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Abstract
Epitran is a massively multilingual, multiple back-end system for G2P (grapheme-to-phoneme) transduction which is distributed with
support for 61 languages. It takes word tokens in the orthography of a language and outputs a phonemic representation in either IPA or
X-SAMPA. The main system is written in Python and is publicly available as open source software. Its efficacy has been demonstrated
in multiple research projects relating to language transfer, polyglot models, and speech. In a particular ASR task, Epitran was shown to
improve the word error rate over Babel baselines for acoustic modeling.
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1. Introduction
Epitran is a massively multilingual G2P system. To max-
imize its usefulness, it is written in Python and distributed
as open source software under an MIT license. Out of the
box, it supports 61 languages. Additional languages can
easily be added using either a simple, rule-based framework
or by adding other back-ends. It has a number of advantages
over other G2P and romanization packages like Unitran
and URoman including sensible handling of different Latin
scripts, precision transduction for each language-script pair
(important when multiple languages use the same script dif-
ferently), and proper use of international and de facto stan-
dards for phonetic representation (IPA, X-SAMPA).

2. Motivation and Related Work
A number of Speech and NLP tasks require a G2P step—the
conversion of orthographic representations to phonemic or
phonetic representations (Daelemans and van den Bosch,
1996; Black et al., 1998; Sproat, 2006; Bisani and Ney,
2008; Laurent et al., 2009; Rao et al., 2015). Such tasks
include TTS, ASR, the training of polyglot phonetic mod-
els for (non-speech) NLP tasks, and the implementation of
approximate phonetic matching. G2P research has focused
on some of the most difficult cases, including English. Less
attention has been paid to providing G2P coverage for the
wide range of languages with a more direct relationship be-
tween orthography and phonology. Many such languages
require more than simple a mapping table for G2P but can
be handled adequately by a more sophisticated rule-based
system and certainly do not require a machine learning ap-
proach. This is fortunate, because many of these are also
low resource languages in which sufficient training data,
even for training a WFST, are not available but adequate
linguistic descriptions do exist.
There are a few tools that already occupy this niche. Uni-
tran is a tool that converts orthographic text to WorldBet
and X-SAMPA (Qian et al., 2010). It is limited, though,
in that it does not support Roman scripts and it does not
have a mechanism for specifying different behavior for dif-
ferent languages that use the same script. For example,
Amharic and Tigrinya both use the Ethiopic script and are
treated exactly the same by Unitran even though their use

of the Ethiopic script differs somewhat. URoman1 is not a
true G2P system; rather, it is a romanizer which generates
an English-compatible romanization of the orthographic in-
put rather than a phonemically sound output using an ex-
plicitly formalized standard (like WorldBet, X-SAMPA, or
IPA). This makes it very useful for translating data into
a form that English-speaking researchers can easily read
and makes it somewhat useful for phonetically-driven en-
tity linking tasks but limits its usefulness in speech and other
tasks where the phonetic identity of segments is important.
While Epitran is more limited in its coverage than Unitran
and particularly URoman, it provides precision G2P that is
easy to augment and debug on a language-by-language ba-
sis. It outputs both IPA—which can be consumed by re-
lated tools like PanPhon (Mortensen et al., 2016)—and X-
SAMPA, which is now widely used in crosslingual speech
applications.
A well-constructed Epitran mode will return a plausible
IPA output for every well-formed input token. This pro-
vides a clear advantage over lexically-based resources for
grapheme-to-phoneme tasks. This means there are effec-
tively no vocabulary limits—there is a pronunciation for
every word presented. The advantages are even more clear
when compared to manually annotated data, as is often used
in speech tasks. It is not uncommon for multiple anno-
tators to have a low degree of agreement, particularly for
phonemes that are phonetically close (differing in few ar-
ticulatory features). This can cause inconsistency in train-
ing labels leading to a bad ASR engine. Epitran addresses
this problem by providing a perfectly consistent mapping
between graphemes and phonemes.
Epitran also places all converted data in a common pho-
netic space. This is useful when working with data coming
from different sources (including data written in different
scripts), or different languages and makes certain types of
polyglot models possible.
It is reasonable to ask whether G2P is necessary any longer.
After all, it has been shown that a respectable ASR system
can be constructed for Vietnamese working directly from
the orthography (Luong and Vu, 2016). Two points must
be made here: Epitran is focused primarily at languages in

1https://www.isi.edu/~ulf/uroman.html
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low data scenarios (though high resource languages are in-
cluded for transfer purposes). With very little data, the G2P
step becomes important. Relationships between orthogra-
phy and pronunciation, which might be “obvious” to a sys-
tem in a high data setting, are less obvious when data re-
sources are constrained. Furthermore, the use of G2P is not
limited to speech tasks alone. There are other NLP tasks,
like approximate phonetic matching, where grapheme-to-
phoneme conversion are important. Perhaps most signif-
icantly, certain models of cross-lingual transfer are facili-
tated by placing data from related languages in a common
phonetic space (Bharadwaj et al., 2016). This topic is taken
up at greater length in §6.2.

3. Interface
Epitran provides a simple Python (2 and 3) interface to all
backends (See §4.):

>>> import epitran
>>> epi = epitran.Epitran(’eng-Latn’)
>>> epi.transliterate(’Berkeley’)
’bɹ̩kli’
>>> epi.xsampa_list(’Berkeley’)
[’b’,’r\\=’,’k’,’l’,’i’]

The primary API consists of methods on Epitran ob-
jects. The most important of these are transliter-
ate and xsampa_list. The transliterate method takes
a word token and returns its IPA representation. The
xsampa_list method takes a word token a returns a list of
X-SAMPA segments. Other methods include trans_list
(like transliterate but returns a list of IPA segments)
and trans_delimiter (like transliterate but returns IPA
with a delimiter between segements).

4. Architecture
Epitran is structured as a single Python interface to various
backends. The current backends are:

• Flite (for English)

• Epihan (for Simplified and Traditional Chinese)

• Simple Epitran (for all other languages)

The Flite backend requires the installation of the
lex_lookup binary from a recent version of the Flite
Speech Synthesis System (Black and Lenzo, 2001). The
Epihan backend requires the installation of the open source
CC-CEDict dictionary2. Most of the languages supported
require the installation of no software or data other than
Epitran itself. These use the Simple Epitran backend.

4.1. Simple Epitran
Every language with Simple Epitran support has a map file
that defines a mapping between orthographic strings and
phonemic strings. This is easy to produce and maintain.
In many cases, it can be extracted automatically or semi-
automatically from tables in existing resources. When it
is not adequate, a preprocessor and a postprocessor can be
added to manipulate the representations before and after
mapping.

2https://cc-cedict.org

::consonant:: = b|bw|d|dw|d͡ʒ|d͡ʒw|f|fʲ|fw|h|hw|j|k|kʷ
|l|lw|m|mʲ|mw|n|nw|p|pw|pʼ|pʼw|q|qʰ|qʰw|qʷ|r|rʲ|rw|s|sw
|t|tw|tʼ|tʼw|t͡sʼ|t͡sʼw|t͡ʃ|t͡ʃw|t͡ʃʼ|t͡ʃʼw|v|vw|w|x|xʷ
|z|zw|ħ|ħw|ŋ|ŋw|ɡ|ɡʷ|ɲ|ɲw|ʃ|ʃw|ʒ|ʒw|ʔ|ʔw|ʕ

0 -> ɨ / #(::consonant::)_(::consonant::)
0 -> ɨ / #(::consonant::)_#
0 -> ɨ / (::consonant::)_(::consonant::)#
0 -> ɨ / (::consonant::)_(::consonant::)(::consonant::)

Figure 1: The postprocessor from a Tigrinya (tir-Ethi-
red) mode.

4.1.1. Map Files
Simple Epitran map files are simply two-column CSV files
with a field for orthographic representation and a field for
phonemic representation. They are interpreted greedily:
The longest orthographic string matching a prefix of the in-
put string is removed from the input string and the corre-
sponding phonemic string is appended to the output string.
This process proceeds iteratively until the input string is
consumed. By default, input characters that are not found in
the mapping table are added to the output unchanged. The
order of the pairs in the map file is not significant.

4.1.2. Pre- and Post-Processors
While map files are easy to produce, often with the kinds of
data available in references like Wikipedia3 and Omniglot
4 as well as published grammars, they are not adequate
for languages with complexmappings between orthography
and phonology. For these circumstances, Epitran provides
preprocessors and postprocessors. Each of these is essen-
tially a cascade of context-sensitive rewrite rules. Figure 1
illustrates the structure of Simple Epitran preprocessors and
postprocessors through an example of a Tigryina postpro-
cessor. The first line (broken into four lines here) defines a
constant, ::consonant::, that can be used in the rules. Its
value is a regular expression that matches any of the conso-
nant phonemes in the language. The rules insert the default
vowel /ɨ/ between two word-initial consonants, at the end
of a word consisting only of a consonants, between word-
final consonants, and between the second and third conso-
nant of a three-consonant sequence. The function of this
postprocessor in the Simple Epitran pipeline is illustrated in
Figure 2. The input orthographic string passes through the
preprocessor unchanged. It is then remapped into a phone-
mic space as defined in the mapping table. However, this
representation does not include certain vowels whose distri-
bution is predictable. One such vowel is inserted into ‘bee’,
yielding /nɨhbi/ as the output.
4.2. Design Decisions
It should be evident that the preprocessors, postprocessrs,
and maps all define regular relations and can thus be mod-
eled using Finite State Transducers. Indeed, at an early
stage of development, we considered using XFST or Foma
as a basis for Epitran. There were three reasons we ulti-

3http://www.wikipedia.org
4https://www.omniglot.com
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orthographic form ንህቢ
↓

preprocessor
↓

intermediate form ንህቢ
↓

map
↓

intermediate form /nhbi/
↓

postprocessor
↓

phonemic form /nɨhbi/
Figure 2: The Simple Epitran pipeline illustrated by the
Tigrinya word ንህቢ ‘bee’.

mately chose not to do this (and to adopt—for Simple Epi-
tran, at least—a pure Python implementation using string
operations and regular expressions):

1. We wished to minimize the set of dependencies for
Simple Epitran and wanted to limit them to Python li-
braries that could be installed from PyPI with pip.

2. We wanted a specific, lightweight format for the map
files that could easily be extracted from sources with
minimal processing. The greedy matching described
above could be achieved through composing finite
state transducers such that “rules” with a longer left-
hand side would be ordered first, but this would require
programmatic reordering of the list of mappings.

3. Some languages require metathesis (the “swapping” of
substrings) in order to map orthographic order onto the
temporal order needed for phonemic representation. It
is possible to implement this using FSTs, but it is awk-
ward to express using XFST/Foma’s rule notation. In
Python, wewere able to implement syntactic sugar that
makes general metathesis rules easy to write.

5. Current Coverage
Epitran currently has coverage over the languages in Ta-
ble 1. Languages annotated as “Provisional” need addi-
tional testing. “Naive phonemic” modes naively assume
that the orthography of the language is transparently phone-
mic. A few languages written with Perso-Arabic scripts
(Arabic, Persian, Urdu) are rendered without short vow-
els (which are not present in the orthographies). Reduced
inventory modes are alternate modes for a language-script
pair that reanalyze the phonemic system to minimize the
number of phoneme types in the output.
Variation is an issue that inevitably arises in any attempt to
model pronunciation. For Spanish, for example, their are
numerous varieties that realize the same orthographic con-
sonants differently. European varieties differ among them-
selves and also differ from Latin American varieties. For
example ⟨z⟩ is realized as [θ] in Northern and Central Spain,
but as [s] elsewhere in the Spanish-speaking world. Simi-
larly, ⟨ll⟩ may be realized phonetically as [ʎ], [ʝ] or [d͡ʒ],
depending on the region. The mode spa-Latn represents

Code Language (Script) Notes

aar-Latn Afar
amh-Ethi Amharic Naive mode
amh-Ethi-pp Amharic Precise phonemic mode
amh-Ethi-red Amharic Reduced inventory mode
ara-Arab Arabic No short vowels
aze-Cyrl Azerbaijani (Cyrillic)
aze-Latn Azerbaijani (Latin)
ben-Beng Bengali
cat-Latn Catalan
ceb-Latn Cebuano
cmn-Hans Chinese (Simplified)
cmn-Hant Chinese (Traditional)
ckb-Arab Sorani Provisional
deu-Latn German
deu-Latn-np German Naive phonemic
eng-Latn English
fas-Arab Farsi No short vowels
fra-Latn French Provisional
fra-Latn-np French Naive phonemic
hat-Latn-bab Haitian Following Babel
hau-Latn Hausa
hin-Deva Hindi
hun-Latn Hungarian
ilo-Latn Ilocano
ind-Latn Indonesian
ita-Latn Italian
jav-Latn Javanese
kaz-Cyrl-bab Kazakh (Cyrillic) Following Babel
kaz-Cyrl Kazakh (Cyrillic)
kaz-Latn Kazakh (Latin)
khm-Khmr Khmer Provisional
kin-Latn Kinyarwanda
kir-Arab Kyrgyz (Perso-Arabic)
kir-Cyrl Kyrgyz (Cyrillic)
kir-Latn Kyrgyz (Latin)
kmr-Latn Kurmanji
lao-Laoo Lao Provisional
mar-Deva Marathi
mon-Cyrl-bab Mongolian Following Babel
mlt-Latn Maltese
msa-Latn Malay
mya-Mymr Burmese Provisional
nld-Latn Dutch
nya-Latn Chichewa
orm-Latn Oromo
pan-Guru Punjabi
pol-Latn Polish
por-Latn Portuguese
rus-Cyrl Russian Provisional
sna-Latn Shona
som-Latn Somali
spa-Latn Spanish
swa-Latn Swahili
swe-Latn Swedish
tam-Taml Tamil
tel-Telu Telugu
tgk-Cyrl Tajik
tgl-Latn Tagalog
tha-Thai Thai
tir-Ethi Tigrinya Naive
tir-Ethi-pp Tigrinya Precise phonemic mode
tir-Ethi-red Tigrinya Reduced inventory mode
tuk-Cyrl Turkmen (Cyrillic)
tuk-Latn Turkmen (Latin)
tur-Latn-bab Turkish Following Babel
tur-Latn Turkish
uig-Arab Uyghur
ukr-Cyrl Ukrainian Provisional
urd-Arab Urdu No short vowels
uzb-Cyrl Uzbek (Cyrillic)
uzb-Latn Uzbek (Latin)
vie-Latn Vietnamese
xho-Latn Xhosa
yor-Latn Yoruba
zha-Latn Zhuang
zul-Latn Zulu

Table 1: Language modes in Epitran

a compromise Latin American Spanish, for historical rea-
sons. In principle, there is no reason that a Castilian Spanish
mode could not be added with modifying suffix appended
to the language-script code. In practice, one variety—or a
compromise variety—has been chosen for each ISO 639-3
code. In some cases, the choice of a compromise variety
has been influenced by certain use cases. For example, the
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⟨r⟩ phoneme in German and French has been mapped to [r]
(found in conservative non-standard dialects) rather than [ʁ]
or [ʀ]. This decision was made in order to minimize the
phonetic distance between French and German words and
related vocabulary items in other languages. Enriching the
documentation to clarify the nature of these decisions is an
important next step in improving Epitran’s usability.

6. Downstream Evaluation and Applications
Evaluation of a multilingual resource like Epitran is diffi-
cult because each of the languages supported must effec-
tively be evaluated separately. Furthermore, since Epitran
concentrates on low resource languages, it is often difficult
to find a sensible baseline and ground truth for many of
the languages supported. Unitran could be used as a base-
line for languages with non-Latin scripts but not for those
with Latin scripts (the majority of Epitran languages). With
these caveats in mind, we find good evidence from task-
based evaluation that at least some of Epitran’s language
modes are very valuable.
6.1. ASR
To measure the performance of Epitran G2P in an ASR
task, we trained an acoustic model of the EESEN ASR sys-
tem (Miao et al., 2015) with a 6 layer bidirectional LSTM
having 140 cells followed by a linear projection to 70 layer
network after each LSTM5. The model takes in filter bank
and pitch features extracted from telephonic audio recorded
at 8kHz and produces a sequence of phonemes as the out-
put. For the baseline experiment we used the G2P dictio-
nary (lexicon file) provided as part of the dataset for each
of the languages. For Epitran, we trained the same model
by generating a new pronunciation file for all words in the
baseline lexicon. For both the models we kept 5% of the
data as a held out cross validation data to choose the best
epoch.
We ground these phonemes to words using Weighted Fi-
nite State Transducers (WFSTs). We generate separate
WFSTs to encode information about the tokens, grammar,
and lexicon, and fuse them into a single compressed search
graph which is used to generate the words. The details of
the process can be seen in (Miao et al., 2015). This way
we can compare the results on “gold transcription” text.
We experimented on the eleven languages that were both
in data released as part of the IARPA BABEL Research
Program (IARPA-BAA-11-02) and for which there was a
fully-developed Epitran mode. The word error rate results
are shown in Table 2. In all cases, Epitran is competitive
with the baseline. In a majority of cases, the word error
rate for the system trained using Epitran has a lower word
error rate that the baseline system.
One persistent advantage of Epitran (over lexical re-
sources) is its ability to produce consistent and accu-
rate pronunciations for all words that a system encoun-
ters, not just thus listed in the lexicon. This aids in sev-
eral ASR-related tasks. For example, it makes it possi-
ble to build phoneme-based language models with no out-

5The code to train can be found in https://github.com/srvk/
eesen/tree/tf_clean

Language Baseline Epitran Vocabulary
WER WER Size

Amharic 58.6 57.2 36971
Cebuano 60.3 57.1 15534
Javanese 71.3 65.7 15541
Kazakh 60.7 57.8 22371
Kurmanji 70.9 68.4 14425
Swahili 60.7 61.2 18796
Tagalog 54.6 55.7 22627
Tamil 74.8 76.8 58484
Telugu 81.5 77.9 37654
Turkish 55.7 56.9 41157
Zulu 67.7 65.2 60627

Table 2: Word Error Rate (% WER) for the baseline model
and a model trained with Epitran

of-vocabulary (OOV) words. This has applications be-
yond speech technologies (in cross-lingual language appli-
cations). It also enables us to recognize words outside of
the lexicon on which a model is trained. It can produce
precise pronunciations of an utterance which can provide
useful feedback on how the model is performing on OOV
words during evaluation.
6.2. Additional Applications
Epitran has been further applied to a number of tasks under-
taken by the ARIEL team as part of the DARPA LORELEI
program. In the speech domain, it has also been used in
the cross-lingual and cross-domain transfer of ASR models
built in Amharic to Tigrinya and Oromo. Since it performs
G2P using similar rules for all the languages, the phonetic
spaces to which the languages are mapped end up being
very close. This is extremely important for transfer learn-
ing, especially when the target language data is minimal.
It was also used to combine Amharic datasets from dif-
ferent sources by generating a new G2P dictionary. This
technique is extremely useful for low resource languages
where collecting data from multiple sources is essential. It
has led to significant improvements in the robustness and
performance of ARIEL’s ASR.
In the language domain, it has been used to facilitate cross-
lingual transfer of named entity annotations from Uzbek
to Turkish and from Uzbek and Turkish to Uyghur by al-
lowing the projection of all these languages into a com-
mon, phonetic space (Bharadwaj et al., 2016). It has also
been used to transduce all languages in a large multilingual
parallel corpus into IPA for training a polyglot machine
translation model. Furthermore, it has been used in cross-
lingual entity linking between languages like Amharic,
Tigrinya, and Oromo, on the source side, and English, on
the target side. Unfortunately, none of these cases were
well adapted to ablation experiments in which the contri-
bution of Epitran could be straightforwardly evaluated.
An additional application space for Epitran—and one that
is even harder to evaluate—lies in helping non-native
speaker linguists perform annotation tasks. While foreign
scripts may be opaque even to linguistically-trained annota-
tors, IPA representations are widely recognizable and read-
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able. Epitran has been pivotal in allowing members of the
ARIEL team to perform named entity annotation on lan-
guages like Uyghur, Amharic, and Tigrinya without special
competence in these languages.

7. Conclusion
Epitran provides a lightweight and precise means of map-
ping orthographic data into the phonetic space. The out-
of-the-box availability of many languages, as well as the
ease with which high-quality modes may be added for new
languages, make it a useful resource for researchers and
developers working in the speech and cross-lingual NLP
spaces.
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