluate the
performance of this space correction model, we validated
the model on the remaining 10% of Bijankhan corpus.
Our model got 96.5% of F1 score in space correction on
the validation set.

3.2 Stemmer

Stemming plays an important role in many NLP
applications such as information retrieval and text mining.
The final goal in stemming is to reduce words to their
stem so that for different word forms in a text file, there
would be only one stem (Willett, 2006). It is not necessary
for the reduced form of the word to be exactly the
morphological root. Instead, any other form that improves
the performance is acceptable (Krovetz, 1993) There are
many stemming algorithms proposed in English. Lovins
stemmer (Lovins, 1968) and Porter stemmer (Porter,
1980) are two common stemmers in English. They
remove suffixes and prefixes from English words based
on some predefined linguistic rules. One of the problems
with rule-based stemmers is that they cannot be applied to
other languages. Some algorithms are also proposed for
stemming in Persian (Sharifloo and Shamsfard, 2008;
Taghva, Beckley and Sadeh, 2005). In this section, we
propose and implement an algorithm for stemming in
Persian language.

Persian words usually derive from other words based on
some morphological rules. For example, the word
 to (gan) ”گان“ is made up of adding suffix (stars) ”ستارگان“
the noun “ستاره” (star). We have used such rules to find
word stems. In this way, we assumed two set of rules
which consider words as verb and non-verb. In the
following subsection we describe each of them in detail.

3.2.1 Stemming the Verbs

There are two main roots for present tense and past tense
in Persian which can be used to construct various
derivations of a verb. For this reason, we collected a list of
verb roots in past tense and present tense forms. Then all
of the rules were applied to the input verb in order to find
the rule to be matched in the best way. Then we search for
the resulted roots in the verb dictionary. The first root that
is found in the dictionary returns as a word’s stem. Some

1113

of the construction rules are shown in Table 1 (Note that
the Persian text are read from right to left).

There are also other kinds of verbs which is called prefix
verbs. Similar rules like those shown in Table 1 have been
used to construct these kinds of verbs, except that a prefix
is added at the beginning of the verb. For these kinds of
verbs, the algorithm checks for the existence of pre-
defined prefix at the first step. After finding and removing
the prefixes, the algorithm searches for the stem of the rest
of the word in a recursive process.

Table 1 : Some rules for construction of verbs in Persian

Rule Example

 می + بن ماضی + شناسه ماضی

(/mi/ + past root + past person identifier)

رفتممی

(I was going)

مضارعمی + بن مضارع + شناسه

(/mi/ + present root + present person identifier)

روممی

(I’m going)

 خواه + شناسه مضارع + بن ماضی

(/khah/ + present person identifier + past root)

 خواهم رفت

(I will go)

Algorithm 1 shows the process of finding the verb stem of
a word.

Algorithm 1: Verb Stemming
Input: 𝑤

foreach 𝑟𝑢𝑙𝑒 in 𝑣𝑒𝑟𝑏_𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛_𝑟𝑢𝑙𝑒 do

 if 𝑤 matches the 𝑟𝑢𝑙𝑒 do

 𝑤′ = 𝑟𝑜𝑜𝑡 𝑜𝑓 𝑤

 if 𝑤′ 𝑖𝑠 𝑖𝑛 𝑣𝑒𝑟𝑏_𝑑𝑖𝑐𝑡 then

 add 𝑤′ to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑒𝑡

 end

 end

end

if 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑒𝑡 is not empty then

 return shortest word in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑒𝑡 as stem

else

 return 𝑤

end

3.2.2 Stemming the non-Verbs

We assume that the prefixes and suffixes in non-verbs
have a pattern like follows: (to be read from right to left)

{possessive suffix}{plural suffix}{other suffixes}[stem]{prefixes}

Note that the items in the brackets are optional.

{Possessive suffix} are suffixes that express ownership
and {plural suffix} represents the plurality of the word
(Taghva, Beckley and Sadeh, 2005). {Other suffixes} also
represent all other kinds of suffixes and {prefixes} shows
all kinds of prefixes that would be in the structure of a
word. As an example in the word "کتابهایشان" (their books),
the possessive suffix "شان" (their) represents the ownership
and the suffix "ها" represents the plurality of the word
 :So we have .(book) "کتاب"

 .(book) "کتاب" +(plurality sign) "ها" +(their) "شان" =(their books) "کتابهایشان"

Moreover, in the words "نیرومند" (powerful) and صدا""بی
(quiet), the suffix "مند" and the prefix "با" are examples of
the “other” category of suffixes.

To find the stem, a list of common suffixes and prefixes
for each prefix/suffix category was created. Then for a
given word, the algorithm checks for the existence of all
the suffixes and prefixes in the list. In the case of finding a
suffix/prefix, it would be removed from the word. Then
the algorithm checks if the resulted word exists in the
lexicon dictionary. If it exists, it returns the resulted word
as a stem. Otherwise, other categories of suffixes and
prefixes will be checked. The lexicon dictionary is made
up of 21151 usual stem words in Persian.

For some cases in which there are more than one
prefix/suffix matching of the word, we remove the one
which results the smallest stem. This process is described
in more details in Algorithm 2.

Algorithm 2: non-Verbs Stemming
Input: 𝑤

foreach 𝑠𝑢𝑓𝑓𝑖𝑥_𝑠𝑒𝑡/𝑝𝑟𝑒𝑓𝑖𝑥_𝑠𝑒𝑡 do

 foreach 𝑠 in 𝑠𝑢𝑓𝑓𝑖𝑥_𝑠𝑒𝑡/𝑝𝑟𝑒𝑓𝑖𝑥_𝑠𝑒𝑡 do

 if 𝑤 ends with 𝑠 then

 𝑤′= 𝑤[0: (𝑙𝑒𝑛(𝑤) − 𝑙𝑒𝑛(𝑠))]

 if 𝑤′ is in 𝐿𝑒𝑥𝑖𝑐𝑜𝑛_𝑑𝑖𝑐𝑡 then

 add 𝑤′ to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑒𝑡

 end

 end

 end

end

if 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑒𝑡 is not empty then

 return shortest word in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑒𝑡 as stem

else

 return 𝑤

end

In this algorithm we check the existence of each set of
suffixes including {possessive suffix}, {plural suffix},
{other suffixes} and {prefixes}, respectively. After
removing all of the found suffixes/prefixes, the algorithm
searches for the reminder of the word in the lexicon
dictionary.

3.3 POS-tagger

Part of Speech Tagging is a preprocessing step in NLP
tasks that assign one of the parts of speech tags to the
given word. For example, Part of Speech tags for English
sentence “I go to school.” and its corresponding Persian
translation are shown in Table 2.

Table 2: POS-tags for an English sentence with its

corresponding Persian translation

Persian

Sentence . من به مدرسه می روم

English

Sentence . Go School to I

POS Tags Punctu

ation
Verb Noun preposition Noun

1114

The correct assignment of Part-of-Speech tags is an
important issue in semantic analysis and syntax parsing. It
can also be used as a suitable feature in Natural Language
Processing tasks such as Named Entity Recognition,
Statistical Machine Translation and also chunking.

We incorporate Maximum Entropy (ME) and Conditional
Random Fields (CRF) that has been proved to get
successful results in sequence labeling problems such as
POS tagging, Name Entity Recognition (NER), chunking,
etc. (Lafferty, McCallum and Pereira, 2001; Ratnaparkhi,
1996). ME and CRF are supervised classifiers with a
probabilistic approach which determine the most probable
tag of a token given its surrounding context (Pisceldo,
Adriani and Manurung, 2009).

If we assume 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑛 = 𝑠1
𝑛 as a sentence

containing n words, ME model estimates the probability
of a tag sequence 𝑇 = 𝑡1, 𝑡2, … , 𝑡𝑛 = 𝑡1

𝑛 as

𝑝(𝑡1
𝑛|𝑠1

𝑛) = ∏ 𝑝(𝑡𝑖|𝑡1
𝑖−1, 𝑠1

𝑖) ≈𝑛
𝑖=1 ∏ 𝑝(𝑡𝑖|ℎ𝑖),𝑛

𝑖=1 (1)

Where ℎ𝑖 is a contex window of word 𝑠𝑖. Assuming a
context window of size 2, the probability of equation (1)
becomes as:

𝑝(𝑡1
𝑛|𝑠1

𝑛) ≈ ∏ 𝑝(𝑡𝑖|𝑡𝑖−2
𝑖−1, 𝑠𝑖−2

𝑖+2),𝑛
𝑖=1 (2)

At the last stage, the model assigns maximum likelihood
tag sequence to the words of the sentence (Toutanova and
Manning 2000). CRF is a probabilistic graphical model
tries to estimate the conditional probability 𝑝(𝑇|𝑆) based
on some independency assumptions (Lafferty, McCallum,
and Pereira 2001).

An annotated corpus is needed for training phase of these
supervised methods. To generate a Persian POS-tagger,
the Bijankhan corpus (Oroumchian et al. 2006) has been
used. The Bijankhan collection contains more than 2.6
million manually tagged words that have been labeled
with a collection of 550 tag sets. We omitted more fine
grained POS-tags and just used a tag set containing 40
tags. We also applied Stanford POS-tagger (Toutanova et
al. 2003; Toutanova and Manning, 2000) that is based on
ME model and Wapiti tool that is based on CRF model
(Lavergne, Cappé and Yvon, 2010).

For getting reliable results, we trained the model with
different sets of n-gram features and got the best feature
set for Persian POS-tagger. In the experiments, we found
that a feature set comprised of two preceding words, the
current word, two following words and two preceding tags
are suitable for POS-tagging.

3.4 Shallow Parsing

Shallow parsing or text chunking is a subtask of NLP
applications that is used as an alternative to full-sentence
parsing (Muñoz et al. 2000). The goal of the text chunking
is to divide a sentence into some distinct phrases in a way
that syntactically related words grouped as one phrase.
These phrases don’t have overlap with each other, i.e. a
word can only belong to one phrase or chunk (Ramshaw
and Marcus, 1995; Tjong Kim Sang, 2002). As an
example, in the following sentence the chunks are
represented in brackets and each chunk is specified with a
label which denotes its type.

[NP I][VP saw][NP the yellow umbrella]

Generally speaking, the models proposed to solve this
problem are based on pre-defined rules (Grover et al.
2006) or machine learning techniques (Muñoz et al. 2000;
Zhai et al. 2017). There have been few efforts to solve this
problem in Persian and there aren’t any suitable dataset to
train a statistical model. In this section, we employed
some linguistic rules to find chunks in Persian sentences
using regular expressions. These rules are based on POS-
tags of the words in the sentence. For example one of the
rules that is used in our model is:

NP: {<N_SING><ADJ_SIM><N_SING>}

It means that a singular noun following a simple adjective
following another singular noun creates a noun phrase.
The following is an example:

 "ضخامت دقیق سیاره"
 “Exact thickness of the planet”

In our approach, we have extracted fifteen linguistic rules
to find Persian noun phrases, verb phrases and
prepositional phrases. The main advantage of using
linguistic rules is that it doesn’t need a training corpus.
The disadvantage of this approach is that extracting a set
of rules which models language complexities is a
challenging issue. Moreover, the use of a rule set causes
the approach to be language dependent.

4. Experimental Results

The main challenge in evaluation of different parts of the
model is the limitation of available resources. For this
reason, the performance of some parts of the toolkit were
checked manually. To evaluate and compare the
performance of Parsivar with the other available toolkits,
different types of experiments were performed. For
evaluating the tokenization and stemming, we used 10
random documents from the Hamshahri corpus
(AleAhmad et al. 2009) which consist of 2552 tokens.
After removing the stop words, 1465 words are remained.
The accuracy of tokenization tool was 98.29% among
these words. Table 3 also shows the evaluation results of
stemming among these words.

Table 3 : Evaluation results of Stemmer

 Precision[%] Recall[%] F-Measure[%]

Stemmer 98.71 81.91 89.53

To train the space correction model mentioned in
section 3.1.2, an IOB tagged dataset has been built using
Bijankhan corpus. The dataset contains 2428732 words
tagged with “O”, 160775 words tagged with “B” and
169518 words tagged with “I”. Then it considered as a
sequence labeling problem and a Naïve Bayes classifier
was trained using 90 percent of this dataset to classify
each word into classes “I”, “O” and “B”. Using these
labels, we can specify word boundaries. To test the
performance, we validated the model with the remaining
10 percent of the dataset. The results are shown in Table
4.

1115

Table 4 : Evaluation results of space correction model

IOB Accuracy [%] Precision[%] Recall[%] F-Measure[%]

93.2 87.3 91.9 89.5

For the POS tagger, as mentioned in section 3.3, two types
of POS taggers have been trained. The training on ME and
CRF methods were done with one million words of
Bijankhan corpus. These models were tested using 10
percent of Bijankhan corpus with different window sizes.
At last, the best one of each type was chosen. Table 5
shows the test accuracy for each model. The accuracy was
measured in two levels. In the word level, it presents the
correctness of the tagging for each word and in sentence
level it presents the correctness of the tagging for a
complete sentence.

Table 5 : Evaluation results of POS tagger

Window size

3 5

Maximum

Entropy

Word

Accuracy [%]
0.91 0.95

Sentence

Accuracy [%]
0.75 0.78

CRF

Word

Accuracy [%]
0.93 0.95

Sentence

Accuracy [%]
0.76 0.79

To evaluate the Shallow Parser mentioned in section 3.4,
we applied it on 100 randomly selected sentences from
Hamshahri corpus. Based on the manually evaluation of
the results, the performance was 76.8%. Since this model
is based only on POS-tags extracted from sentences, a part
of the error is the error propagated by POS-tagger.

We also tried to measure the effect of applying different
parts of Parsivar in a downstream NLP task such as
plagiarism detection. In the task of plagiarism detection,
the goal is to find parts of a text which have been reused
from other documents (Asghari et al. 2016). The process
starts with a suspicious document 𝑑𝑞 and a collection 𝐷 of
documents from which 𝑑𝑞’s author may have plagiarized.
Within a heuristic retrieval step, a small number of
candidate documents 𝐷𝑥, which are likely to be sources
for plagiarism, are retrieved from 𝐷. Then, within a
detailed analysis step, 𝑑𝑞 is compared section-wise with
the retrieved candidates. All pairs of sections (𝑠𝑞 , 𝑠𝑥) with
𝑠𝑞 ∈ 𝑑𝑞 and 𝑠𝑥 ∈ 𝑑𝑥, 𝑑𝑥 ∈ 𝐷𝑥, are to be retrieved such
that 𝑠𝑞 and 𝑠𝑥 have a high similarity under some retrieval
model (Potthast et al. 2010). For this purpose, we
performed a preprocessing step on the input text using
different toolkits including Hazm, ParsiPardaz and
Parsivar. In the next step, we used the output of each
toolkit as the input to the Persian plagiarism detection
model. At the last step, we compared the results of the
plagiarism detection algorithm for each preprocessing
toolkit. In our experiments, we used a part of plagiarism
detection corpus introduced in (Mashhadirajab et al. 2016)
and also (Khoshnavataher et al. 2015) as well.

For plagiarism detection model, we used a VSM based
method proposed in (Zechner et al. 2009). In this model,
all the sentences of both suspicious and source documents
are converted into vectors using TF-IDF weighting
method. Then, all sentences of the suspicious document
are compared to all sentences of source ones using cosine
similarity metric. Pairs of sentences which are similar
(based on a pre-defined threshold) have been considered
as cases of plagiarism.

The experimental results of plagiarism detection are
depicted in Figure 1. Each curve specifies the F-score of
the plagiarism detection model for a particular
preprocessing toolkit at a specific similarity threshold.

Figure 1: The F-score of a plagiarism detection algorithm for each preprocessing toolkit in various similarity thresholds.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

F1

Threshold

Hazm

Parsivar

ParsiPardaz

1116

The character level F-measure has been used for
evaluating performance of detection based on following
equations:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑆, 𝑅) =
1

|𝑅|
∑

⋃ (𝑠⨅𝑟)𝑠∈𝑆

|𝑟|𝑟∈𝑅 (3)

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆, 𝑅) =
1

|𝑆|
∑

⋃ (𝑠⨅𝑟)𝑟∈𝑅

|𝑠|𝑠∈𝑆 (4)

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (5)

Where 𝑆 denotes the set of plagiarism cases in the
suspicious documents, and 𝑅 denotes the set of plagiarism
that detected by detector for these documents.

It should be noted that the plagiarism detection model is
the same for all experiments. As depicted in Figure 1, our
toolkit outperforms the other preprocessing toolkits for all
threshold values.

The main advantage of our preprocessing toolkit over the
other toolkits is in normalization and tokenization steps.
As they are used in almost all NLP tasks, the errors
generated in these steps will propagate into the other
stages and cause more error generation. Unification of the
character encodings and correcting the spaces between/
within the words (which results in a better detection of
word boundaries) are some reasons which cause a better
performance in our toolkit with respect to the other
preprocessing toolkits.

5. Conclusion

In this paper we proposed Parsivar, a Persian
preprocessing toolkit written in python. This package
provides some important preprocessing tasks for NLP
purposes such as normalizing, tokenizing of words and
multi-token words, stemming, POS tagging and shallow
parsing. In the normalization step, we convert different
kinds of character encodings to a unique format. In
tokenization step, we correct the spacing between and
within the words and multi-token words as well. In
stemming and shallow parsing, we defined some rules to
solve the problem. Finally, in POS-tagging, we trained a
CRF and ME based model. As a final stage of this
research, we tested our toolkit on a Persian plagiarism
detection system. The results show that our toolkit
outperforms other similar Persian preprocessing toolkits
with respect to F-score.

As a work for the future, we are planning to recognize
Persian Ezafe tags as in (Asghari, Maleki and Faili, 2014)
to our toolkit. Another work can be accomplished to
improve the performance of the shallow parser using
statistical approaches.

6. References

 AleAhmad, A., Amiri, H., Darrudi, E., Rahgozar, M., &

Oroumchian, F. (2009). Hamshahri: A standard

Persian text collection. Knowledge-Based Systems,

22(5), 382-387.

Asghari, H., Mohtaj, S., Fatemi, O., Faili, H., Rosso, P., &

Potthast, M. (2018, February). Algorithms and

Corpora for Persian Plagiarism Detection. In Text

Processing: FIRE 2016 International Workshop,

Kolkata, India, December 7–10, 2016, Revised

Selected Papers (Vol. 10478, p. 61). Springer.

Asghari, H., Maleki, J., & Faili, H. (2014). A probabilistic

approach to persian ezafe recognition. In

Proceedings of the 14th Conference of the European

Chapter of the Association for Computational

Linguistics, volume 2: Short Papers (pp. 138-142).

Bijankhan, M., Sheykhzadegan, J., Bahrani, M., &

Ghayoomi, M. (2011). Lessons from building a

Persian written corpus: Peykare. Language

resources and evaluation, 45(2), 143-164.

Grover, C., & Tobin, R. (2006, May). Rule-based

chunking and reusability. In Proceedings of the

Fifth International Conference on Language

Resources and Evaluation (LREC 2006).

Hazm. (2014). Python library for digesting Persian text,

“Https://github.com/sobhe/hazm.”

Khoshnavataher, K., Zarrabi, V., Mohtaj, S., & Asghari,

H. (2015). Developing monolingual Persian corpus

for extrinsic plagiarism detection using artificial

obfuscation. Notebook for PAN at CLEF.

Krovetz, R. (1993, July). Viewing morphology as an

inference process. In Proceedings of the 16th

annual international ACM SIGIR conference on

Research and development in information retrieval

(pp. 191-202). ACM.

Lafferty, J., McCallum, A., & Pereira, F. C. (2001).

Conditional random fields: Probabilistic models for

segmenting and labeling sequence data.

Lavergne, T., Cappé, O., & Yvon, F. (2010, July).

Practical very large scale CRFs. In Proceedings of

the 48th Annual Meeting of the Association for

Computational Linguistics (pp. 504-513).

Association for Computational Linguistics.

Lovins, J. B. (1968). Development of a stemming

algorithm. Mech. Translat. & Comp. Linguistics,

11(1-2), 22-31.

Mashhadirajab, F., Shamsfard, M., Adelkhah, R., Shafiee,

F., & Saedi, C. (2016). A Text Alignment Corpus

for Persian Plagiarism Detection. In FIRE (Working

Notes) (pp. 184-189).

Munoz, M., Punyakanok, V., Roth, D., & Zimak, D.

(2000). A learning approach to shallow parsing.

arXiv preprint cs/0008022.

Oroumchian, F., Tasharofi, S., Amiri, H., Hojjat, H., &

Raja, F. (2006). Creating a feasible corpus for

Persian POS tagging. UOWD Technical Report

1117

Series.

Pisceldo, F., Manurung, R., & Adriani, M. (2009).

Probabilistic part-of-speech tagging for bahasa

indonesia. In Third International MALINDO

Workshop.

Porter, M. F. (1980). An algorithm for suffix stripping.

Program, 14(3), 130-137.

Potthast, M., Barrón-Cedeño, A., Eiselt, A., Stein, B., &

Rosso, P. (2010). Overview of the 2nd international

competition on plagiarism detection. In Proceedings

of the 4th Workshop on Uncovering Plagiarism,

Authorship, and Social Software Misuse (pp. 1-14).

Ramshaw, L. A., & Marcus, M. P. (1999). Text chunking

using transformation-based learning. In Natural

language processing using very large corpora (pp.

157-176). Springer, Dordrecht.

Ratnaparkhi, A. (1996). A maximum entropy model for

part-of-speech tagging. In Conference on Empirical

Methods in Natural Language Processing.

Sarabi, Z., Mahyar, H., & Farhoodi, M. (2013, October).

ParsiPardaz: Persian Language Processing Toolkit.

In Computer and Knowledge Engineering (ICCKE),

2013 3th International eConference on (pp. 73-79).

IEEE.

Shamsfard, M., Jafari, H. S., & Ilbeygi, M. (2010, May).

STeP-1: A Set of Fundamental Tools for Persian

Text Processing. In LREC.

Sharifloo, A. A., & Shamsfard, M. (2008). A bottom up

approach to Persian stemming. In Proceedings of

the Third International Joint Conference on Natural

Language Processing: Volume-II.

Taghva, K., Beckley, R., & Sadeh, M. (2005, April). A

stemming algorithm for the farsi language. In

Information Technology: Coding and Computing,

2005. ITCC 2005. International Conference on

(Vol. 1, pp. 158-162). IEEE.

Tjong Kim Sang, E. F., & De Meulder, F. (2003, May).

Introduction to the CoNLL-2003 shared task:

Language-independent named entity recognition. In

Proceedings of the seventh conference on Natural

language learning at HLT-NAACL 2003-Volume 4

(pp. 142-147). Association for Computational

Linguistics.

Toutanova, K., Klein, D., Manning, C. D., & Singer, Y.

(2003, May). Feature-rich part-of-speech tagging

with a cyclic dependency network. In Proceedings

of the 2003 Conference of the North American

Chapter of the Association for Computational

Linguistics on Human Language Technology-

Volume 1 (pp. 173-180). Association for

Computational Linguistics.

Toutanova, K., & Manning, C. D. (2000, October).

Enriching the knowledge sources used in a

maximum entropy part-of-speech tagger. In

Proceedings of the 2000 Joint SIGDAT conference

on Empirical methods in natural language

processing and very large corpora: held in

conjunction with the 38th Annual Meeting of the

Association for Computational Linguistics-Volume

13 (pp. 63-70). Association for Computational

Linguistics.

Willett, P. (2006). The Porter stemming algorithm: then

and now. Program, 40(3), 219-223.

Zechner, M., Muhr, M., Kern, R., & Granitzer, M. (2009,

September). External and intrinsic plagiarism

detection using vector space models. In Proc.

SEPLN (Vol. 32, pp. 47-55).

Zhai, F., Potdar, S., Xiang, B., & Zhou, B. (2017,

January). Neural Models for Sequence Chunking. In

AAAI (pp. 3365-3371).

1118

	1. Introduction
	2. Related work
	3. Our Approach
	3.1 Normalization and Tokenization
	3.1.1 Rule based space correction
	3.1.2 Space correction based on learning

	3.2 Stemmer
	3.2.1 Stemming the Verbs
	3.2.2 Stemming the non-Verbs

	3.3 POS-tagger
	3.4 Shallow Parsing

	4. Experimental Results
	5. Conclusion
	6. References

